225 research outputs found

    Incentivizing Exploration with Selective Data Disclosure

    Full text link
    We study the design of rating systems that incentivize (more) efficient social learning among self-interested agents. Agents arrive sequentially and are presented with a set of possible actions, each of which yields a positive reward with an unknown probability. A disclosure policy sends messages about the rewards of previously-chosen actions to arriving agents. These messages can alter agents' incentives towards exploration, taking potentially sub-optimal actions for the sake of learning more about their rewards. Prior work achieves much progress with disclosure policies that merely recommend an action to each user, but relies heavily on standard, yet very strong rationality assumptions. We study a particular class of disclosure policies that use messages, called unbiased subhistories, consisting of the actions and rewards from a subsequence of past agents. Each subsequence is chosen ahead of time, according to a predetermined partial order on the rounds. We posit a flexible model of frequentist agent response, which we argue is plausible for this class of "order-based" disclosure policies. We measure the success of a policy by its regret, i.e., the difference, over all rounds, between the expected reward of the best action and the reward induced by the policy. A disclosure policy that reveals full history in each round risks inducing herding behavior among the agents, and typically has regret linear in the time horizon TT. Our main result is an order-based disclosure policy that obtains regret O~(T)\tilde{O}(\sqrt{T}). This regret is known to be optimal in the worst case over reward distributions, even absent incentives. We also exhibit simpler order-based policies with higher, but still sublinear, regret. These policies can be interpreted as dividing a sublinear number of agents into constant-sized focus groups, whose histories are then revealed to future agents

    Incentivizing Exploration with Heterogeneous Value of Money

    Full text link
    Recently, Frazier et al. proposed a natural model for crowdsourced exploration of different a priori unknown options: a principal is interested in the long-term welfare of a population of agents who arrive one by one in a multi-armed bandit setting. However, each agent is myopic, so in order to incentivize him to explore options with better long-term prospects, the principal must offer the agent money. Frazier et al. showed that a simple class of policies called time-expanded are optimal in the worst case, and characterized their budget-reward tradeoff. The previous work assumed that all agents are equally and uniformly susceptible to financial incentives. In reality, agents may have different utility for money. We therefore extend the model of Frazier et al. to allow agents that have heterogeneous and non-linear utilities for money. The principal is informed of the agent's tradeoff via a signal that could be more or less informative. Our main result is to show that a convex program can be used to derive a signal-dependent time-expanded policy which achieves the best possible Lagrangian reward in the worst case. The worst-case guarantee is matched by so-called "Diamonds in the Rough" instances; the proof that the guarantees match is based on showing that two different convex programs have the same optimal solution for these specific instances. These results also extend to the budgeted case as in Frazier et al. We also show that the optimal policy is monotone with respect to information, i.e., the approximation ratio of the optimal policy improves as the signals become more informative.Comment: WINE 201

    Incentivizing exploration

    Full text link

    Incentivizing Exploration with Linear Contexts and Combinatorial Actions

    Full text link
    We advance the study of incentivized bandit exploration, in which arm choices are viewed as recommendations and are required to be Bayesian incentive compatible. Recent work has shown under certain independence assumptions that after collecting enough initial samples, the popular Thompson sampling algorithm becomes incentive compatible. We give an analog of this result for linear bandits, where the independence of the prior is replaced by a natural convexity condition. This opens up the possibility of efficient and regret-optimal incentivized exploration in high-dimensional action spaces. In the semibandit model, we also improve the sample complexity for the pre-Thompson sampling phase of initial data collection.Comment: International Conference on Machine Learning (ICML) 202

    Learning User Preferences to Incentivize Exploration in the Sharing Economy

    Full text link
    We study platforms in the sharing economy and discuss the need for incentivizing users to explore options that otherwise would not be chosen. For instance, rental platforms such as Airbnb typically rely on customer reviews to provide users with relevant information about different options. Yet, often a large fraction of options does not have any reviews available. Such options are frequently neglected as viable choices, and in turn are unlikely to be evaluated, creating a vicious cycle. Platforms can engage users to deviate from their preferred choice by offering monetary incentives for choosing a different option instead. To efficiently learn the optimal incentives to offer, we consider structural information in user preferences and introduce a novel algorithm - Coordinated Online Learning (CoOL) - for learning with structural information modeled as convex constraints. We provide formal guarantees on the performance of our algorithm and test the viability of our approach in a user study with data of apartments on Airbnb. Our findings suggest that our approach is well-suited to learn appropriate incentives and increase exploration on the investigated platform.Comment: Longer version of AAAI'18 paper. arXiv admin note: text overlap with arXiv:1702.0284

    Incentivized Exploration for Multi-Armed Bandits under Reward Drift

    Full text link
    We study incentivized exploration for the multi-armed bandit (MAB) problem where the players receive compensation for exploring arms other than the greedy choice and may provide biased feedback on reward. We seek to understand the impact of this drifted reward feedback by analyzing the performance of three instantiations of the incentivized MAB algorithm: UCB, ε\varepsilon-Greedy, and Thompson Sampling. Our results show that they all achieve O(logT)\mathcal{O}(\log T) regret and compensation under the drifted reward, and are therefore effective in incentivizing exploration. Numerical examples are provided to complement the theoretical analysis.Comment: 10 pages, 2 figures, AAAI 202

    Flow-based Intrinsic Curiosity Module

    Full text link
    In this paper, we focus on a prediction-based novelty estimation strategy upon the deep reinforcement learning (DRL) framework, and present a flow-based intrinsic curiosity module (FICM) to exploit the prediction errors from optical flow estimation as exploration bonuses. We propose the concept of leveraging motion features captured between consecutive observations to evaluate the novelty of observations in an environment. FICM encourages a DRL agent to explore observations with unfamiliar motion features, and requires only two consecutive frames to obtain sufficient information when estimating the novelty. We evaluate our method and compare it with a number of existing methods on multiple benchmark environments, including Atari games, Super Mario Bros., and ViZDoom. We demonstrate that FICM is favorable to tasks or environments featuring moving objects, which allow FICM to utilize the motion features between consecutive observations. We further ablatively analyze the encoding efficiency of FICM, and discuss its applicable domains comprehensively.Comment: The SOLE copyright holder is IJCAI (International Joint Conferences on Artificial Intelligence), all rights reserved. The link is provided as follows: https://www.ijcai.org/Proceedings/2020/28
    corecore