In a facility game one or more facilities are placed in a metric space to
serve a set of selfish agents whose addresses are their private information. In
a classical facility game, each agent wants to be as close to a facility as
possible, and the cost of an agent can be defined as the distance between her
location and the closest facility. In an obnoxious facility game, each agent
wants to be far away from all facilities, and her utility is the distance from
her location to the facility set. The objective of each agent is to minimize
her cost or maximize her utility. An agent may lie if, by doing so, more
benefit can be obtained. We are interested in social choice mechanisms that do
not utilize payments. The game designer aims at a mechanism that is
strategy-proof, in the sense that any agent cannot benefit by misreporting her
address, or, even better, group strategy-proof, in the sense that any coalition
of agents cannot all benefit by lying. Meanwhile, it is desirable to have the
mechanism to be approximately optimal with respect to a chosen objective
function. Several models for such approximation mechanism design without money
for facility games have been proposed. In this paper we briefly review these
models and related results for both deterministic and randomized mechanisms,
and meanwhile we present a general framework for approximation mechanism design
without money for facility games