36 research outputs found

    Beating the random assignment on constraint satisfaction problems of bounded degree

    Get PDF
    We show that for any odd kk and any instance of the Max-kXOR constraint satisfaction problem, there is an efficient algorithm that finds an assignment satisfying at least a 12+Ω(1/D)\frac{1}{2} + \Omega(1/\sqrt{D}) fraction of constraints, where DD is a bound on the number of constraints that each variable occurs in. This improves both qualitatively and quantitatively on the recent work of Farhi, Goldstone, and Gutmann (2014), which gave a \emph{quantum} algorithm to find an assignment satisfying a 12+Ω(D3/4)\frac{1}{2} + \Omega(D^{-3/4}) fraction of the equations. For arbitrary constraint satisfaction problems, we give a similar result for "triangle-free" instances; i.e., an efficient algorithm that finds an assignment satisfying at least a μ+Ω(1/D)\mu + \Omega(1/\sqrt{D}) fraction of constraints, where μ\mu is the fraction that would be satisfied by a uniformly random assignment.Comment: 14 pages, 1 figur

    Two-state spin systems with negative interactions

    Get PDF
    We study the approximability of computing the partition functions of two-state spin systems. The problem is parameterized by a 2 × 2 symmetric matrix. Previous results on this problem were restricted either to the case where the matrix has non-negative entries, or to the case where the diagonal entries are equal, i.e. Ising models. In this paper, we study the generalization to arbitrary 2 × 2 interaction matrices with real entries. We show that in some regions of the parameter space, it’s #P-hard to even determine the sign of the partition function, while in other regions there are fully polynomial approximation schemes for the partition function. Our results reveal several new computational phase transitions

    Deterministic polynomial-time approximation algorithms for partition functions and graph polynomials

    Full text link
    In this paper we show a new way of constructing deterministic polynomial-time approximation algorithms for computing complex-valued evaluations of a large class of graph polynomials on bounded degree graphs. In particular, our approach works for the Tutte polynomial and independence polynomial, as well as partition functions of complex-valued spin and edge-coloring models. More specifically, we define a large class of graph polynomials C\mathcal C and show that if pCp\in \cal C and there is a disk DD centered at zero in the complex plane such that p(G)p(G) does not vanish on DD for all bounded degree graphs GG, then for each zz in the interior of DD there exists a deterministic polynomial-time approximation algorithm for evaluating p(G)p(G) at zz. This gives an explicit connection between absence of zeros of graph polynomials and the existence of efficient approximation algorithms, allowing us to show new relationships between well-known conjectures. Our work builds on a recent line of work initiated by. Barvinok, which provides a new algorithmic approach besides the existing Markov chain Monte Carlo method and the correlation decay method for these types of problems.Comment: 27 pages; some changes have been made based on referee comments. In particular a tiny error in Proposition 4.4 has been fixed. The introduction and concluding remarks have also been rewritten to incorporate the most recent developments. Accepted for publication in SIAM Journal on Computatio

    On the Lovász theta function for independent sets in sparse graphs

    Get PDF
    We consider the maximum independent set problem on graphs with maximum degree~dd. We show that the integrality gap of the Lov\'asz ϑ\vartheta-function based SDP is O~(d/log3/2d)\widetilde{O}(d/\log^{3/2} d). This improves on the previous best result of O~(d/logd)\widetilde{O}(d/\log d), and almost matches the integrality gap of O~(d/log2d)\widetilde{O}(d/\log^2 d) recently shown for stronger SDPs, namely those obtained using poly-(log(d))(\log(d)) levels of the SA+SA^+ semidefinite hierarchy. The improvement comes from an improved Ramsey-theoretic bound on the independence number of KrK_r-free graphs for large values of rr. We also show how to obtain an algorithmic version of the above-mentioned SA+SA^+-based integrality gap result, via a coloring algorithm of Johansson. The resulting approximation guarantee of O~(d/log2d)\widetilde{O}(d/\log^2 d) matches the best unique-games-based hardness result up to lower-order poly-(loglogd)(\log\log d) factors

    The Ising Partition Function: Zeros and Deterministic Approximation

    Full text link
    We study the problem of approximating the partition function of the ferromagnetic Ising model in graphs and hypergraphs. Our first result is a deterministic approximation scheme (an FPTAS) for the partition function in bounded degree graphs that is valid over the entire range of parameters β\beta (the interaction) and λ\lambda (the external field), except for the case λ=1\vert{\lambda}\vert=1 (the "zero-field" case). A randomized algorithm (FPRAS) for all graphs, and all β,λ\beta,\lambda, has long been known. Unlike most other deterministic approximation algorithms for problems in statistical physics and counting, our algorithm does not rely on the "decay of correlations" property. Rather, we exploit and extend machinery developed recently by Barvinok, and Patel and Regts, based on the location of the complex zeros of the partition function, which can be seen as an algorithmic realization of the classical Lee-Yang approach to phase transitions. Our approach extends to the more general setting of the Ising model on hypergraphs of bounded degree and edge size, where no previous algorithms (even randomized) were known for a wide range of parameters. In order to achieve this extension, we establish a tight version of the Lee-Yang theorem for the Ising model on hypergraphs, improving a classical result of Suzuki and Fisher.Comment: clarified presentation of combinatorial arguments, added new results on optimality of univariate Lee-Yang theorem

    Inapproximability of the independent set polynomial in the complex plane

    Full text link
    We study the complexity of approximating the independent set polynomial ZG(λ)Z_G(\lambda) of a graph GG with maximum degree Δ\Delta when the activity λ\lambda is a complex number. This problem is already well understood when λ\lambda is real using connections to the Δ\Delta-regular tree TT. The key concept in that case is the "occupation ratio" of the tree TT. This ratio is the contribution to ZT(λ)Z_T(\lambda) from independent sets containing the root of the tree, divided by ZT(λ)Z_T(\lambda) itself. If λ\lambda is such that the occupation ratio converges to a limit, as the height of TT grows, then there is an FPTAS for approximating ZG(λ)Z_G(\lambda) on a graph GG with maximum degree Δ\Delta. Otherwise, the approximation problem is NP-hard. Unsurprisingly, the case where λ\lambda is complex is more challenging. Peters and Regts identified the complex values of λ\lambda for which the occupation ratio of the Δ\Delta-regular tree converges. These values carve a cardioid-shaped region ΛΔ\Lambda_\Delta in the complex plane. Motivated by the picture in the real case, they asked whether ΛΔ\Lambda_\Delta marks the true approximability threshold for general complex values λ\lambda. Our main result shows that for every λ\lambda outside of ΛΔ\Lambda_\Delta, the problem of approximating ZG(λ)Z_G(\lambda) on graphs GG with maximum degree at most Δ\Delta is indeed NP-hard. In fact, when λ\lambda is outside of ΛΔ\Lambda_\Delta and is not a positive real number, we give the stronger result that approximating ZG(λ)Z_G(\lambda) is actually #P-hard. If λ\lambda is a negative real number outside of ΛΔ\Lambda_\Delta, we show that it is #P-hard to even decide whether ZG(λ)>0Z_G(\lambda)>0, resolving in the affirmative a conjecture of Harvey, Srivastava and Vondrak. Our proof techniques are based around tools from complex analysis - specifically the study of iterative multivariate rational maps

    On the Lovász theta function for independent sets in sparse graphs

    Get PDF
    We consider the maximum independent set problem on sparse graphs with maximum degree d. We show that the Lovász ϑ-function based semidefinite program (SDP) has an integrality gap of O(d/log3/2 d), improving on the previous best result of O(d/log d). This improvement is based on a new Ramsey-theoretic bound on the independence number of Kr-free graphs for large values of r. We also show that for stronger SDPs, namely, those obtained using polylog(d) levels of the SA+ semidefinite hierarchy, the integrality gap reduces to O(d/log2 d). This matches the best unique-games-based hardness result up to lower-order poly(log log d) factors. Finally, we give an algorithmic version of this SA+-based integrality gap result, albeit using d levels of SA+, via a coloring algorithm of Johansson

    A Spectral Independence View on Hard Spheres via Block Dynamics

    Get PDF
    The hard-sphere model is one of the most extensively studied models in statistical physics. It describes the continuous distribution of spherical particles, governed by hard-core interactions. An important quantity of this model is the normalizing factor of this distribution, called the partition function. We propose a Markov chain Monte Carlo algorithm for approximating the grand-canonical partition function of the hard-sphere model in d dimensions. Up to a fugacity of ? < e/2^d, the runtime of our algorithm is polynomial in the volume of the system. This covers the entire known real-valued regime for the uniqueness of the Gibbs measure. Key to our approach is to define a discretization that closely approximates the partition function of the continuous model. This results in a discrete hard-core instance that is exponential in the size of the initial hard-sphere model. Our approximation bound follows directly from the correlation decay threshold of an infinite regular tree with degree equal to the maximum degree of our discretization. To cope with the exponential blow-up of the discrete instance we use clique dynamics, a Markov chain that was recently introduced in the setting of abstract polymer models. We prove rapid mixing of clique dynamics up to the tree threshold of the univariate hard-core model. This is achieved by relating clique dynamics to block dynamics and adapting the spectral expansion method, which was recently used to bound the mixing time of Glauber dynamics within the same parameter regime
    corecore