89 research outputs found

    On applications of ant colony optimisation techniques in solving assembly line balancing problems

    Get PDF
    PublishedArticleRecently, there is an increasing interest in applications of meta-heuristic approaches in solving various engineering problems. Meta-heuristics help both academics and practitioners to get not only feasible but also near optimal solutions where obtaining a solution for the relevant problem is not possible in a reasonable time using traditional optimisation techniques. Ant colony optimisation algorithm is inspired from the collective behaviour of ants and one of the most efficient meta-heuristics in solving combinatorial optimisation problems. One of the main application areas of ant colony optimisation algorithm is assembly line balancing problem. In this paper, we first give the running principle of ant colony optimisation algorithm and then review the applications of ant colony optimisation based algorithms on assembly line balancing problems in the literature. Strengths and weaknesses of proposed algorithms to solve various problem types in the literature have also been discussed in this research. The main aim is to lead new researches in this domain and spread the application areas of ant colony optimisation techniques in various aspects of line balancing problems. Existing researches in the literature indicate that ant colony optimisation methodology has a promising solution performance to solve line balancing problems especially when integrated with other heuristic and/or meta-heuristic methodologies

    Benefits of robust multiobjective optimization for flexible automotive assembly line balancing

    Get PDF
    “This is a pre-print of an article published inJ. Flex Serv Manuf. The final authenticated version is available online at: https://doi.org/10.1007/s10696-018-9309-y ” Chica, M., Bautista, J. & de Armas, J. Flex Serv Manuf J (2018). https://doi.org/10.1007/s10696-018-9309-yChanging conditions and variations in the demand are frequent in real industrial environments. Decision makers have to take into account this uncertainty and manage it properly. One clear example is the automotive industry where manufacturers have to assume an uncertain and heterogeneous demand. For instance, automotive manufacturers must adapt their decisions when balancing the assembly line by considering different flexible solutions. Our proposal is using robust multiobjective optimization and simulation techniques to provide managers with a set of robust and equally-preferred solutions for assembly line balancing. We study a Nissan case where the demand of each product family is uncertain. The problem is addressed by considering a robust multiobjective model for assembly line balancing based on a high number of production plans. After the selection of six different assembly line configurations, we study the implications of robustness metrics based on workstations’ overload. We show that the adverse managerial effects of not having flexible line configuration when demand changes are alleviated. For the real Nissan automotive case, our analysis and conclusions show the managerial and industrial benefits of using robust assembly lines. We also encourage decision makers to use robust multiobjective optimization methods for selecting the most flexible decisions.Peer ReviewedPostprint (author's final draft

    Modelling and Solving Mixed-model Parallel Two-sided Assembly Line Problems

    Get PDF
    The global competitive environment and the growing demand for personalised products have increased the interest of companies in producing similar product models on the same assembly line. Companies are forced to make significant structural changes to rapidly respond to diversified demands and convert their existing single-model lines into mixed-model lines in order to avoid unnecessary new line construction cost for each new product model. Mixed-model assembly lines play a key role in increasing productivity without compromising quality for manufacturing enterprises. The literature is extensive on assembling small-sized products in an intermixed sequence and assembling large-sized products in large volumes on single-model lines. However, a mixed-model parallel two-sided line system, where two or more similar products or similar models of a large-sized product are assembled on each of the parallel two-sided lines in an intermixed sequence, has not been of interest to academia so far. Moreover, taking model sequencing problem into consideration on a mixed-model parallel two-sided line system is a novel research topic in this domain. Within this context, the problem of simultaneous balancing and sequencing of mixed-model parallel two-sided lines is defined and described using illustrative examples for the first time in the literature. The mathematical model of the problem is also developed to exhibit the main characteristics of the problem and to explore the logic underlying the algorithms developed. The benefits of utilising multi-line stations between two adjacent lines are discussed and numerical examples are provided. An agent-based ant colony optimisation algorithm (called ABACO) is developed to obtain a generic solution that conforms to any model sequence and it is enhanced step-by-step to increase the quality of the solutions obtained. Then, the algorithm is modified with the integration of a model sequencing procedure (where the modified version is called ABACO/S) to balance lines by tracking the product model changes on each workstation in a complex production environment where each of the parallel lines may a have different cycle time. Finally, a genetic algorithm based model sequencing mechanism is integrated to the algorithm to increase the robustness of the obtained solutions. Computational tests are performed using test cases to observe the performances of the developed algorithms. Statistical tests are conducted through obtained results and test results establish that balancing mixed-model parallel two-sided lines together has a significant effect on the sought performance measures (a weighted summation of line length and the number of workstations) in comparison with balancing those lines separately. Another important finding of the research is that considering model sequencing problem along with the line balancing problem helps algorithm find better line balances with better performance measures. The results also indicate that the developed ABACO and ABACO/S algorithms outperform other test heuristics commonly used in the literature in solving various line balancing problems; and integrating a genetic algorithm based model sequencing mechanism into ABACO/S helps the algorithm find better solutions with less amount of computational effort

    Articles publicats per investigadors de l'ETSEIB indexats al Journal Citation Reports: 2011

    Get PDF
    Informe que recull els 296 treballs publicats per 220 investigadors de l'Escola Tècnica Superior d'Enginyeria Industrial de Barcelona (ETSEIB) en revistes indexades al Journal Citation Reports durant l’any 2011Preprin

    Including different kinds of preferences in a multi-objective ant algorithm for time and space assembly line balancing on different Nissan scenarios

    No full text
    Most of the decision support systems for balancing industrial assembly lines are designed to report a huge number of possible line configurations, according to several criteria. In this contribution, we tackle a more realistic variant of the classical assembly line problem formulation, time and space assembly line balancing. Our goal is to study the influence of incorporating user preferences based on Nissan automotive domain knowledge to guide the multi-objective search process with two different aims. First, to reduce the number of equally preferred assembly line configurations (i.e., solutions in the decision space) according to Nissan plants requirements. Second, to only provide the plant managers with configurations of their contextual interest in the objective space (i.e., solutions within their preferred Pareto front region) based on real-world economical variables. We face the said problem with a multi-objective ant colony optimisation algorithm. Using the real data of the Nissan Pathfinder engine, a solid empirical study is carried out to obtain the most useful solutions for the decision makers in six different Nissan scenarios around the world.Peer Reviewe

    Including different kinds of preferences in a multi-objective ant algorithm for time and space assembly line balancing on different Nissan scenarios

    No full text
    Most of the decision support systems for balancing industrial assembly lines are designed to report a huge number of possible line configurations, according to several criteria. In this contribution, we tackle a more realistic variant of the classical assembly line problem formulation, time and space assembly line balancing. Our goal is to study the influence of incorporating user preferences based on Nissan automotive domain knowledge to guide the multi-objective search process with two different aims. First, to reduce the number of equally preferred assembly line configurations (i.e., solutions in the decision space) according to Nissan plants requirements. Second, to only provide the plant managers with configurations of their contextual interest in the objective space (i.e., solutions within their preferred Pareto front region) based on real-world economical variables. We face the said problem with a multi-objective ant colony optimisation algorithm. Using the real data of the Nissan Pathfinder engine, a solid empirical study is carried out to obtain the most useful solutions for the decision makers in six different Nissan scenarios around the world.Peer Reviewe

    WiFi-Based Human Activity Recognition Using Attention-Based BiLSTM

    Get PDF
    Recently, significant efforts have been made to explore human activity recognition (HAR) techniques that use information gathered by existing indoor wireless infrastructures through WiFi signals without demanding the monitored subject to carry a dedicated device. The key intuition is that different activities introduce different multi-paths in WiFi signals and generate different patterns in the time series of channel state information (CSI). In this paper, we propose and evaluate a full pipeline for a CSI-based human activity recognition framework for 12 activities in three different spatial environments using two deep learning models: ABiLSTM and CNN-ABiLSTM. Evaluation experiments have demonstrated that the proposed models outperform state-of-the-art models. Also, the experiments show that the proposed models can be applied to other environments with different configurations, albeit with some caveats. The proposed ABiLSTM model achieves an overall accuracy of 94.03%, 91.96%, and 92.59% across the 3 target environments. While the proposed CNN-ABiLSTM model reaches an accuracy of 98.54%, 94.25% and 95.09% across those same environments

    Insights from the Inventory of Smart Grid Projects in Europe: 2012 Update

    Get PDF
    By the end of 2010 the Joint Research Centre, the European Commission’s in-house science service, launched the first comprehensive inventory of smart grid projects in Europe1. The final catalogue was published in July 2011 and included 219 smart grid and smart metering projects from the EU-28 member states, Switzerland and Norway. The participation of the project coordinators and the reception of the report by the smart grid community were extremely positive. Due to its success, the European Commission decided that the project inventory would be carried out on a regular basis so as to constantly update the picture of smart grid developments in Europe and keep track of lessons learnt and of challenges and opportunities. For this, a new on-line questionnaire was launched in March 2012 and information on projects collected up to September 2012. At the same time an extensive search of project information on the internet and through cooperation links with other European research organizations was conducted. The resulting final database is the most up to date and comprehensive inventory of smart grids and smart metering projects in Europe, including a total of 281 smart grid projects and 90 smart metering pilot projects and rollouts from the same 30 countries that were included in the 2011 inventory database. Projects surveyed were classified into three categories: R&D, demonstration or pre-deployment) and deployment, and for the first time a distinction between smart grid and smart metering projects was made. The following is an insight into the 2012 report.JRC.F.3-Energy securit
    corecore