646 research outputs found

    Incentive Mechanisms for Participatory Sensing: Survey and Research Challenges

    Full text link
    Participatory sensing is a powerful paradigm which takes advantage of smartphones to collect and analyze data beyond the scale of what was previously possible. Given that participatory sensing systems rely completely on the users' willingness to submit up-to-date and accurate information, it is paramount to effectively incentivize users' active and reliable participation. In this paper, we survey existing literature on incentive mechanisms for participatory sensing systems. In particular, we present a taxonomy of existing incentive mechanisms for participatory sensing systems, which are subsequently discussed in depth by comparing and contrasting different approaches. Finally, we discuss an agenda of open research challenges in incentivizing users in participatory sensing.Comment: Updated version, 4/25/201

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Comparison of Classification Algorithm in Predicting Stroke Disease

    Get PDF
    ABSTRAK- To prevent stroke, we need a way to predict whether someone has had a stroke through medical parameters. With the influence of technology in the medical world, stroke can be predicted using the Data Science method, which starts with Data Acquisition, Data Cleaning, Exploratory Data Analysis, Preprocessing, and the last stage is Model Building. Based on the model that has been made, it is concluded that the algorithm with the best performance, in this case, is XGBoost with a precision value of 0.9, a recall value of 0.95, an f1 value of 0.92, and a ROC-AUC value of 0.978 after receiving five folds of cross-validation. With these results, the model created can be used to make predictions in real-time. Kata kunci : Machine Learning, Logistic Regression, Random Forest, XGBoost, Strok

    Accelerating Science: A Computing Research Agenda

    Full text link
    The emergence of "big data" offers unprecedented opportunities for not only accelerating scientific advances but also enabling new modes of discovery. Scientific progress in many disciplines is increasingly enabled by our ability to examine natural phenomena through the computational lens, i.e., using algorithmic or information processing abstractions of the underlying processes; and our ability to acquire, share, integrate and analyze disparate types of data. However, there is a huge gap between our ability to acquire, store, and process data and our ability to make effective use of the data to advance discovery. Despite successful automation of routine aspects of data management and analytics, most elements of the scientific process currently require considerable human expertise and effort. Accelerating science to keep pace with the rate of data acquisition and data processing calls for the development of algorithmic or information processing abstractions, coupled with formal methods and tools for modeling and simulation of natural processes as well as major innovations in cognitive tools for scientists, i.e., computational tools that leverage and extend the reach of human intellect, and partner with humans on a broad range of tasks in scientific discovery (e.g., identifying, prioritizing formulating questions, designing, prioritizing and executing experiments designed to answer a chosen question, drawing inferences and evaluating the results, and formulating new questions, in a closed-loop fashion). This calls for concerted research agenda aimed at: Development, analysis, integration, sharing, and simulation of algorithmic or information processing abstractions of natural processes, coupled with formal methods and tools for their analyses and simulation; Innovations in cognitive tools that augment and extend human intellect and partner with humans in all aspects of science.Comment: Computing Community Consortium (CCC) white paper, 17 page

    Relaying in the Internet of Things (IoT): A Survey

    Get PDF
    The deployment of relays between Internet of Things (IoT) end devices and gateways can improve link quality. In cellular-based IoT, relays have the potential to reduce base station overload. The energy expended in single-hop long-range communication can be reduced if relays listen to transmissions of end devices and forward these observations to gateways. However, incorporating relays into IoT networks faces some challenges. IoT end devices are designed primarily for uplink communication of small-sized observations toward the network; hence, opportunistically using end devices as relays needs a redesign of both the medium access control (MAC) layer protocol of such end devices and possible addition of new communication interfaces. Additionally, the wake-up time of IoT end devices needs to be synchronized with that of the relays. For cellular-based IoT, the possibility of using infrastructure relays exists, and noncellular IoT networks can leverage the presence of mobile devices for relaying, for example, in remote healthcare. However, the latter presents problems of incentivizing relay participation and managing the mobility of relays. Furthermore, although relays can increase the lifetime of IoT networks, deploying relays implies the need for additional batteries to power them. This can erode the energy efficiency gain that relays offer. Therefore, designing relay-assisted IoT networks that provide acceptable trade-offs is key, and this goes beyond adding an extra transmit RF chain to a relay-enabled IoT end device. There has been increasing research interest in IoT relaying, as demonstrated in the available literature. Works that consider these issues are surveyed in this paper to provide insight into the state of the art, provide design insights for network designers and motivate future research directions

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text

    A Glimpse Far into the Future: Understanding Long-term Crowd Worker Quality

    Full text link
    Microtask crowdsourcing is increasingly critical to the creation of extremely large datasets. As a result, crowd workers spend weeks or months repeating the exact same tasks, making it necessary to understand their behavior over these long periods of time. We utilize three large, longitudinal datasets of nine million annotations collected from Amazon Mechanical Turk to examine claims that workers fatigue or satisfice over these long periods, producing lower quality work. We find that, contrary to these claims, workers are extremely stable in their quality over the entire period. To understand whether workers set their quality based on the task's requirements for acceptance, we then perform an experiment where we vary the required quality for a large crowdsourcing task. Workers did not adjust their quality based on the acceptance threshold: workers who were above the threshold continued working at their usual quality level, and workers below the threshold self-selected themselves out of the task. Capitalizing on this consistency, we demonstrate that it is possible to predict workers' long-term quality using just a glimpse of their quality on the first five tasks.Comment: 10 pages, 11 figures, accepted CSCW 201

    Big data reduction framework for value creation in sustainable enterprises

    No full text
    Value creation is a major sustainability factor for enterprises, in addition to profit maximization and revenue generation. Modern enterprises collect big data from various inbound and outbound data sources. The inbound data sources handle data generated from the results of business operations, such as manufacturing, supply chain management, marketing, and human resource management, among others. Outbound data sources handle customer-generated data which are acquired directly or indirectly from customers, market analysis, surveys, product reviews, and transactional histories. However, cloud service utilization costs increase because of big data analytics and value creation activities for enterprises and customers. This article presents a novel concept of big data reduction at the customer end in which early data reduction operations are performed to achieve multiple objectives, such as a) lowering the service utilization cost, b) enhancing the trust between customers and enterprises, c) preserving privacy of customers, d) enabling secure data sharing, and e) delegating data sharing control to customers. We also propose a framework for early data reduction at customer end and present a business model for end-to-end data reduction in enterprise applications. The article further presents a business model canvas and maps the future application areas with its nine components. Finally, the article discusses the technology adoption challenges for value creation through big data reduction in enterprise applications
    • …
    corecore