6,859 research outputs found

    Incident Mining Using Structural Prototypes

    Full text link

    Insightful classification of crystal structures using deep learning

    Full text link
    Computational methods that automatically extract knowledge from data are critical for enabling data-driven materials science. A reliable identification of lattice symmetry is a crucial first step for materials characterization and analytics. Current methods require a user-specified threshold, and are unable to detect average symmetries for defective structures. Here, we propose a machine-learning-based approach to automatically classify structures by crystal symmetry. First, we represent crystals by calculating a diffraction image, then construct a deep-learning neural-network model for classification. Our approach is able to correctly classify a dataset comprising more than 100 000 simulated crystal structures, including heavily defective ones. The internal operations of the neural network are unraveled through attentive response maps, demonstrating that it uses the same landmarks a materials scientist would use, although never explicitly instructed to do so. Our study paves the way for crystal-structure recognition of - possibly noisy and incomplete - three-dimensional structural data in big-data materials science.Comment: Nature Communications, in press (2018

    A Survey on Graph Kernels

    Get PDF
    Graph kernels have become an established and widely-used technique for solving classification tasks on graphs. This survey gives a comprehensive overview of techniques for kernel-based graph classification developed in the past 15 years. We describe and categorize graph kernels based on properties inherent to their design, such as the nature of their extracted graph features, their method of computation and their applicability to problems in practice. In an extensive experimental evaluation, we study the classification accuracy of a large suite of graph kernels on established benchmarks as well as new datasets. We compare the performance of popular kernels with several baseline methods and study the effect of applying a Gaussian RBF kernel to the metric induced by a graph kernel. In doing so, we find that simple baselines become competitive after this transformation on some datasets. Moreover, we study the extent to which existing graph kernels agree in their predictions (and prediction errors) and obtain a data-driven categorization of kernels as result. Finally, based on our experimental results, we derive a practitioner's guide to kernel-based graph classification

    A General Spatio-Temporal Clustering-Based Non-local Formulation for Multiscale Modeling of Compartmentalized Reservoirs

    Full text link
    Representing the reservoir as a network of discrete compartments with neighbor and non-neighbor connections is a fast, yet accurate method for analyzing oil and gas reservoirs. Automatic and rapid detection of coarse-scale compartments with distinct static and dynamic properties is an integral part of such high-level reservoir analysis. In this work, we present a hybrid framework specific to reservoir analysis for an automatic detection of clusters in space using spatial and temporal field data, coupled with a physics-based multiscale modeling approach. In this work a novel hybrid approach is presented in which we couple a physics-based non-local modeling framework with data-driven clustering techniques to provide a fast and accurate multiscale modeling of compartmentalized reservoirs. This research also adds to the literature by presenting a comprehensive work on spatio-temporal clustering for reservoir studies applications that well considers the clustering complexities, the intrinsic sparse and noisy nature of the data, and the interpretability of the outcome. Keywords: Artificial Intelligence; Machine Learning; Spatio-Temporal Clustering; Physics-Based Data-Driven Formulation; Multiscale Modelin

    Prototypes as Explanation for Time Series Anomaly Detection

    Full text link
    Detecting abnormal patterns that deviate from a certain regular repeating pattern in time series is essential in many big data applications. However, the lack of labels, the dynamic nature of time series data, and unforeseeable abnormal behaviors make the detection process challenging. Despite the success of recent deep anomaly detection approaches, the mystical mechanisms in such black-box models have become a new challenge in safety-critical applications. The lack of model transparency and prediction reliability hinders further breakthroughs in such domains. This paper proposes ProtoAD, using prototypes as the example-based explanation for the state of regular patterns during anomaly detection. Without significant impact on the detection performance, prototypes shed light on the deep black-box models and provide intuitive understanding for domain experts and stakeholders. We extend the widely used prototype learning in classification problems into anomaly detection. By visualizing both the latent space and input space prototypes, we intuitively demonstrate how regular data are modeled and why specific patterns are considered abnormal

    Optical Truss Interferometer for the LISA Telescope

    Full text link
    The LISA telescopes must exhibit an optical path length stability of pmHz\frac{\mathrm{pm}}{\sqrt{\mathrm{Hz}}} in the mHz observation band to meet mission requirements. The optical truss interferometer is a proposed method to aid in the ground testing of the telescopes, as well as a risk-mitigation plan for the flight units. This consists of three Fabry-Perot cavities mounted to the telescope which are used to monitor structural displacements. We have designed and developed a fiber-based cavity injection system that integrates fiber components, mode-matching optics, and a cavity input mirror into a compact input stage. The input stages, paired with return mirror stages, can be mounted to the telescope to form the optical truss cavities. We performed a thorough sensitivity analysis using various simulation methods to support the fabrication and assembly of three first-generation prototype cavities, each of which exhibited a satisfactory performance based on our models.Comment: 9 pages, 9 figures, 13 pdf figures attache

    Human activity recognition based on evolving fuzzy systems

    Get PDF
    Environments equipped with intelligent sensors can be of much help if they can recognize the actions or activities of their users. If this activity recognition is done automatically, it can be very useful for different tasks such as future action prediction, remote health monitoring, or interventions. Although there are several approaches for recognizing activities, most of them do not consider the changes in how a human performs a specific activity. We present an automated approach to recognize daily activities from the sensor readings of an intelligent home environment. However, as the way to perform an activity is usually not fixed but it changes and evolves, we propose an activity recognition method based on Evolving Fuzzy SystemsThis work has been partially supported by the Spanish Government under project TRA2007-67374-C02-0
    • …
    corecore