49 research outputs found

    A Survey on Approximation Mechanism Design without Money for Facility Games

    Full text link
    In a facility game one or more facilities are placed in a metric space to serve a set of selfish agents whose addresses are their private information. In a classical facility game, each agent wants to be as close to a facility as possible, and the cost of an agent can be defined as the distance between her location and the closest facility. In an obnoxious facility game, each agent wants to be far away from all facilities, and her utility is the distance from her location to the facility set. The objective of each agent is to minimize her cost or maximize her utility. An agent may lie if, by doing so, more benefit can be obtained. We are interested in social choice mechanisms that do not utilize payments. The game designer aims at a mechanism that is strategy-proof, in the sense that any agent cannot benefit by misreporting her address, or, even better, group strategy-proof, in the sense that any coalition of agents cannot all benefit by lying. Meanwhile, it is desirable to have the mechanism to be approximately optimal with respect to a chosen objective function. Several models for such approximation mechanism design without money for facility games have been proposed. In this paper we briefly review these models and related results for both deterministic and randomized mechanisms, and meanwhile we present a general framework for approximation mechanism design without money for facility games

    A Near-Optimal Mechanism for Impartial Selection

    Full text link
    We examine strategy-proof elections to select a winner amongst a set of agents, each of whom cares only about winning. This impartial selection problem was introduced independently by Holzman and Moulin and Alon et al. Fisher and Klimm showed that the permutation mechanism is impartial and 1/21/2-optimal, that is, it selects an agent who gains, in expectation, at least half the number of votes of most popular agent. Furthermore, they showed the mechanism is 7/127/12-optimal if agents cannot abstain in the election. We show that a better guarantee is possible, provided the most popular agent receives at least a large enough, but constant, number of votes. Specifically, we prove that, for any ϵ>0\epsilon>0, there is a constant NϵN_{\epsilon} (independent of the number nn of voters) such that, if the maximum number of votes of the most popular agent is at least NϵN_{\epsilon} then the permutation mechanism is (34ϵ)(\frac{3}{4}-\epsilon)-optimal. This result is tight. Furthermore, in our main result, we prove that near-optimal impartial mechanisms exist. In particular, there is an impartial mechanism that is (1ϵ)(1-\epsilon)-optimal, for any ϵ>0\epsilon>0, provided that the maximum number of votes of the most popular agent is at least a constant MϵM_{\epsilon}

    Linear Regression from Strategic Data Sources

    Full text link
    Linear regression is a fundamental building block of statistical data analysis. It amounts to estimating the parameters of a linear model that maps input features to corresponding outputs. In the classical setting where the precision of each data point is fixed, the famous Aitken/Gauss-Markov theorem in statistics states that generalized least squares (GLS) is a so-called "Best Linear Unbiased Estimator" (BLUE). In modern data science, however, one often faces strategic data sources, namely, individuals who incur a cost for providing high-precision data. In this paper, we study a setting in which features are public but individuals choose the precision of the outputs they reveal to an analyst. We assume that the analyst performs linear regression on this dataset, and individuals benefit from the outcome of this estimation. We model this scenario as a game where individuals minimize a cost comprising two components: (a) an (agent-specific) disclosure cost for providing high-precision data; and (b) a (global) estimation cost representing the inaccuracy in the linear model estimate. In this game, the linear model estimate is a public good that benefits all individuals. We establish that this game has a unique non-trivial Nash equilibrium. We study the efficiency of this equilibrium and we prove tight bounds on the price of stability for a large class of disclosure and estimation costs. Finally, we study the estimator accuracy achieved at equilibrium. We show that, in general, Aitken's theorem does not hold under strategic data sources, though it does hold if individuals have identical disclosure costs (up to a multiplicative factor). When individuals have non-identical costs, we derive a bound on the improvement of the equilibrium estimation cost that can be achieved by deviating from GLS, under mild assumptions on the disclosure cost functions.Comment: This version (v3) extends the results on the sub-optimality of GLS (Section 6) and improves writing in multiple places compared to v2. Compared to the initial version v1, it also fixes an error in Theorem 6 (now Theorem 5), and extended many of the result

    Optimum Statistical Estimation with Strategic Data Sources

    Full text link
    We propose an optimum mechanism for providing monetary incentives to the data sources of a statistical estimator such as linear regression, so that high quality data is provided at low cost, in the sense that the sum of payments and estimation error is minimized. The mechanism applies to a broad range of estimators, including linear and polynomial regression, kernel regression, and, under some additional assumptions, ridge regression. It also generalizes to several objectives, including minimizing estimation error subject to budget constraints. Besides our concrete results for regression problems, we contribute a mechanism design framework through which to design and analyze statistical estimators whose examples are supplied by workers with cost for labeling said examples

    Learning Prices for Repeated Auctions with Strategic Buyers

    Full text link
    Inspired by real-time ad exchanges for online display advertising, we consider the problem of inferring a buyer's value distribution for a good when the buyer is repeatedly interacting with a seller through a posted-price mechanism. We model the buyer as a strategic agent, whose goal is to maximize her long-term surplus, and we are interested in mechanisms that maximize the seller's long-term revenue. We define the natural notion of strategic regret --- the lost revenue as measured against a truthful (non-strategic) buyer. We present seller algorithms that are no-(strategic)-regret when the buyer discounts her future surplus --- i.e. the buyer prefers showing advertisements to users sooner rather than later. We also give a lower bound on strategic regret that increases as the buyer's discounting weakens and shows, in particular, that any seller algorithm will suffer linear strategic regret if there is no discounting.Comment: Neural Information Processing Systems (NIPS 2013

    Sum of Us: Strategyproof Selection from the Selectors

    Full text link
    We consider directed graphs over a set of n agents, where an edge (i,j) is taken to mean that agent i supports or trusts agent j. Given such a graph and an integer k\leq n, we wish to select a subset of k agents that maximizes the sum of indegrees, i.e., a subset of k most popular or most trusted agents. At the same time we assume that each individual agent is only interested in being selected, and may misreport its outgoing edges to this end. This problem formulation captures realistic scenarios where agents choose among themselves, which can be found in the context of Internet search, social networks like Twitter, or reputation systems like Epinions. Our goal is to design mechanisms without payments that map each graph to a k-subset of agents to be selected and satisfy the following two constraints: strategyproofness, i.e., agents cannot benefit from misreporting their outgoing edges, and approximate optimality, i.e., the sum of indegrees of the selected subset of agents is always close to optimal. Our first main result is a surprising impossibility: for k \in {1,...,n-1}, no deterministic strategyproof mechanism can provide a finite approximation ratio. Our second main result is a randomized strategyproof mechanism with an approximation ratio that is bounded from above by four for any value of k, and approaches one as k grows

    Social Welfare in One-sided Matching Markets without Money

    Get PDF
    We study social welfare in one-sided matching markets where the goal is to efficiently allocate n items to n agents that each have a complete, private preference list and a unit demand over the items. Our focus is on allocation mechanisms that do not involve any monetary payments. We consider two natural measures of social welfare: the ordinal welfare factor which measures the number of agents that are at least as happy as in some unknown, arbitrary benchmark allocation, and the linear welfare factor which assumes an agent's utility linearly decreases down his preference lists, and measures the total utility to that achieved by an optimal allocation. We analyze two matching mechanisms which have been extensively studied by economists. The first mechanism is the random serial dictatorship (RSD) where agents are ordered in accordance with a randomly chosen permutation, and are successively allocated their best choice among the unallocated items. The second mechanism is the probabilistic serial (PS) mechanism of Bogomolnaia and Moulin [8], which computes a fractional allocation that can be expressed as a convex combination of integral allocations. The welfare factor of a mechanism is the infimum over all instances. For RSD, we show that the ordinal welfare factor is asymptotically 1/2, while the linear welfare factor lies in the interval [.526, 2/3]. For PS, we show that the ordinal welfare factor is also 1/2 while the linear welfare factor is roughly 2/3. To our knowledge, these results are the first non-trivial performance guarantees for these natural mechanisms
    corecore