
 

On the Lovász theta function for independent sets in sparse
graphs
Citation for published version (APA):
Bansal, N., Gupta, A., & Guruganesh, G. (2015). On the Lovász theta function for independent sets in sparse
graphs. (arXiv; Vol. 1504.04767 [cs.DS]). s.n.

Document status and date:
Published: 01/01/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/8c6d2522-5924-4d93-b64a-4a474936cce1


ar
X

iv
:1

50
4.

04
76

7v
2 

 [
cs

.D
S]

  2
3 

A
pr

 2
01

5

On the Lovász Theta function for Independent Sets in Sparse

Graphs
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Abstract

We consider the maximum independent set problem on sparse graphs with maximum de-
gree d. We show that the integrality gap of the Lovász ϑ-function based SDP is

Õ(d/ log3/2 d).

This improves on the previous best result of Õ(d/ log d), and almost matches the integrality gap

of Õ(d/ log2 d) recently shown for stronger SDPs, namely those obtained using poly log(d) levels
of the SA+ semidefinite hierarchy. The improvement comes from an improved Ramsey-theoretic
bound on the independence number of Kr-free graphs for large values of r.

We also show how to obtain an algorithmic version of the above-mentioned SA+-based
integrality gap result, via a coloring algorithm of Johansson. The resulting approximation
guarantee of Õ(d/ log2 d) matches the best unique-games-based hardness result up to lower-
order poly(log log d) factors.
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1 Introduction

Given a graph G = (V,E), an independent set is a subset of vertices S such that no two vertices in
S are adjacent. The maximum independent set problem is one of the most well-studied problems
in algorithms and graph theory, and its study has led to various remarkable developments such as
the seminal result of Lovász [Lov79] in which he introduced the ϑ-function based on semidefinite
programming, as well as several surprising results in Ramsey theory and extremal combinatorics.

In general graphs, the problem is notoriously hard to approximate. Given a graph on n vertices, the
best known algorithm is due to Feige [Fei04], and achieves an approximation ratio of Õ(n/ log3 n);
here Õ(·) suppresses some log log n factors. On the hardness side, a result of H̊astad [H̊as96] shows
that no n1−ε approximation exists for any constant ε > 0, assuming NP 6⊆ ZPP. The hardness has
been improved more recently to n/ exp((log n)3/4+ε) by Khot and Ponnuswami [KP06].

In this paper, we focus on the case of bounded-degree graphs, with maximum degree d. Recall
that the näıve algorithm (that repeatedly picks an arbitrary vertex v and deletes its neighbor-
hood) produces an independent set of size at least n/(d+ 1), and hence is a d+ 1-approximation.
The first o(d)-approximation was obtained by Halldórsson and Radhakrishnan [HR94], who gave
a O(d/ log log d) guarantee, based on a Ramsey theoretic result of Ajtai et al. [AEKS81]. Subse-
quently, an O(d log log d

log d )-approximation was obtained independently by several researchers [AK98,
Hal02, Hal00] using the ideas of Karger, Motwani and Sudan [KMS98] to round the natural SDP
for the problem, which was itself based on the Lovász ϑ-function.

On the negative side, Austrin, Khot and Safra [AKS11] showed an Ω(d/ log2 d) hardness of approx-
imation, assuming the Unique Games Conjecture. Assuming P 6= NP, a hardness of d/ log4 d was
recently shown by Chan [Cha13]. We remark that these hardness results only seem to hold when d
is a constant or a very mildly increasing function of n. In fact for d = n, the Ω(d/ log2 d) hardness
of [AKS11] is inconsistent with the known O(n/ log3 n) approximation [Fei04]. Hence throughout
this paper, it will be convenient to view d as being a sufficiently large but fixed constant.

Roughly speaking, the gap between the Ω(d/ log2 d)-hardness and the Õ(d/ log d)-approximation
arises for the following fundamental reason. Approaches based on the SDP work extremely well if
the ϑ-function has value more than Õ(n/ log d), but not below this threshold. In order to to show an
Ω(d/ log d)-hardness result, at the very least, one needs an instance with SDP value around n/ log d,
but optimum integral value about n/d. While graphs with the latter property clearly exist (e.g.,
a graph consisting of n/(d+ 1) disjoint cliques Kd+1), the SDP value for such graphs seems to be
low. In particular, having a large SDP value imposes various constraints on the graph (for example,
they cannot contain many large cliques) which might allow the optimum to be non-trivially larger
than n/d, for example due to Ramsey-theoretic reasons.

Recently, Bansal [Ban15] leveraged some of these ideas to improve the approximation guarantee by a
modest O(log log d) factor to d/ log d using polylog(d) levels of the SA+ hierarchy. His improvement
was based on combining properties of the SA+ hierarchies together with the ideas of [AEKS81].
He also showed that the O(log4 d)-level SA+ relaxation has an integrality gap of Õ(d/ log2 d),
where Õ(·) suppresses some log log d factors. The main observation was that as the SA+ relaxation
specifies a local distribution on independent sets, and if the relaxation has high objective value then
it must be that any polylog(d) size subset of vertices X must contain a large independent subset.
One can then use a result of Alon [Alo96], in turn based on an elegant entropy-based approach
of Shearer [She95], to show that such graphs have non-trivially large independents sets. However,
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this argument is non-algorithmic; it shows that the lifted SDP has a small integrality gap, but does
not give a corresponding approximation algorithm with running time sub-exponential in n. This
leads to the question whether this approach can be converted into an approximation algorithm that
outputs a set of size Ω̃(log2 d/d) times the optimal independent set, or if there is a gap between the
approximability and estimability of this problem (as recently shown for an NP problem by Feige
and Jozeph [FJ14]).

1.1 Our Results.

Our results resolve some of these questions. For our first result, we consider the standard SDP
relaxation for independent set (without applying any lift-and-project steps) and show that it is sur-
prisingly more powerful than the guarantee given by Alon and Kahale [AK98] and Halperin [Hal02].

Theorem 1.1 On graphs with maximum degree d, the standard ϑ-function-based SDP formulation
for the independent set problem has an integrality gap of Õ(d/ log3/2 d).1

The proof of Theorem 1.1 is non-constructive; while it shows that the SDP value is within the
claimed factor of the optimal IS size, it does not give an efficient algorithm to find such an approx-
imate solution. Finding such an algorithm remains an open question.

The main technical ingredient behind Theorem 1.1 is the following new Ramsey-type result about
the existence of large independent sets in Kr-free graphs. This builds on a long line of previous
results in Ramsey theory (some of which we discuss in Section 2), and is of independent interest.
(Recall that α(G) is the maximum independent set size in G.)

Theorem 1.2 For any r > 0, if G is a Kr-free graph with maximum degree d then

α(G) = Ω

(
n

d
·max

(
log d

r log log d
,

(
log d

log r

)1/2
))

. (1)

Previously, the best known bound for Kr-free graphs was Ω(nd
log d

r log log d) given by Shearer [She95].

Observe the dependence on r: when r ≥ log d
log log d , i.e., when we are only guaranteed to exclude very

large cliques, this result does not give anything better than the trivial n/d bound. It is in this
range of r ≥ log d that the second term in the maximization in (1) starts to perform better and
give a non-trivial improvement. In particular, if G does not contain cliques of size r = O(log3/2 d)
(which will be the interesting case for Theorem 1.1), Theorem 1.2 gives a bound of Ω̃(nd (log d)

1/2).
Even for substantially larger values such as r = exp(log1−2ε d), this gives a non-trivial bound of
Õ(nd logε d).

Improving on Shearer’s bound has been a long-standing open problem in the area, and it is con-
ceivable that the right answer for Kr-free graphs of maximum degree d is α(G) ≥ n

d
log d
log r . This

would be best possible, since in Section 3.1 we give a simple construction showing a upper bound
of α(G) = O(nd

log d
log r ) for r ≥ log d, which to the best of our knowledge is the smallest upper bound

currently known. The gap between our lower bound and this upper bound remains an intriguing

1Here and subsequently, Õ(·) suppresses poly(log log d) factors.
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one to close; in fact it follows from our proof of Theorem 1.1 that such a lower bound would im-
ply an Õ(d/ log2 d) integrality gap for the standard SDP. Alon [Alo96] shows that this bound is
achievable under the stronger condition that the neighborhood of each vertex is (r − 1)-colorable.

We then turn to the approximation question. Our third result shows how to make Bansal’s result
algorithmic, thereby resolving the approximability of the problem (up to lower order poly(log log d)
factors), at least for moderate values of d.

Theorem 1.3 There is an Õ(d/ log2 d)-approximation algorithm with running time2. poly(n) ·
2O(d), based on rounding a d-level SA+ semidefinite relaxation.

The improvement is simple, and is based on bringing the right tool to bear on the problem. As
in [Ban15], the starting point is the observation that if the d-level SA+ relaxation has objective
value at least n/s (and for Theorem 1.3 the value s = log2 d suffices), then the neighborhood of every
vertex in the graph is k-colorable for k = s · polylog(d) — they are “locally colorable”. By Alon’s
result mentioned above, such graphs have α(G) = Ω(nd

log d
log k ). However, instead of using [Alo96]

which relies on Shearer’s entropy based approach, and is not known to be constructive, we use an
ingenious and remarkable (and stronger) result of Johansson [Joh96b], who shows that the list-
chromatic number of such locally-colorable graphs is χℓ(G) = O(d log k

log d ). His result is based on a
very clever application of the Rödl “nibble” method, together with Lovász Local Lemma to tightly
control the various parameters of the process at every vertex in the graph. Applying Johansson’s
result to our problem gives us the desired algorithm.

Unfortunately, Johansson’s preprint (back from 1996) was never published, and cannot be found
on the Internet.3 For completeness (and to facilitate verification), we give the proof in its entirety
in the Appendix. We essentially follow his presentation, but streamline some arguments based on
recent developments such as concentration bounds for low-degree polynomials of random variables,
and the algorithmic version of Local Lemma. His manuscript contains many other results that build
upon and make substantial progress on a long line of work (we give more details in Section 2). We
hope that this will make Johansson’s ideas and results accessible to a wider audience. (Johansson’s
previous preprint [Joh96a] showing the analogous list-coloring result for triangle-free graphs is also
unavailable publicly, but is presented in the graph coloring book by Molloy and Reed [MR02], and
has received considerable attention since, both in the math [AKS99, Vu02, FM13] and computer
science communities [GP00, CPS14].)

The proof of Theorem 1.3 also implies the following new results about the LP-based Sherali-Adams
(SA) hierarchies, without any SDP constraints.

Corollary 1.4 The LP relaxation with clique constraints on sets of size up to log d (and hence the
relaxation SA(log d)) has an integrality gap of Õ(d/ log d). Moreover, the relaxation SA(d) can be

used to find an independent set achieving an Õ(d/ log d) approximation in time poly(n) · 2O(d).

Since LP-based relaxations have traditionally been found to be very weak for the independent
set problem, it may be somewhat surprising that a few rounds of the SA-hierarchy improves the
integrality gap by a non-trivial amount.

2 While a d-level SA+ relaxation has size nO(d) in general, our relaxation only uses variables corresponding to
subsets of vertices that lie in the neighborhood of some vertex v, and thus has n · 2O(d) variables

3We thank Alan Frieze for sharing a copy with us.
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All our results extend to the case when d is the average degree of the graph; by first deleting the
(at most n/2) vertices with degree more than 2d and then applying the results.

2 Preliminaries

Given the input graph G = (V,E), we will denote the vertex set V by [n] = {1, . . . , n}. Let α(G)
denote the size of a maximum independent set in G, and d denote the maximum degree in G. The
naive greedy algorithm implies α(G) ≥ n/(d + 1) for every G. As the greedy guarantee is tight
in general (e.g., if the graph is a disjoint union of n/(d+ 1) copies of the clique Kd+1), the trivial
upper bound of α(G) ≤ n cannot give an approximation better than d+1 and hence stronger upper
bounds are needed. A natural bound is the clique-cover number χ(G), defined as the minimum
number of vertex-disjoint cliques needed to cover V . As any independent set can contain at most
one vertex from any clique, α(G) ≤ χ(G).

Standard LP/ SDP Relaxations. In the standard LP relaxation for the independent set prob-
lem, there is variable xi for each vertex i that is intended to be 1 if i lies in the independent set
and 0 otherwise. The LP is the following:

max
∑

i

xi, s.t. xi + xj ≤ 1 ∀(i, j) ∈ E, and xi ∈ [0, 1] ∀i ∈ [n]. (2)

Observe that this linear program is very weak, and cannot give an approximation better than
(d + 1)/2: even if the graph consists of n/(d + 1) copies of Kd+1, the solution xi = 1/2 for each i
is a feasible one.

In the standard SDP relaxation, there is a special unit vector v0 (intended to indicate 1) and a
vector vi for each vertex i. The vector vi is intended to be v0 if i lies in the independent set and
be 0 otherwise. This gives the following relaxation:

max
∑

i

vi · v0, s.t. v0 · v0 = 1, v0 · vi = vi · vi ∀i ∈ [n], and vi · vj = 0 ∀(i, j) ∈ E. (3)

Let Y denote the (n+1)× (n+1) Gram matrix with entries yij = vi ·vj, for i, j ∈ {0, . . . , n}. Then
we have the equivalent relaxation

max
∑

i

y0i, s.t. y00 = 1, y0i = yii ∀i ∈ [n], yij = 0 ∀(i, j) ∈ E and Y � 0. (4)

The above SDP which is equivalent to the well-known ϑ-function of Lovász [Lau](Lemma 3.4.4),
satisfies α(G) ≤ ϑ(G) ≤ χ(G). The O(d log log d

log d ) approximations due to [AK98, Hal02, Hal00] are
all based on SDPs.

We will use the following important result due to Halperin [Hal02] about the performance of the
SDP. The form below differs slightly from the one in [Hal02] as he works with a {−1, 1} formulation.
A proof for the form below can be found in [Ban15, Theorem 3.1].

Theorem 2.1 (Halperin [Hal02], Lemma 5.2) Let η ∈ [0, 12 ] be a parameter and let Z be the
collection of vectors vi satisfying ‖vi‖2 ≥ η in the SDP solution. Then there is an algorithm that

returns an independent set of size Ω
(

d2η

d
√
ln d

|Z|
)
.
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Note that if η = c log log d/ log d, then for c ≤ 1/4 Theorem 2.1 does not return any non-trivial
independent set. On the other hand, for c ≥ 1/4 the size of the independent set returned rises
exponentially fast with c.

For more details on SDPs, and the Lovász ϑ-function, we refer the reader to [GLS88, GM12].

Lower Bounds on the Independence Number. As SDPs can handle cliques, looking at ϑ(G)
naturally leads to Ramsey theoretic considerations. In particular, if ϑ(G) is small then the trivial
n/(d + 1) solution already gives a good approximation. Otherwise, if ϑ(G) is large, then this
essentially means that there are no large cliques and one must argue that a large independent set
exists (and can be found efficiently).

For bounded degree graphs, a well-known result of this type is that α(G) = Ω(n log d
d ) for triangle-

free graphs [AKS80, She83] (i.e. if there are no cliques of size 3). A particularly elegant proof
(based on an idea due to Shearer [She95]) is in [AS92]. Moreover this bound is tight, and simple
probabilistic constructions show that this bound cannot be improved even for graphs with large
girth.

For the case of Kr-free graphs with r ≥ 4, the situation is less clear. Ajtai et al. [AEKS81] showed
that Kr-free graphs have α(G) = Ω(n(log(log d/r))/d), which implies that α(G) = Ω(n log log d/d)
for r ≪ log d. This result was the basis of the O(d/ log log d) approximation due to [HR94].
Shearer [She95] improved this result substantially and showed that α(G) ≥ Ω(1r

n
d

log d
log log d) for Kr-

free graphs. His result is based on an elegant entropy based approach that has subsequently found
many applications. However, it is not known how to make this method algorithmic. Removing the
log log d factor above is a major open question, even for r = 4. Also, note that his bound is trivial
when r ≥ log d

log log d .

Interestingly, this result also implies another (non-algorithmic) proof that the SDP has integrality
gap d log log d

log d . In particular, if the SDP objective is about n/r this essentially implies that the graph
is Kr-free (as roughly each vertex contributes about xi = 1/r). Thus, by Shearer’s bound the
integrality gap is (n/r)/α(G) ≤ d log log d

log d . It is interesting to note that both Halperin’s approach
and Shearer’s bound seem to get stuck at the same point.

Alon [Alo96] generalized the triangle-free result in a different direction, also using the entropy
method. He considered locally k-colorable graphs, where the neighborhood of every vertex is

k-colorable and showed that α(G) = Ω
(
n
d

log d
log k+1

)
. Note that triangle-free graphs are locally 1-

colorable. This result also holds under weaker conditions, and plays a key role in the results of
[Ban15] on bounding the integrality gap of SA+ relaxations.

Bounds on the chromatic number. Most of the above results generalize to the much more
demanding setting of list coloring. All of them are based on “nibble” method, but require in-
creasingly sophisticated ideas. The intuition for why O(d/ log d) arises can be seen via a coupon-
collector argument: if each vertex in the neighborhood N(v) chooses a color from s colors inde-
pendently and u.a.r., they will use up all s colors unless d ≤ O(s log s), or s ≥ Ω(d/ log d). (Of
course, the colors at the neighbors are not chosen uniformly or independently.) Kim showed that
χℓ(G) = O(d/ log d) for graphs with girth at least 5 [Kim95]. His idea was that for any v, and
u,w ∈ N(v), N(u)∩N(w) = {v} because of the girth, and hence the available colors at u,w evolve
essentially independently, and hence conform to the intuition.

These ideas fail for triangle-free graphs (of girth 4): we could have a vertex v, with u,w ∈ N(v),
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and N(u) = N(w) (i.e., all their neighbors are common). In this case the lists of available colors
at u and w are far from independent: they would be completely identical. Johansson [Joh96a] had
the crucial insight that this positive correlation is not a problem, since there is no edge between
u and w (because of triangle-freeness!). His clever proof introduced the crucial notions of entropy
and energy to capture and control the positive correlation along edges in such K3-free graphs.

If there are triangles, say if the graphs are only locally k-colorable, then using these ideas näıvely
fails. A next key new idea, also introduced by Johansson [Joh96b], is to actually modify the
standard nibble process by introducing a probability reshuffling step at each vertex depending on
its local graph structure, which makes it more complicated. In Section 6, we give his result for
locally-colorable graphs in its entirety.

Lift-and-project Hierarchies. An excellent introduction to hierarchies and their algorithmic
uses can be found in [CT12, Lau03]. Here, we only describe here the most basic facts that we need.

The Sherali-Adams (SA) hierarchy defines a hierarchy of linear programs with increasingly tighter
relaxations. At level t, there is a variable YS for each subset S ⊆ [n] with |S| ≤ t+ 1. Intuitively,
one views YS as the probability that all the variables in S are set to 1. Such a solution can be
viewed as specifying a local distribution over valid {0, 1}-solutions for each set S of size at most
t+1. A formal description of the t-round Sherali-Adams LP SA(t) for the independent set problem
can be found in [CT12, Lemma 1].

For our purposes, we will also impose the PSD constraint on the variables yij at the first level (i.e.,
we add the constraints in (4) on yij variables). We will call this the t-level SA+ formulation and
denote it by SA+

(t). To keep the notation consistent with the LP (2), we will use xi to denote the
marginals yii on singleton vertices.

3 Integrality Gap

In this section, we show Theorem 1.1, that the integrality gap of the standard Lovász ϑ-function
based SDP relaxation is

O
(
d
( log log d

log d

)3/2)
= Õ

(
d/ log3/2 d

)
.

To show this we prove the following result (which is Theorem 1.2, restated):

Theorem 3.1 Let G be a Kr-free graph with maximum degree d. Then

α(G) = Ω

(
n

d
max

(
log d

r log log d
,

(
log d

log r

)1/2
))

.

In particular, for r = logc d with c ≥ 1, we get α(G) = Ω
(
n
d

( log d
c log log d

)1/2)
.

We need the following basic facts. The first follows from a simple counting argument (see [Alo96,
Lemma 2.2] for a proof).

Lemma 3.2 Let F be a family of 2εx distinct subsets of an x-element set X. Then the average
size of a member of F is at least εx/(10 log(1 + 1/ε)).
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Fact 3.3 Let G be a Kr-free graph on x vertices, then

α(G) ≥ max

(
x1/r

2
,

log x

log(2r)

)
.

Note that the latter bound is stronger when r is large, i.e., roughly when r ≥ log x/ log log x.

Proof: Let R(s, t) denote the off-diagonal (s, t)-Ramsey number, defined as the smallest number n
such that any graph on n vertices contains either an independent set of size s or a clique of size t.

It is well known that R(s, t) ≤
(s+t−2

s−1

)
[ES35]. Approximating the binomial gives us the bounds

R(s, t) ≤ (2s)t and R(s, t) ≤ (2t)s; the former is useful for t ≤ s and the latter for s ≤ t. If
we set R(s, t) = x and t = r, the first bound gives s ≥ (1/2)x1/r and the second bound gives
s ≥ log x/ log(2r). �

We will be interested in lower bounding the number of independent sets I in a Kr-free graph.
Clearly, I ≥ 2α(G) (consider every subset of maximum independent set). However the following
improved estimate will play a key role in Theorem 3.1. Roughly speaking it says that if α(G) is
small, in particular of size logarithmic in x, then the independent sets are spread all over G, and
hence their number is close to xΩ(α(G)).

Theorem 3.4 Let G be a Kr-free graph on x vertices, and let I denote the number of independent
sets in G. Then we have

log I ≥ max

(
x1/r

2
,

log2 x

18 log 2r

)
.

Proof: The first bound follows trivially from Fact 3.3, and hence we focus on the second bound.
Also, assume r ≥ 3 and x ≥ 64 else the second bound is trivial.

Define s := log x/ log(2r). Let G′ be the graph obtained by sampling each vertex of G independently
with probability p := 2/x1/2. The expected number of vertices in G′ is px = 2x1/2. Let G denote
the good event that G′ has at least x1/2 vertices. Clearly, Pr[G] ≥ 1/2 (in fact it is exponentially
close to 1). Since the graph G′ is also Kr-free, conditioned on the event G, it has an independent
set of size at least log(x1/2)/ log(2r) = s/2. Thus the expected number of independent sets of size
s/2 in G′ is at least 1/2.

Now consider some independent set Y of size s/2 in G. The probability that Y survives in G′ is
exactly ps/2. As the expected number of independent sets of size s/2 in G′ is at least 1/2, it follows
that G must contain at least (1/2)(1/ps/2) independent sets of s/2. This gives us that

log I ≥ s

2
log

(
1

p

)
− 1 ≥ s

2
log x1/2 − s

2
− 1 ≥ s

18
log x,

where the last inequality assumes that x is large enough. �

We are now ready to prove Theorem 3.1.

Proof: We can assume that d ≥ 16, else the claim is trivial. Our arguments follow the probabilistic
approach of [She95, Alo96]. Let W be a random independent set of vertices in G, chosen uniformly
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among all independent sets in G. For each vertex v, let Xv be a random variable defined as
Xv = d|v ∩W |+ |N(v) ∩W |.
Observe that |W | can be written as

∑
v |v ∩W |; moreover, it satisfies |W | ≥ (1/d)

∑
v |N(v) ∩W |,

since a vertex in W can be in at most d sets N(v). Hence we have that

|W | ≥ 1

2d

∑

v

Xv.

Let γ = max
( log d
r log log d ,

( log d
log r

)1/2)
denote the improvement factor in Theorem 3.1 over the trivial

bound of n/d. Thus to show that α(G) is large, it suffices to show that

E[Xv] ≥ cγ (5)

for each vertex v and some fixed constant c.

In fact, we show that (5) holds for every conditioning of the choice of the independent set in
V − (N(v)∪{v}). In particular, let H denote the subgraph of G induced on V − (N(v)∪{v}). For
each possible independent set S in H, we will show that

E[Xv | W ∩ V (H) = S] ≥ cγ.

Fix a choice of S. Let X denote the non-neighbors of S in N(v), and let x = |X|. Let ε be such
that 2εx denotes the number of independent sets in the induced subgraph G[X]. Now, conditioning
on the intersection W ∩ V (H) = S, there are precisely 2εx + 1 possibilities for W: one in which
W = S ∪ {v}, and 2εx possibilities in which v /∈ W and W is the union of S with an independent
set in G[X].

By Lemma 3.2, the average size of an independent set in X is at least εx
10 log 1/ε+1 and thus we have

that

E[Xv | W ∩ V (H) = S] ≥ d
1

2εx + 1
+

εx

10 log(1/ε + 1)

2εx

2εx + 1
(6)

Now, if 2εx + 1 ≤
√
d, then the first term is at least

√
d, and we’ve shown (5) with room to spare.

So we can assume that εx ≥ (1/2) log d. Moreover, by Theorem 3.4,

εx ≥ max

(
x1/r

2
,

log2 x

18 log(2r)

)

and hence the right hand side in (6) is at least

1

40 log(1/ε + 1)
max

(
log d

2
,
x1/r

2
,

log2 x

18 log 2r

)

≥ 1

40 log(x+ 1)
max

(
log d

2
,
x1/r

2
,

log2 x

18 log 2r

)
, (7)

where the inequality uses ε ≥ 1/x (since εx ≥ (1/2) log d ≥ 1).

First, let’s consider the first two expressions in (7). If x ≥ logr d, then as x1/r/ log(x + 1) is
increasing in x, it follows that the right hand side of (7) is at least

x1/r

80 log(x+ 1)
= Ω

(
log d

r log log d

)
.
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On the other hand if x ≤ logr d, then we have that the right hand side is again at least

1

40 log(x+ 1)

log d

2
= Ω

(
log d

r log log d

)
.

Now, consider the first and third expressions in in (7). Using the fact that max(a, b) ≥
√
ab with

a = (log d)/2 and b = (log2 x)/(18 log 2r), we get that (7) is at least Ω
(
log d
log r

)1/2
. Hence, for every

value of x we get that (7) is at least Ω(γ) as desired in (5); this completes the proof of Theorem 3.1.
�

We can now show the main result of this section.

Theorem 3.5 The standard SDP for independent set has an integrality gap of

O

(
d

(
log log d

log d

)3/2
)
.

Proof: Given a graph G on n vertices, let β ∈ [0, 1] be such that the SDP on G has objective
value βn. If β ≤ 2/ log3/2 d, the näıve greedy algorithm already implies a d/ log3/2 d approximation.
Thus, we will assume that β ≥ 2/ log3/2 d.

Let us delete all the vertices that contribute xi ≤ β/2 to the objective. The residual graph has
objective value at least βn− (β/2)n = βn/2.

Let η = 2 log log d/ log d. If there are more than n/ log2 d vertices with xi ≥ η, applying Theorem 2.1
to the collection of these vertices already gives independent set of size at least

Ω

(
d2η

d
√
ln d

· n

log2 d

)
= Ω

(
n log3/2 d

d

)
,

and hence a O(d/ log3/2 d) approximation.

Thus we can assume that fewer than n/ log2 d vertices have xi ≥ η. As each vertex can contribute at
most 1 to the objective, the SDP objective on the residual graph obtained by deleting the vertices
with xi ≥ η is at least βn/2− n/(log2 d) which is at least βn/3, since β ≥ 2/ log3/2 d.

So we have a feasible SDP solution on a subgraph G′ of G, where the objective is at least βn/3
(here n is the number of vertices in G and not G′) and each surviving vertex i has value xi in the
range [β/2, η].

As xi ≤ η for each i, and the SDP objective is at least βn/3, the number of vertices n′ in G′

satisfies n′ ≥ (βn/3)/η = Ω(nβ/η). Moreover, as xi ≥ β/2 for each vertex i ∈ G′, and the SDP
does not put more than one unit of probability mass on any clique, it follows that G′ is Kr-free for
r = 2/β = log3/2 d. Applying Theorem 3.1 to G′ with parameter r = log3/2 d, we obtain that G′

has an independent set of size

Ω

(
n′

d

√
log d

log r

)
= Ω

(
n′

d

√
log d

log log d

)
= Ω

(
nβ

d η

√
1/η

)
= Ω

(
βn

d
· η−3/2

)
.

The SDP objective for G was βn, so the integrality gap is O(dη3/2) = O(d( log log dlog d )3/2). �
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3.1 An upper bound

We give a simple construction that α(G) ≤ n
d
log d
log r for r ≥ log d. We use the standard lower bound

R(s, t) = Ω(ts/2) for off-diagonal Ramsey numbers for t ≥ s. Setting t = r with r ≥ log d, it follows
that there exist Kr-free graphs H on d vertices such that α(H) = O(log d/ log r). Now set G to be
n/d disjoint copies of H.

4 An Algorithm using Lift-and-Project

In this section, we briefly illustrate how to make Bansal’s argument about the integrality gap of
the lifted SDP [Ban15] algorithmic. Consider the SA+

(d) relaxation on G, and let sdp(G) denote its
value. We can assume that

sdp(G) ≥ n/ log2 d, (8)

otherwise the naive algorithm already gives a d/ log2 d approximation.

Let η = 3 log log d/ log d, and Z denote the set of vertices i with xi ≥ η. We can assume
that |Z| ≤ n/(4 log2 d), otherwise applying Theorem 2.1 gives an independent set of size Ω(|Z| ·
d2η/(d

√
log d)) = Ω(n log2 d/d). Applying Theorem 2.1 is fine, since our solution belongs to SA+

and hence is a valid SDP solution. Hence,

sdp(G) ≤ |Z| · 1 + (n− |Z|) · η ≤ (n/(4 log2 d)) · 1 + n · η = 2ηn.

Let V ′ denote the set of vertices i with xi ∈ [1/(4 log2 d), η].

Claim 4.1 |V ′| ≥ sdp(G)/(2η).

Proof: The total contribution to sdp(G) of vertices i with xi ≤ 1/(4 log2 d) can be at most
n/(4 log2 d), which by (8) is at most sdp(G)/4. Similarly, the contribution of vertices in Z is at
most |Z|, which is again at most sdp(G)/4. Together this gives sdp(G′) ≥ sdp(G)/2. As each vertex
in V ′ has xi ≤ η, the claim follows. �

Lemma 4.2 The graph G′ = G[V ′] induced on V ′ is locally k-colorable for k = O(log3 d).

Proof: Consider the solution SA+
(d) restricted to G′. For a vertex v ∈ V ′, let N(v) denote its

neighborhood in G′. As |N(v)| ≤ d and xi ≥ 1/(4 log2 d) for all i ∈ N(v), the SA+
(d) solution

defines a “local distribution” {XS}S⊆N(v) over subsets of each neighborhood with the following
properties:

(i) XS ≥ 0 and
∑

S⊂N(v) XS = 1,

(ii) XS > 0 only if S is independent in the subgraph induced on N(v), and

(iii) for each vertex i ∈ N(v), it holds that

xi =
∑

S⊆N(v):i∈S
xS ≥ 1/(4 log2 d).
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Scaling up the solution XS by 4 log2 d thus gives a valid fractional coloring of N(v) using 4 log2 d
colors, which by a set-covering argument implies that χ(N(v)) = O(log2 d · logN(v)) = O(log3 d).
�

Using Johansson’s coloring algorithm for locally k-colorable graphs (Theorem 6.1) we can find an
independent set of G′ with size

alg(G′) = Ω

( |V ′|
d

· log d

log(k + 1)

)
.

Using k = O(log3 d) and Claim 4.1 this implies an algorithm to find independent sets in degree d
graphs, with an integrality gap of

sdp(G)

alg(G)
≤ sdp(G)

alg(G′)
≤ O

(
dη log(k + 1)

log d

)
= Õ

(
d

log2 d

)
.

Our algorithm only required a fractional coloring on the neighborhood of vertices. Since they are
at most 2d independent sets in each neighborhood, there are at most n · 2d relevant variables in our
SDP. Hence, we can compute the relevant fractional coloring in time poly(n) · 2O(d).

5 LP-based guarantees

We prove Corollary 1.4. Consider the standard LP (2) strengthened by the clique inequalities∑
i∈C xi ≤ 1 for each clique C with |C| ≤ log d. As each clique lies in the neighborhood of some

vertex, the number of such cliques is at most n ·
( d
log d

)
. Let βn denote the objective value of this

LP relaxation. We assume that β ≥ 2/ log d, otherwise the näıve algorithm already gives a d/ log d
approximation.

Let B0 denote the set of vertices with xi ≤ 1/ log d = β/2. For j = 1, . . . , k, where k = log log d,
let Bj denote the set of vertices with xi ∈ (2j−1/ log d, 2j/ log d]. Note that

∑
j≥1

∑
i∈Bj

xi =

βn−∑i∈B0
xi ≥ βn/2, and thus there exists some index j such that

∑
i∈Bj

xi ≥ βn/(2k).

Let γ = 2j−1/ log d; for each i ∈ Bj , xi ∈ (γ, 2γ]. Since xi > γ for each i ∈ Bj, the clique constraints
ensure that the graph induced on Bj is Kr-free for r = 1/γ. Moreover, since xi ≤ 2γ for each i ∈ Bj ,

|Bj | ≥ 1
2γ · βn

2k . By Shearer’s result for Kr-free graphs we obtain

α(Bj) = Ω

(
|Bj | ·

γ log d

d log log d

)
= Ω

(
βn log d

d(log log d)2

)
.

This implies the claim about the integrality gap.

A similar argument implies the constructive result. Let βn denote the value of the SA(d) relaxation.
As before, we assume that β ≥ 2/ log d and divide the vertices into 1 + log log d classes. Consider
the class Bj with j ≥ 1 that contributes most to the objective, and use the fact that the graph
induced on Bj is locally k-colorable for k = (log d/2j−1 · log d) = O(log2 d). As in Section 4, we can
now use Johansson’s coloring algorithm Theorem 6.1 to find a large independent set.

Acknowledgments

We thank Alan Frieze for sharing a copy of the manuscript of Johansson with us. We thank Noga
Alon, Tom Bohman, Alan Frieze, and Venkatesan Guruswami for enlightening discussions.

11



References
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graphs), and another about Kr-free graphs.
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Theorem 6.1 For any r,∆, there exists a randomized algorithm that, given a graph G with max-
imum degree ∆ such that the neighborhood of each vertex is r-colorable, outputs a proper coloring
of V (G) using O( ∆

ln∆ ln r) colors in expected poly(n2∆) time.

Theorem 6.2 For any r,∆, there exists a randomized algorithm that, given a graph G with
maximum degree ∆ which excludes Kr as an subgraph, outputs a proper coloring of V (G) using
O
(

∆
ln∆(r2 + r ln ln∆)

)
colors in expected poly(n) time.

We emphasize that Johansson’s manuscript contains proofs of other results and extensions, such
as colorability under weaker conditions than above, and extensions to list-coloring; we omit these
extensions for now. Our presentation largely follows his, but streamlines some of the proofs using
techniques that have developed since, such as concentration bounds for low-degree polynomials of
variables, and dependent rounding techniques. Roadmap: we first give the intuition in Section 6.1.
We give the proof of Theorem 6.1 in §6.3–§8.5, and then show how to extend it to Kr-free graphs
in §9.

6.1 Overview and Ideas

Johansson’s algorithm for locally-colorable graphs uses the “nibble” approach: in each round, some
θ > 0 fraction of vertices get colored from their currently-allowable colors. The goal is to argue
(using concentration of measure, and the Local Lemma) that the degree of each surviving vertex
goes down exponentially like (1 − O(θ))t, whereas the number of colors does not decrease very
fast. This means that after ≈ (ε/θ) ln∆ rounds the degree of the remaining vertices is be smaller
than ∆1−ε before running out of the prescribed number of colors, at which point even the näıve
greedy algorithm can color the remaining vertices with a few more colors. The proof for the
degree reduction uses concentration bounds for quadratic polynomials of random variables. The
real challenge is to lower-bound the number of remaining colors. Johansson’s argument shows that
the entropy of the probability distribution of a vertex over its colors remains high throughout the
process, and hence there must be many colors available. This requires a carefully orchestrated
process, which we describe next.

In more detail (but still at a high level): in each round, some θ ≈ ∆−1/4 fraction of the vertices
get activated, and each tentatively chooses a color from its own probability distribution. (This
per-vertex distibution is initially the uniform distribution.) Any vertex that gets the same color as
its neighbor rejects its color; since the number of these is small, we can ignore these for now. Then
each tentatively colored vertex (say v with color γ), with probability 1

2 accepts color γ permanently
and deletes the probability mass corresponding to γ from its neighbors (so that they cannot take
color γ); with the remaining probability 1

2 , v rejects color γ for this round and waits for another
round. In order to ensure the total probability mass at each vertex remains about 1, since the first
option caused the probability mass for color γ to decrease at the neighbors, the second option must
increase color γ’s mass at the neighbors. If two of these neighbors u,w are connected by an edge,
this means that we’re increasing the chance that both these will get color γ; this is potentially
worrisome.

This problem does not arise if the graph is triangle-free, because there are no edges in the neigh-
borhood of any vertex. In this case Johansson’s previous preprint [Joh96a] argued that the entropy
of each vertex’s distribution remains high—itself a clever and delicate argument (see [MR02, Chap-
ters 12-13]). However, if we just assume that the graph is locally r-colorable, the existence of edges
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in node v’s neighborhood means that the probability mass for a color at both endpoints of an edge
may become higher, creating undesirable positive correlations. What Johansson’s new proof does
is simple but ingenious: it “reshuffles” the measure for the color randomly to some independent set
in the neighborhood. This is where the r-colorability condition kicks in: since there are large inde-
pendent sets (of size ∆/r) in each neighborhood, the reshuffling does not change the probabilities
too suddenly. Now carefully applied concentration bounds and LLL show a similar behavior as in
the triangle-free case, and proves Theorem 6.1.

The argument for Kr-free graphs requires a more involved recursive reshuffling operation: in this
case the size of the independent sets may be too small (if we just use Ramsay’s bound, for instance),
so the idea is to move the measure (on average) to sets that avoid Kt for t smaller than r. This
process (which Johansson calls a “trimming modifier”) creates a very slight negative correlation on
the edges, but this suffices to show Theorem 6.2.

6.2 Notation and Preliminaries

We now define some notation and concepts, and give properties useful for the following proofs. We
will interchangeably use u ∼ v and u ∈ N(v) to denote that u and v are adjacent.

6.2.1 Mean-One Random Variables

An r.v. X is a mean-one random variable (m.o. r.v.) if X only takes on values in {0} ∪ [1,∞), and
E[X] = 1. One simple class of m.o. r.v.s take on some value c ≥ 1 w.p. 1/c, and 0 w.p. 1− 1/c.

6.2.2 The Stopped Product

Given a sequence of non-negative random variables Y1, Y2, . . . , Ym, and a “threshold” value a ≥ 0,
define a stopping time τa as

τa := min

{
t | ∏i≤t Yi ≥ a

}

Then the stopped product
∏

iYi is defined as
∏

iYi :=
∏

i≤min(m,τa)
Yi

6.2.3 The κ and κ̂ Functions

For a random variable X, define the function

κ(X) := E[X lnX]. (9)

The following facts are easy to verify, and will be useful in calculations.

(a) If X,Y are independent, then κ(XY ) = κ(X)E[Y ] + κ(Y )E[X].

(b) Hence if X,Y are independent m.o. r.v.s, then κ(XY ) = κ(X) + κ(Y ).

(c) Also, κ(aX) = E[X](a ln a) + aκ(X).

(d) For an event E and the associated m.o. r.v. X =
1(E)

Pr[E] , κ(X) = ln(1/Pr[E ]).
(e) For a stopped product X =

∏
Xi (as defined in §6.2.2) of independent m.o. r.v.s with respect

to some threshold a,
κ(X) ≤∑i κ(Xi).
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(f) If X = (1− 1(E)) + 1(E) · Y , and Y is independent of the event E , then κ(X) = Pr[E ]κ(Y ).

It is also useful to define κ̂(X) as an absolute upper bound on X:

κ̂(X) := inf{c | X ≤ c a.s.}. (10)

6.3 The Algorithm for Locally-Colorable Graphs

Let us present the algorithm for Theorem 6.1 about finding colorings of r-locally-colorable graphs.
The proof follows in §7.
Let s = O(∆ ln∆

ln r ) be the number of colors we are aiming for, and L is the set of s colors. For vertex
v, let Pv = {v} ×L be a collection of tuples indicating which colors are still permissible for v. The
term whp∆ denotes “with probability at least 1− 1/poly(∆)”.

We follow the algorithmic outline from the overview n §6.1. The algorithm starts with each vertex
v having a uniform probability distribution p0(v, γ) = 1/s over the colors γ ∈ L. In each stage t
we pick some vertices from the current graph Gt and color them based on the current values of
pt(v, γ), then update the probability distributions of the other vertices to get pt+1(v, γ), drop the
colored vertices to get Gt+1, and proceed to the next stage. (This is the so-called “nibble”.) The
goal is to show that after sufficiently many stages we have a partial proper coloring using at most
s colors, and the degree of the graph induced by the yet-uncolored vertices is ∆1−ε. We can then
use a greedy algorithm to color the remaining vertices.

The process in a generic stage t is as follows (we drop superscripts of t to avoid visual clutter).

1. Let p̂ ∈ (0, 1) be a threshold to be defined later. Define

pa(v, γ) := p(v, γ) · 1(p(v,γ)≤p̂) (11)

pc(v, γ) := pa(v, γ) · 1(∑u∼v p(u,γ)≤100 ln∆). (12)

Hence pa zeroes out any (vertex, color) tuple (v, γ) which has a high value, and pc additionally
zeroes out (v, γ) when v’s neighbors have a lot of probability mass on color γ. 4

2. For each vertex v in the current graph G and each color γ in L, independently flip a coin
with probability θpc(v, γ). (The parameter θ ∈ (0, 1) is defined later.) Let A(v,γ) be this
indicator variable. If A(v,γ) = 1 then color γ is tentatively assigned to v. Many colors may be
tentatively assigned to v.

Also, let η(v,γ) ∼ Bin(1/2) be an unbiased coin-flip independent of all else.

3. For v ∈ V , let Tv = {(v, γ) | A(v,γ) = 1}, and let T = ∪vTv be all the tentatively assigned
tuples. Let

Cv = {(v, γ) | A(v,γ) = 1 ∧ η(v,γ) = 1 ∧A(u,γ) = 0∀u ∼ v},
and let C = ∪vCv similarly. Note that the pair (v, γ) ∈ T is dropped from C if any neighbor
of v is tentatively assigned color γ (this ensures proper colorings), or if its own coin-flip η(v,γ)
comes up tails (this gives us a “damping” that is useful for the rest of the process).

4The definition of pc is not required to prove Theorem 6.1, but is useful in extending the result to Kr-free graphs.
The reader only interested in the former result should think of pc = pa for this discussion.
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4. For v ∈ G, if there exists some γ such that (v, γ) ∈ C, then color v with an arbitrary such γ
and remove v from G′. So the events {v ∈ G′} = {Cv = ∅}.

Now comes the changing of the probabilities via the “modifiers” (which are simply mean-one r.v.s,
as defined in §6.2.1).

5. For each pair (w, γ), generate modifiers Mw
(v,γ) for all v ∈ N(w):

• If (w, γ) 6∈ T (i.e., A(w,γ) = 0) then Mw
(v,γ) = 1 for all v ∈ N(w).

• Else, if (w, γ) ∈ T , then for all v ∈ N(w),

Mw
(v,γ) = 2(1− η(w,γ))︸ ︷︷ ︸

m.o.r.v.

· r1(v∈S(w,γ))︸ ︷︷ ︸
m.o.r.v.

(13)

where S(w, γ) ⊆ N(w) is a random color class from an r-coloring of N(w), this random-
ness is independent of all other (w, γ′), and (w′, ·).

6. For each pair (v, γ), collect modifiers Mw
(v,γ) from its neighbors w ∼ v, and define M(v,γ) :=∏

w∼vM
w
(v,γ). Here

∏
is the stopped product (as in §6.2.2) w.r.t. threshold p̂/p(v, γ).5 Finally

set the probability values for the next stage to be

p′(v, γ) := p(v, γ) ·M(v,γ) (14)

Recalling the κ̂ function from (10), observe that κ̂ := maxw,v,γ κ̂(M
w
(v,γ)) = 2r; hence the

stopped product ensures p′(v, γ) < κ̂ · p̂ = 2rp̂; define p⋆ = κ̂p̂.

We’ve now finished defining the new probabilities pt+1(v, γ) := p′(v, γ) and the new graph Gt+1 =
G′, and proceed to the next stage. This is done for some T = Θ(1θ ln∆) many stages, after which
we claim that the degree of GT becomes ≪ s, and a näıve coloring suffices to color the rest of the
vertices.

The run time: the most expensive step is to find an r-coloring of the neighborhood of the vertices.
For each vertex this can be done in time O(r ·∆ · 2∆) using O(2∆) space (see [BHK09]). That is
followed by T = O( ln∆

θ ) rounds of partial colorings, each taking poly(n∆) time. Hence the total
runtime is O(nr · 2∆) + poly(n).

7 The Proof of Theorem 6.1: I. The Setup

The analysis of this coloring algorithm is similar in spirit (but more technical than) Johansson’s
previous result for coloring triangle-free graphs of maximum degree ∆. Although that result also
appears only as an unpublished manuscript [Joh96a], a lucid presentation appears in the book by
Molloy and Reed [MR02].

The idea is clever, but also natural in hindsight: as the process goes on and probability values p(v, γ)
increase, we want to show that for each surviving vertex, its degree goes down rapidly, whereas
it has many colors still remaining. Showing the former, that many vertices in each neighborhood

5The stopped product is with respect to a sequence, so let us assume a total order on the vertices, and the variables
{Mw

(v,γ)}w∈N(v) are considered in this order.
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are colored at each step, proceeds by showing that for each v, there is not too much positive
correlation between the colors of its neighbors, and they behave somewhat independently. To show
the latter, that many colors remain valid for each vertex v, we show that the entropy of the p(v, ·)
“probability distribution” remains high. (The quotes are because we only have

∑
γ p(v, γ) ≈ 1,

and not equal to one, but this approximate equality suffices.) And lower-bounding the entropy, as
in [Joh96a, MR02], relies on upper-bounding the “energy” of the edges which captures the positive
correlation between the colors of its endpoints, and is defined as follows:

Definition 7.1 (Energy) For an edge uv the energy with respect to the p values is

ξ(uv, p) :=
∑

γ

p(u, γ)p(v, γ).

For a non-edge uv, define ξ(uv, p) := 0. For a graph G, the energy of a vertex u is ξG(u, p) :=∑
v∈G ξ(uv, p); when the graph is clear from context we drop the subscript and use just ξ(u, p).

7.1 The Parameters

For ease of reference, we present the parameters used in the proof here. Some of these have already
been used in the algorithm description, the others will be introduced in due course.

ε := 1/100 θ := ∆−1/4+2ε s := |L| := ∆

K

κ̂ := max
w,v,γ

κ̂(Mw
(v,γ)) = 2r p̂ := ∆−3/4−5ε p⋆ := κ̂p̂ = 2rp̂

a := 1/2− 3ε ĉ := 0 b := a− ĉ

C := max
(
1, ln(κ̂(Mw

(v,γ)))
)
= ln(2r) T :=

2ε

a · θ ln∆ K :=
(b/4)ε ln ∆

C

We will assume that r ≤ ∆ε = ∆1/100, else the desired coloring number of O( ∆
ln∆ ln r) will just

be O(∆), which is trivial to achieve. Finally, we will assume that ∆ is large enough whenever
necessary. In particular,

ln∆ ≥ 10000 (15)

suffices for the rest of the analysis, however no attempt has been made to optimize any constants.

7.2 Initial Values

At the beginning, the probability values are p0(v, γ) = 1/s for all (v, γ), and the degrees are at
most ∆. Hence

p0(Pv) = 1 (P0)

d(v,Gt) ≤ ∆ (D0)

ξG0(v, p
0) =

∑

γ,u∼v

p0(v, γ)p0(u, γ) ≤ ∆ · s · 1/s2 = K (E0)

h(v, p0) =
∑

γ

p0(v, γ) ln 1/p0(v, γ) = ln s = ln∆− lnK (H0)
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7.3 The Invariants

The proof is by induction over the stages. We maintain the invariants that for all t ≤ T , for all
v ∈ Gt, the following hold true:

pt(Pv) ∈ 1± tλP ⊆ 1±
√
θ ⊆ 1± ε ⊆ [1/2, 2] ((InvP))

d(v,Gt) ≤ ∆e−aθt + tλD ((InvD))

ξGt(v, p
t) ≤ Ke−bθt +

λE

bθ
≤ 2K ((InvE))

h(v, pt) ≥ h(v, p0)− θC
∑

t′≤t

ξGt′
(v, pt

′

a )− tλH

≥ (1− ε) ln∆ ((InvH))

where

λP = O(
√

p⋆ ln∆) λD = O(Kθ2∆)

λE = O(θ∆−2ε ln∆) λH = O(

√
p⋆ ln3 ∆) (16)

In the following, we will show that the tightest bounds hold for each t. The weaker bounds given
above are just implications useful in our proofs, and in all cases these follow by algebra. Observe
the initial values from §7.2 satisfy these invariants.

8 The Proof of Theorem 6.1: II. The Inductive Step

We assume the invariants hold for all times upto and including time t, and now want to show these
are satisfied at the end of stage t + 1. As usual, we use p to denote pt, and p′ to denote pt+1.
The plan is to show that for each fixed vertex v, each of the invariants hold with high probability.
Since we cannot take a union bound without losing terms dependent on n, we show that the failure
events depend only on a small number of other failure events, whereupon we can apply the Lovász
Local Lemma to complete the argument.

In the following arguments, we assume that d(v) ≥ ∆
ln∆ for all v ∈ Gt. Indeed, at the beginning of

any stage we can repeatedly remove vertices with degree less than ∆
ln∆ , and having found a coloring

for the rest of the vertices, we can color these removed vertices greedily at the end.

8.1 The Total Probability

By construction, the probability values pt(v, γ) form a martingale, and hence it is not surpising
that their sum remains concentrated around 1. Here is the formal proof.

Lemma 8.1 For vertex v, if p(Pv) ∈ 1± ε, then p′(Pv) = p(Pv)±O(
√
p⋆ ln∆) whp∆.

Proof: By construction of the modifiers as mean-one r.v.s, E[p′(v, γ)] = p(v, γ) ·E[M(v,γ)] = p(v, γ)
for all (v, γ). Moreover, p′(Pv) is the sum of independent p⋆-bounded random variables, with
E[p′(Pv)] ≤ (1 + ε) ≤ 2, Theorem A.1 implies that the deviation |p′(Pv) − p(Pv)| is at most
λP := O(

√
p⋆ ln∆ + p⋆ ln∆) = O(

√
p⋆ ln∆) whp∆. �
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8.1.1 The Lovász Local Lemma Argument

To get the property of Lemma 8.1 for all vertices v simultaneously requires the LLL, since we
cannot take a union bound over all the n vertices. For this, define the bad event Bp

v = {ω : p′(Pv) >
p(Pv) + λP }. Note that this event depends only on a subset of the variables {A(u,γ), η(u,γ),M(u,γ)}
for u ∈ {v} ∪ N(v) and γ ∈ L, and all these A, η,M variables are independent. Hence, Bp

v and
Bp
w are clearly independent if N(u) ∩ N(v) = ∅, and the dependency graph has degree at most

∆2s ≤ ∆3. Using the Moser-Tardos framework [MT10] we can get a coloring where none of these
bad events happen.

For each of the the other invariants, we use a similar approach using the LLL: we define “local”
bad events — i.e., the bad event at a vertex will depend only on r.v.s for vertices at some constant
distance from it — and hence the degree of the dependency graph over the bad events will be
bounded by poly(∆). Moreover, the probability of each bad event will be at most 1/poly(∆).
Using the Moser-Tardos framework will allow us to find an outcome that will avoid all the bad
events at all vertices simultaneously. Since the arguments will be very similar, we will henceforth
just explain what the bad events are, and omit the details.

8.2 The Degree

Lemma 8.2 For vertex v, whp∆ the new degree is

d′(v) ≤ (1− aθ) d(v)±O(Kθ2∆).

It is more convenient to study Xu, the indicator of whether u was colored in this round; let
X =

∑
u∼v Xu. Then d′(v) = d(v) −X. We will first show that E[X] is large, and then that X is

concentrated around its mean. Let

Yu := 1−
∏

γ

(1−A(u,γ)η(u,γ)) (17)

indicate whether u was tentatively assigned at least one color that was not dropped due to the η
coin flip; clearly Xu ≤ Yu. Moreover, let

Y ′
u :=

∑

γ

∑

w∼u

A(u,γ)A(w,γ). (18)

It is easy to see that Yu − Y ′
u ≤ Xu.

Claim 8.3 Pr[u is colored ] = E[Xu] ≥
(
1
2 − ε

)
θ ≥ (a+ ε)θ.

Proof: By inclusion-exclusion,

E[Yu] ≥
∑

γ

θ

2
pc(u, γ)−

∑

γ,γ′

θ2

4
pc(u, γ)pc(u, γ

′) =
θ

2
pc(Pu)

(
1− θ

2
pc(Pu)

)
.

Using (InvP), (InvE) and (InvH) in Lemma A.5, we know that pc(Pu) ≥ 1 − 6(
√
θ + θ) − 2ε ≥

1−12
√
θ−2ε. Also, by (InvP), pc(Pu) ≤ p(Pu) ≤ 2, so by algebra we get E[Yu] ≥ θ(1/2−ε)−O(θ3/2).
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Moreover,

E[Y ′
u] = θ2

∑

γ

∑

w∼u

pc(u, γ)pc(w, γ) = θ2ξ(u, pc).

Using that ξ(u, pc) ≤ ξ(u, p) ≤ 2K for all u (from (InvE)), we infer E[Y ′
u] ≤ 2Kθ2. Since Kθ2 =

O(θ3/2),

Pr[u colored] = E[Xu] ≥ E[Yu − Y ′
u] ≥ θ(1/2− ε)−O(θ3/2) ≥

(
1
2 − 2ε

)
θ

The final inequality holds for large enough ∆ (15), and the claim follows using the definition of a.
�

Corollary 8.4 E[d′(v)] ≤ (1− aθ) · d(v)

Proof: Suppose X :=
∑

u∼v Xu is the expected number of neighbors of v that get colored; by
Claim 8.3, we get that

E[X] ≥
∑

u∼v

E[Xu] ≥ d(v) · aθ.

Finally, observing that d′(v) = d(v) −X completes the proof. �

8.2.1 The Concentration Bound for Degrees

We want to show that X − E[X] is small whp∆. Let Y :=
∑

u∼v Yu, and Y ′ :=
∑

u∼v Y
′
u. For the

upper tail, observe that as Y − Y ′ ≤ X ≤ Y , we have

X − E[X] ≤ Y − E[Y − Y ′] = (Y − E[Y ]) + E[Y ′]. (19)

But Y is the sum of independent {0, 1}-valued r.v.s {Yu}u∼v, and by inclusion-exclusion again each
E[Yu] ≤

∑
γ

θ
2p(u, γ). Thus

E[Y ] ≤ θ/2
∑

u∼v

∑

γ

pc(u, γ) ≤ O(θd(v)) = O(θ∆).

By the tail bound Theorem A.1, setting λ
(1)
D := O(

√
θ∆ ln∆+ln∆) suffices to give Pr[|Y −E[Y ]| ≤

λ
(1)
D ] ≤ 1/poly(∆). Plugging this into (19) and using the bound of E[Y ′] = E[

∑
u∼v Y

′
u] ≤ 2Kθ2∆ =:

λ
(2)
D gives us that the total deviation of X above its mean is at most λ

(1)
D +λ

(2)
D = O(Kθ2∆) whp∆.

For the lower tail, observe that

E[X]−X ≤ E[Y ]− (Y − Y ′) = (E[Y ]− Y ) + E[Y ′] + (Y ′ − E[Y ′]). (20)

Since E[Y ] − Y ≤ λ
(1)
D and E[Y ′] ≤ λ

(2)
D by the preceding argument, so we focus on bounding the

upper tail of Y ′. For this we use the concentration inequality for polynomials from Theorem A.2.
The parameters are:

µ0 = E[Y ′] ≤ d(v) · 2Kθ2 ≤ 2Kθ2∆ (21)

µ1 ≤ 2max
(v,γ)

∑

u∼v

E[A(u,γ)] = 2max
(v,γ)

∑

u∼v

θpc(u, γ) ≤ 2θp̂∆ = O(∆−3ε) ≤ 1 (22)

µ2 = 2. (23)
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Plugging this into Corollary A.3 of the aforementioned concentration inequality, we get that whp∆

the deviation |Y ′ −E[Y ′]| is O(
√
2Kθ2∆ ln∆+ ln2 ∆) =: λ

(3)
D . Substituting into (20), we have that

whp∆,

E[X]−X ≤ λ
(1)
D + λ

(2)
D + λ

(3)
D = O(Kθ2∆) =: λD (24)

This proves Lemma 8.2.

Finally, the LLL part: here the bad event Bd
v = {ω : d′(v) > (1− aθ)d(v) + λD)}, and this depends

on the A, η,M r.v.s for vertices at distance at most 2 from v (since it depends on whether u ∈ N(v)
survive, which depend on their neighbors). Hence the dependency is at most ∆4 × s.

8.3 The Entropy

Now to show invariant (InvH), that the entropy of {p′(v, γ)}γ remains high, where the entropy is
defined as

h(v, p′) := −
∑

γ

p′(v, γ) ln p′(v, γ) (25)

Lemma 8.5 E[h(v, p′)] ≥ h(v, p) − Cθ ξ(v, pa).

Proof: Recall that p′(v, γ) := p(v, γ) ·M(v,γ) from (14), where M(v,γ) is a m.o. r.v..

h(v, p′) = −
∑

γ

p′(v, γ) ln p′(v, γ)

= −
∑

γ

p(v, γ)M(v,γ) ln p(v, γ)−
∑

γ

p(v, γ)M(v,γ) lnM(v,γ)

Hence, taking expectations,

E[h(v, p′)] = −
∑

γ

E[M(v,γ)] p(v, γ) ln p(v, γ) −
∑

γ

p(v, γ)E[M(v,γ) lnM(v,γ)]

= h(v, p)−
∑

γ

p(v, γ)E[M(v,γ) lnM(v,γ)]

In fact, if the probability p(v, γ) is greater than p̂ for some γ (i.e., if pa(v, γ) > 0), then the definition
of the stopped product implies that M(v,γ) ≡ 1. Hence, we get the stronger claim that

E[h(v, p′)] = h(v, p) −
∑

γ

pa(v, γ)E[M(v,γ) lnM(v,γ)] (26)

Now, recall that for an r.v. X, we defined κ(X) = E[X lnX] in §6.2.3.

Claim 8.6 κ(M(v,γ)) = E[M(v,γ) lnM(v,γ)] ≤ θ C
∑

w∼v pc(w, γ).

Proof: Observe that M(v,γ) is a stopped product of a bunch of m.o. r.v.s Mw
(v,γ) of neighbors

w ∼ v, each of which is either 1 (if (w, γ) 6∈ T ) or itself a product of two m.o. r.v.s as in (13). Using
properties of the κ(·) function from §6.2.3, we get

κ(M(v,γ)) ≤
∑

w∼v

(θpc(w, γ)) ·max κ(Mw
v,γ) (27)
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Using the definition of C gives us the claim. �

Substituting Claim 8.6 into (26),

E[h(v, p′)] ≥ h(v, p) − θ C
∑

γ

∑

w∼v

pa(v, γ)pc(w, γ) ≥ h(v, p) − θ C ξ(v, pa). (28)

This proves the lemma. �

Lemma 8.7 The deviation |h(v, p′)− E[h(v, p′)]| is at most
√

p⋆ ln3∆ whp∆.

Proof: By definition, the entropy h(v, p′) is a sum of independent r.v.s p′(v, γ) ln 1
p′(v,γ) ; since

p′(v, γ) ∈ [1/s, p⋆], these r.v.s are [0,m]-bounded where m := (p⋆ ln s) ≤ p⋆ ln∆. Moreover, the
mean µ satisfies µ ≤ ln∆ because the entropy can be at most ln s ≤ ln∆. Hence by the tail
bound from Theorem A.1, the deviation from the mean is at most λH = O(

√
µm ln∆ +m ln∆) =√

p⋆ ln3 ∆ whp∆. �

For the LLL application, since the entropy depends only on the p′(v, γ) values, the bad event for
v is dependent only on the random choices of {v} ∪ N(v), and hence easily handled for the usual
reasons.

8.4 The Energy

The calculations above show that the decrease in entropy at vertex v depends on the energy of
edges incident to v, so it remains to show that this energy is small (and in fact, decreases over
the course of the algorithm). This is technically the most interesting part of the analysis. We’re
interested in

ξG(v, pa) =
∑

u∼Gv

ξ(uv, pa)︸ ︷︷ ︸∑
γ pa(u,γ)pa(v,γ)

, (29)

and want to show that this energy drops by a factor of ≈ (1− θ/2) each time. Formally, we prove
the following:

Lemma 8.8 For a vertex v, whp∆ the energy

ξG′(v, p′a) ≤ (1− bθ) · ξG(v, pa) +O(θ∆−2ε ln∆).

As for the other invariants, we first bound the expectation and then show a large-deviations bound.
The expectation calculation itself proceeds via two claims — the first claim quantifies the change
in energy due to considering the new probability distribution p′a instead of pa (keeping the graph
G fixed), and the second captures the change due to considering graph G′ instead of G (but now
keeping the distribution p′ fixed). Remember that the energy of non-edges is zero by definition.

Claim 8.9 For any v,
∑

u∈G E[ξ(uv, p′a)] ≤
∑

u∈G ξ(uv, pa).

Claim 8.10 For any v, E
[∑

u∈G′ ξ(uv, p′a)
]
≤ (1− aθ)

∑
u∈G E[ξ(uv, p′a)].

23



In the latter claim, observe that G′ is a random variable itself, and hence we cannot just push the
expectation inside the sum. Before we prove Claim 8.9, we will use the following observation which
allows us to consider the unstopped product instead of the stopped product.

Fact 8.11 For any u, v ∈ G, and γ ∈ L, p′a(u, γ)p
′
a(v, γ) ≤ pa(u, γ)pa(v, γ)

∏
w∼uM

w
(u,γ)

∏
w∼uM

w
(u,γ)

Proof: Indeed, the products are stopped only when the terms multiplied give us value at least p̂,
but then corresponding p′a values get zeroed out. �

Proof of Claim 8.9: Using Fact 8.11, we can replace the stopped product by the usual ones:

E[p′a(u, γ)p
′
a(v, γ)] ≤ pa(u, γ)pa(v, γ)E

[
∏

w∼u

Mw
(u,γ)

∏

x∼v

Mx
(v,γ)

]

≤ p(u, γ)p(v, γ)E


 ∏

w∼u:w 6∼v

Mw
(u,γ)


E


 ∏

x∼v:x 6∼u

Mx
(v,γ)


E


 ∏

w:uvw∈△
Mw

(u,γ)M
w
(v,γ)




But the first two expectations equal to one, since each of these is a product of independent m.o.
r.v.s. For the third one, with probability (1 − θpc(w, γ)) the pair (w, γ) 6∈ T and we get 1, else
with probability θpc(w, γ) the pair (w, γ) ∈ T and the random color class modifier gives zero. In
all cases the final expectation would be at most one. �

Proof of Claim 8.10: In this claim, it suffices to bound, for each color γ, E
[
p′a(u, γ)p

′
a(v, γ)1(u∈G′)

]
.

The crucial observation is that for any γ, the events

{u ∈ G′} = {Cu = ∅} (30)

= {Cu ⊆ {(u, γ)}} − {Cu = {(u, γ)}} (31)

= {C ∩ ({u} × (L \ {γ})) = ∅} − {Cu = {(u, γ)}} (32)

However, when Cu = {(u, γ)}, then A(u,γ) = 1 and η(u, γ) = 1, which means that p′a(v, γ) = 0 due
to the modifier Mu

(v,γ), and hence E[p′a(u, γ)p
′
a(v, γ)1(Cu={(u,γ)})] = 0. Moreover, the former event

says that u did not get any color from the set L \ γ, which is independent of all decisions for the
color γ. Hence

E
[
p′a(u, γ)p

′
a(v, γ)1(u∈G′)

]
= E[p′a(u, γ)p

′
a(v, γ)] · Pr[C ∩ ({u} × (L \ {γ})) = ∅] (33)

Using (32) again, we know that

Pr[C ∩ ({u} × (L \ {γ})) = ∅] = Pr[u ∈ G′] + Pr[Cu = {(u, γ)}] (34)

≤ Pr[u ∈ G′] + Pr[A(u,γ) = 1] (35)

≤ (1− (a+ ε)θ) + θp̂, (36)

where the first expression is from Claim 8.3 and the second one from pc(u, γ) ≤ p̂. But θp̂ ≤ εθ for
large ∆. Thus the claim is proved. �

Combining Claims 8.9 and 8.10, and using a = b,

E[ξG′(v, p′a)] =
∑

u∈G′

E[ξ(uv, p′a)] ≤ (1− bθ)
∑

u∈G
ξ(uv, pa) = (1− bθ) ξG(v, pa). (37)

We next show that the r.v. ξG′(v, p′a) is concentrated around its mean.
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8.4.1 The Concentration Bound for Energy

Fix some v ∈ G. We want to show that
∑

u∈G ξ(uv, p′a)1(u∈G′) is concentrated around its mean.
The idea is simple: denoting Qu = ξ(uv, p′) and Ru = 1(u∈G′), and letting qu = E[Qu], ru = E[Ru]
being their expectations, the triangle inequality gives us that

|
∑

u

QuRu − E[QuRu]| ≤ |
∑

u

(Qu − qu)Ru|+ |
∑

u

qu(Ru − ru)|+ |
∑

u

quru − E[QuRu]|

The following three claims now bound the three expressions on the right.

Claim 8.12 |∑u∈G ξ(uv, p′a)1(u∈G′) −
∑

u∈G E[ξ(uv, p′a)]1(u∈G′)| ≤ O(θ∆−7ε ln∆) whp∆.

Proof: The left hand side is at most
∑

u∈NG(v)|ξ(uv, p′a)−E[ξ(uv, p′a)]|. Each ξ(uv, p′a) is a sum of

independent p̂2-bounded r.v.s, and hence deviates from its mean by at mostO(
√

E[ξ(uv, p′a)]p̂2 ln∆+
p̂2 ln∆) whp∆ by the tail bound in Theorem A.1. Summing this over all u ∈ NG(v) (and taking a
union bound over these ∆ events), we get the total deviation whp∆ is

∑

u∈NG(v)

O(p̂
√

E[ξ(uv, p′a)] ln∆ + p̂2 ln∆)

≤ O

(
p̂
√
ln∆ ·

√
∆

√√√√E

[ ∑

u∈NG(v)

ξ(uv, p′)

])
+O(p̂2∆ ln∆)

≤ O(p̂
√
∆K ln∆ + p̂2∆ ln∆).

The first inequality uses Cauchy-Schwarz; the next one uses the expectation bound from Claim 8.9
and invariant (InvE). The dominant term is O(p̂

√
∆K ln∆) = O(θ∆−7ε ln∆), which completes the

claim. �

Claim 8.13 |∑u∈G E[ξ(uv, p′a)]1(u∈G′) −
∑

u∈G E[ξ(uv, p′a)]E[1(u∈G′)]| ≤ O(θ∆−2ε ln∆) whp∆.

Proof: By Claim 8.9, each term

E[ξ(uv, p′a)] ≤ ξ(uv, pa) =
∑

γ

pa(u, γ)pa(v, γ) ≤ p̂
∑

γ

pa(v, γ) ≤ 2p̂. (38)

Using cu := E[ξ(uv, p′a)] and observing that cu = 0 for all u 6∈ NG(v), we want to bound the
deviation

|∑u∈NG(v) cu
(
1(u∈G′) − Pr[u ∈ G′]

)
|.

The argument now follows that of §8.2.1, with the only difference that the variables are in [0, 2p̂]
rather than {0, 1}, which merely multiplies the deviation from the mean by a factor of 2p̂. Hence,
whp∆, we have

|∑u∈NG(v) cu1(u∈G′) −
∑

u∈NG(v) cu Pr[u ∈ G′]| ≤ O(θ2Kp̂∆) = O(θ∆−2ε ln∆).

This proves the claim. �

Claim 8.14 |∑u∈G E[ξ(uv, p′a)]E[1(u∈G′)]−
∑

u∈G E[ξ(uv, p′a)1(u∈G′)]| ≤ O(θ∆−1/2) whp∆.
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Proof: Using (33) and (35), summing over all colors γ, and using the fact that Pr[A(u,γ) = 1] ≤ θp̂
for all γ,

E[ξ(uv, p′a)]E[1(u∈G′)] ≤ E[ξ(uv, p′a)1(u∈G′)] ≤ E[ξ(uv, p′a)]
(
E[1(u∈G′)] + θp̂

)
.

Rearranging, summing over all u ∈ G, and using that E[ξ(uv, p′a)] ≤ 2p̂ by the calculation in (38),

0 ≤
∑

u∈G
E[ξ(uv, p′a)1(u∈G′)]−

∑

u∈G
E[ξ(uv, p′a)]E[1(u∈G′)] ≤

∑

u∈G
E[ξ(uv, p′a)]θp̂ (39)

≤ ∆ · 2θ · p̂2. (40)

This is at most O(θ∆−1/2), which proves the claim. �

Putting Claims 8.12–8.14 together, we get that whp∆
∑

u∈G
ξ(uv, p′a)1(u∈G′) ≤

∑

u∈G
E[ξ(uv, p′a)1(u∈G′)] +O(θ∆−2ε ln∆) (41)

≤ (1− bθ) · ξ(uv, pa) +O(θ∆−2ε ln∆) (42)

where the latter inequality follows from Claims 8.9 and 8.10.

Finally, for the LLL, the bad events in this case are again dependent only on the random choices
within distance 2 of v, which means the dependency is O(∆4s).

8.5 Behavior after T rounds, and Maintaining Invariants

In the previous sections, we showed that if the invariants (InvP)–(InvH) held at the beginning of
a specific round, then using the LLL we can ensure that they hold at the end of the lemma, with
some additional loss. Using this, we now show that the bounds we have derived suffice for the
invariants hold at each round in [1..T ]. For all these bounds we use that ∆ is large enough (15).

• Probability. After each round, the probability value may increase by λP . This means after
T rounds,

pt(Pv) ≤ 1± TλP = 1± 2ε ln(∆)

aθ
ln∆ · θ∆−1/8−4ε

√
ln∆ = 1±

√
θ.

• Degree. In each round, the degree falls by a multiplicative factor of (1−aθ), but potentially
increases by an additive term of λD. This means that after t rounds, the degree can be
(wastefully) bounded by

d(v,Gt) ≤ (1− aθ)t ·∆+ tλD ≤ e−aθt∆+O(Kθ2∆t)

Now for t = T , we get that

d(v,Gt) ≤ ∆e−2ε ln∆ +O(Kθ∆) ≤ ∆1−ε. (43)

• Energy. Again the energy falls by a (1− bθ) factor but potentially increases by an additive
term of λE . This time we use a slightly better bound6 of

ξ(v, pta) ≤ (1− bθ)tξ(v, p0a) +
λE

bθ
(44)

≤ e−bθtK +O(∆−2ε ln∆) ≤ 2K. (45)

6Given a system xt+1 ≤ αxt + β for α ≤ 1, we know that xt ≤ αtx0 +
β

1−α
.
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• Entropy. From Lemmas 8.5 and 8.7 we get that

h(v, pt) ≥ h(v, p0)− θC
∑

t′≤t

ξ(v, pt
′

a )− tλH

≥ (ln∆− lnK)− θC
∑

t′≤t

(
(1 − bθ)t

′

ξ(v, p0a) +
λE

bθ

)
− t

√
p⋆ ln3 ∆

≥ (ln∆− lnK)− θC

(
ξ(v, p0a)

bθ
+

tλE

bθ

)
− t

√
p⋆ ln3 ∆

≥ (ln∆− lnK)− KC

b
− tC θ · O(∆−2ε ln∆)

b
− t

√
p⋆ ln3∆

For t ≤ T = ε
aθ ln∆, we get

h(v, pt) ≥ (ln∆− lnK)− KC

b
− 2ε ln(∆)

a · b O(∆−2ε ln2 ∆)−O(∆−1/8 ln2.5 ∆)

≥ (1− ε) ln∆.

By (43), the degree of all surviving vertices falls below ∆1−ε after T rounds, whence we can color
them using ∆1−ε more colors. Hence the total number of colors used is s+∆1−ε = O(∆K ) = O(∆·C

ln∆ ).
It remains to bound the parameter C: since the m.o. r.v.s Mw

(v,γ) either take on value 0 or 2r, we

know that κ(Mw
(v,γ)) = ln(2r) = ln 2 + ln r. This means the number of colors used is

O

(
∆

ln∆
ln r

)

This completes the proof of Theorem 6.1.

9 Kr-free Graphs

The above analysis was tailored for graphs where each neighborhood is r-colorable. To color Kr-free
graphs, we use different modifiers which give a weaker guarantee of O( ∆

ln∆ (r2 + r ln ln∆)) colors
as claimed in Theorem 6.2. Since a coloring algorithm with s colors gives an independent set of
size n/s, this result matches Shearer’s bound for independent sets for values of r ∈ O(ln ln∆).

In this section, we will assume that r ≤ c′
√
log ∆ for some suitably small constant c′; for values

of r ≥ c′
√
log ∆, the quantity O(r2 + r ln ln∆) is Ω(ln∆), and the trivial ∆-coloring satisfies

Theorem 6.2. Again, we assume that ∆ is a suitably large constant.

9.1 The Algorithm

The algorithm in this case is very similar in structure to that in §6.3. The only difference is in the
modifiers: we replace Step (5) of that algorithm by the following:

5’. For each pair (w, γ), generate modifiers Mw
(v,γ) for all v ∼ w as follows:

• If (w, γ) 6∈ T (i.e., A(w,γ) = 0) then Mw
(v,γ) = 1 for all v ∈ N(w).
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• Else, if (w, γ) ∈ T , then let H = G[N(w)] be the graph induced on the neighbors of w.
Use Theorem 9.2 on this graph H, with c = 1

4 , and with values {p(v, γ)}v∈V (H). This
generates modifiers M̃w

(v,γ) for each v ∈ V (H) = N(w), and then define

Mw
(v,γ) = 2(1− η(w,γ))︸ ︷︷ ︸

m.o.r.v.

· M̃w
(v,γ)︸ ︷︷ ︸

m.o.r.v.

We emphasize that we invoke the procedure in Theorem 9.2 once for each (w, γ) ∈ T . A few
comments on the new modifiers:

• By Theorem 9.2(P3) and the fact that c = 1
4 , each modifier has

κ(Mw
(v,γ)) ≤ O

(
r2 + r ln

(∑
v∼w p(v, γ)

) )

as long as (w, γ) is a tentatively chosen pair; κ(Mw
(v,γ)) = 0 if (w, γ) is not tentatively chosen.

But the pair (w, γ) is tentatively chosen with probability θpc(w, γ), and pc(w, γ) 6= 0 implies
that the probability is at most 100 ln∆. This implies that κ(Mw

(v,γ)) ≤ O(r2 + r ln ln∆).

• The maximum value of the modifer is given by Theorem 9.2(P2), and again using the bound
on total probability of any neighborhood, we get that

κ̂(Mw
(v,γ)) ≤ O(ln∆)r ·O(1)r

2
. (46)

If we define κ̂ := maxw,v,g κ̂(M
w
(v,γ)), we can use this to again define p⋆ := 2κ̂p̂, just the

value of κ̂ has changed. In the analysis for the r-local-colorability case, we used that p⋆ was
only greater than p̂ by a κ̂ = 2r ≤ ∆ε factor. This time κ̂ is given by (46), but for values
r ≤ c′′

√
ln∆ for some suitably small constant c′′, κ̂ is again ∆ε and we can use p⋆ ≤ p̂∆ε as

before.

The runtime: Constructing the modifier requires poly(∆) · r time and we construct a modifier for
each vertex at most T times. Hence, this algorithm runs in O(n · r · poly(∆))

9.2 The Altered Parameters

The analysis remains very similar, we just indicate the changes (in blue). The parameters change
slightly from §7.1: we now set c := 1

4 (as mentioned in the algorithm description), and set b :=
a − c − ε. This affects the value of K. Moreover, since the modifers Mw

(v,γ) change, the value of

C = maxw,v,g κ(M
w(v, γ)) becomes O(r2 + r ln ln∆) by the discussion above. To summarize, here

are the new parameters; those in blue differ from their counterparts in §7.1.

ε := 1/100 θ := ∆−1/4+2ε s := |L| := ∆

K

κ̂ := 2O(r2) · ln(∆)O(r) p̂ := ∆−3/4−5ε p⋆ := κ̂p̂

a := 1/2 − 3ε ĉ := 1/4 b := a− ĉ− ε

C := O(r2 + r ln ln∆) T :=
2ε

a · θ ln∆ K :=
(b/4)ε ln ∆

C
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9.3 The Analysis

Upon closer inspection, the proofs of invariants (InvP), (InvD) and (InvH) go through verbatim,
since they do not use any properties of the modifiers being used. Only the analysis of the invari-
ant (InvE) bounding the energy needs to be changed. In particular, Claim 8.9 no longer holds, and
we must use the slightly weaker claim below (we will defer the proof to the end of the section).

Claim 9.1 For any v, E[ξG(v, p
′
a)] =

∑
u∈G E[ξ(uv, p′a)] ≤ (1 + (c+ ε)θ) ξG(v, pa).

Combining Claims 9.1 and 8.10,
∑

u∈G′

E[ξ(uv, p′a)] ≤ (1− (a− c− ε)θ)
∑

u∈G
ξ(uv, pa) = (1− bθ)

∑

u∈G
ξ(uv, pa),

since we redefined b to be a−c−ε. This is the analog of (37); we now need to show the concentration.
And indeed, the argument in §8.4.1 is almost independent of the modifiers, except for the use of
Claim 8.9 in the proof of Claim 8.12; we can now use Claim 9.1 instead and get identical results up
to changes in the constants (which are absorbed in the whp∆ claims). This proves that invariant
(InvE) also holds. The rest of the analysis is unchanged for the new modifiers. Finally, the
number of colors used is O(∆K ) = O(∆·C

ln∆ ) again; plugging in the value of C calculated above gives
Theorem 6.2.

It only remains to prove Claim 9.1, which we do next, and to give the construction of the new
modifers, which appears in the next section §9.4.
Proof of Claim 9.1: We begin as in the proof of Claim 8.9. Using Fact 8.11, we can replace the
stopped product with unstopped products, i.e. for any nodes u, v ∈ G, and color γ ∈ L

E[p′a(u, γ)p
′
a(v, γ)] ≤ pa(u, γ)pa(v, γ)E

[
∏

w∼u

Mw
(u,γ)

∏

x∼v

Mx
(v,γ)

]
.

Using independence of the random variables,

E

[( ∏

w∼u

Mw
(u,γ)

)( ∏

w∼v

Mw
(v,γ)

)]
=

∏

w∼v:w 6∼u

E

[
Mw

(u,γ)

] ∏

w∼v:w 6∼u

E

[
Mw

(v,γ)

] ∏

w:uvw∈△
E

[
Mw

(u,γ)M
w
(v,γ)

]
.

(47)

The expectations in the first two products are 1, so focus on the expectations in the last product:

E

[
Mw

(u,γ)M
w
(v,γ)

]

= E

[
Mw

(u,γ)M
w
(v,γ) | w /∈ Tv

]
· Pr[w /∈ Tv] + E

[
Mw

(u,γ)M
w
(v,γ) | w ∈ Tv

]
· Pr[w ∈ Tv]

When w /∈ Tv, then all modifiers {Mw
(v,γ)}v have value 1. On the other hand, if w ∈ Tv, then either

η(w,γ) = 1 (w.p. half) and Mw
(v,γ)M

w
(u,γ) = 0, or else η(w,γ) = 0 (also w.p. half) and Mw

(v,γ)M
w
(u,γ) =

4M̃w
(v,γ)M̃

w
(u,γ). Moreover, Pr[w ∈ Tv] = θpc(w, γ) ≤ θpa(w, γ). Plugging this into the expression

above,

E

[
Mw

(u,γ)M
w
(v,γ)

]
= 1 · (1− θpc(w, γ)) +

1
2 · E

[
4M̃w

(v,γ)M̃
w
(u,γ)

]
· θpc(w, γ)

≤ 1 + 2E
[
M̃w

(v,γ)M̃
w
(u,γ)

]
· θpa(w, γ)
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Taking the product over all w that are common neighbors of u, v,

∏

w:uvw∈△

(
1 + 2E

[
M̃w

(v,γ)M̃
w
(u,γ)

]
· θpa(w, γ)

)

= 1 +
∑

w:uvw∈△
2θpa(w, γ) · E[M̃w

(u,γ)M̃
w
(v,γ)] + o(∆−2−ε)

≤ (1 + εθ) +
∑

w:uvw∈△
2θpa(w, γ) · E[M̃w

(u,γ)M̃
w
(v,γ)]

In the second expression, the second-order terms in the product expansion are bounded by (θ · p̂ ·
∆ε)2 ∈ o(∆−2−ε), since pa(v, γ) ≤ p̂ and M̃w

(u,γ) ≤ κ̂ ≤ ∆ε (by the comments at the end of §9.1).
The subsequent inequality uses that o(∆−2−ε) ≤ εθ for large enough ∆.

Now summing over all colors γ and over all u ∼ v, we get that for vertex v,

E[
∑

u∼v

ξ(uv, p′a)] ≤
∑

u∼v

∑

γ

pa(u, γ)pa(v, γ)


(1 + εθ) +

∑

w:uvw∈△
2θpa(w, γ)E

[
M̃w

(v,γ)M̃
w
(u,γ)

]



≤ (1 + εθ)ξG(v, pa) +
∑

γ

∑

u∼v

∑

w:uvw∈△
2θpa(u, γ)pa(v, γ) pa(w, γ)E[M̃

w
(u,γ)M̃

w
(v,γ)]

And now summing over all w ∼ v instead of only w : uvw ∈ △, and interchanging the summations

≤ (1 + εθ)ξG(v, pa) +
∑

γ

∑

w∼v

θpa(w, γ)

(
∑

u∼v

pa(v, γ)pa(u, γ) · 2E[M̃w
(u,γ)M̃

w
(v,γ)]

)

Applying Theorem 9.2(P1) on the inner summands,

≤ (1 + εθ)ξG(v, pa) +
∑

γ

∑

w∼v

θpa(w, γ) · c pa(v, γ)

≤ (1 + (c+ ε)θ)ξG(v, pa)

This completes the proof of Claim 9.1. �

9.4 Constructing a Kr-free Graph Modifier

Theorem 9.2 Given an integer t ≤ r, a Kt-free graph H, a constant c < 1 called the “contraction”
parameter, values p : V (H) → [0, 1], we can construct modifiers {M(v)}v∈V which are m.o. r.v.s
that satisfy the following properties:

(P1) For every vertex v ∈ V (H),
∑

u∼v 2p(u)p(v)E[M(u)M(v)] ≤ c · p(v).
(P2) The maximum value of any M(v) ≤

(
8 p(V )

c

)t−2
· 16(t−2

2 ).

(P3) E[M(v) logM(v)] = O(t2 + t log(p(V )/c)).

Moreover, this construction works in time poly(|V (H)|) · r.

Remark: The graph H should be viewed as the neighborhood of some vertex w.
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Proof: The proof is via induction. The base case is when t = 2; the graph H is K2-free (i.e., it
has no edges), then we return M2(v) = 1 for all v. This “trivial modifier” satisfies the properties
above. Else t ≥ 3; in this case we recursively build the modifer. Let V = V (H) be the vertex set
of the graph.

1. Define q(v) = p(v)/c. Sample a set X ⊆ V of vertices using a dependent sampling technique
of Gandhi et al. [GKPS06] satisfying the following properties:

(i) |X| ∈ {⌊q(V )⌋, ⌈q(V )⌉},
(ii) Pr[v ∈ X] = q(v), and

(iii) Pr[N(v) /∈ X] ≤∏u∼v(1− q(u)).

Assumption 9.3 implies that q(v) ≤ 1 for all v, so the step is well-defined.

2. Let m := |X| and let X = x1, x2, . . . xm. Define V0 := V − N(X) and let Vi := N(xi) −
(∪i−1

j=0Vj). This partitions the vertex set V into m + 1 sets. For i ∈ {1, . . . ,m} the induced
graphs H[Vi] are Kt−1-free; however, H[V0] might still contain a Kt−1.

3. Let A := {i | p(Vi) > c} and B := [1 . . . m] \ A. Let α be an r.v. with Pr[α = i] = wi, where

wi =





3
4 if i = 0

p(Vi)
8
∑

i∈A p(Vi)
if i ∈ A

1
8 |B| if i ∈ B

4. For each i ∈ {1, . . . ,m}, recursively construct a modifier M ′
i on the induced Kt−1-free graph

Hi := H[Vi] using contraction parameter c′ = 1
2c and values p′(v) = p(v)/wi for all v ∈ Vi.

(Assumption 9.3(ii) implies that the new values p′ satisfy the requirements of the Theorem.)
Define M ′

0 to be the trivial modifier assigning value 1 to all v ∈ V0. Define

M(v) =
m∑

i=0

1(α=i) · 1(v∈Vi) ·
1

wi
M ′

i(v).

In other words, the modifier picks α, defines M(v) = 0 for all v ∈ V \ Vα, and returns a
scaled-up version of the recursively constructed modifier for Vα.

In order to ensure the algorithm is well-defined, we need some assumptions

Assumption 9.3 The construction above satisfies:

(i) q(v) = p(v)/c ≤ 1 for all v ∈ V .
(ii) p′(v) = p(v)/wi ≤ 1 for all v ∈ V .

We now prove that M satisfies properties (P1)–(P3).
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9.4.1 Satisfying property (P1)

We need to show that for v ∈ V , we have

∑

u∼v

2p(u)p(v)E[M(u)M(v)] ≤ c · p(v).

Note that the expectation is over the random choice of X, the choice of α, and the internal
randomness of the modifiers (denoted as IR).

∑

u∼v

2p(u)p(v)EX,α,IR[M(u)M(v)] (48)

=
∑

u∼v

2p(u)p(v)EX,α,IR [M(u)M(v) | v ∈ N(X)] Pr
X
[v ∈ N(X)]

+
∑

u∼v

2p(u)p(v)EX,α,IR [M(u)M(v) | v /∈ N(X)] Pr
X
[v /∈ N(X)]

≤
∑

u∼v

2p(u)p(v)EX,α,IR [M(u)M(v) | v ∈ N(X)]

+
∑

u∼v

2p(u)p(v)EX,α,IR [M(u)M(v) | v /∈ N(X)] Pr
X
[v /∈ N(X)] (49)

Let us concentrate on the first summand in (49), and condition on some X such that v ∈ N(X);

∑

u∼v

2p(u)p(v)Eα,IR [M(u)M(v) | v ∈ N(X),X]

=
∑

u∼v

2p(u)p(v)Eα,IR

[
m∑

i=1

1(α=i) · 1(u∈Vi)
1

wi
·M ′

i(u) · 1(α=i) · 1(v∈Vi)
1

wi
·M ′

i(v) | v ∈ N(X),X

]

Since the internal randomness for the modifiers at the next level and α are independent, we get

=
∑

u∼v

2p(u)p(v)

m∑

i=1

Eα

[
1(α=i) | v ∈ N(X),X

]
EIR

[
1

wi
·M ′

i(u) ·
1

wi
·M ′

i(v) | v ∈ N(X),X

]

Rearranging the sum, and noting that Eα[1(α=i) | X] = Pr[α = i | X] = wi, we get

=

m∑

i=1

wi

∑

u∼v,u∈Vi

2
p(u)

wi

p(v)

wi
EIR

[
M ′

i(u)M
′
i(v)

]

=

m∑

i=1

wi

∑

u∼v,u∈Vi

2 p′(u) p′(v)EIR

[
M ′

i(u)M
′
i (v)

]

Applying the induction hypothesis on H[Vi] with values p′,

≤
m∑

i=1

wi c
′ p′(v) ≤ c

2
p(v)
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We now turn to the second summand in (49). In particular, consider the expectation

EX,α,IR [M(u)M(v) | v /∈ N(X)]

= Pr[α = 0] · EX,IR [M(u)M(v) | v /∈ N(X), α = 0]

+ Pr[α 6= 0] · EX,α,IR [M(u)M(v) | v /∈ N(X), α 6= 0]

If we ensure that the value w0 is chosen independently of X, we get that {α = 0} is independent of
X, IR. Moreover, since v /∈ N(X), it lies in V0. By construction, M(u)M(v) will be non-zero only
if u also lies in V0, which causes the second summand above to disappear, and give

= Pr[α = 0] · EX,IR [M(u)M(v) | v /∈ N(X)]

= Pr[α = 0]EX [
1

w0
1(u /∈ N(X))

1

w0
1(v /∈ N(X)) | v /∈ N(X)]

= Pr[α = 0]
1

w2
0

Pr
X
[u /∈ N(X) | v /∈ N(X)]

≤ Pr[α = 0]
1

w2
0

=
1

w0

This shows that the second summand of (49) is upper bounded by

∑

u∼v

p(u)p(v)
1

w0
Pr[v /∈ N(X)] ≤ p(v)

w0

(∑

u∼v

p(u)

)(∏

u∼v

(1− q(u))

)

≤ p(v)

w0
· c ·

(∑

u∼v

q(u)

)
exp

(
−
∑

u∼v

q(u)

)

≤ p(v)

w0
· c · 1

e
≤ c

2
p(v).

In the first inequality we used the negative correlation property of the dependent sampling scheme
of Gandhi et al., in the second we used the definition of q(u) = p(u)/c, in the third inequality
we used that x exp(−x) ≤ 1

e for all x. The final inequality uses w0 = 3/4 ≥ 2/e. Hence the two
summands sum up to at most cp(v), proving Property (P1).

9.4.2 Satisfying Properties (P2)

Claim 9.4 The new values satisfy the following:

(i) wi ≥ c
8 p(V ) for all i ∈ {1, . . . ,m}.

(ii) p′(Vi) ≤ 8p(V ).

Proof: For (i), for i ∈ A, wi =
p(Vi)

8
∑

i∈A p(Vi)
≥ c

8 p(V ) by the definition of A. Moreover, for i ∈ B,

wi ≥ 1
8|X| ≥ c

8 p(V ) . (Here we ignore the issues caused by |X| being an integer adjacent to p(V )

rather than being equal to it.) Note that (i) does not make any claims about w0.

For (ii), p′(V0) =
4
3p(V0) ≤ 8p(V ). For i ∈ A,

p′(Vi) =
p(Vi)

wi
= 8

∑

i∈A
p(Vi) ≤ 8 p(V ).
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For i ∈ B, p′(Vi) =
p(Vi)
wi

≤ c
wi

≤ 8 p(V ) by part (i). �

To prove property (P2), by the IH the maximum value of the recursively constructed modifer Mi

is (
8 · p′(Vi)

c′

)t−3

· 16(t−3
2 ) ≤

(
8 · p(V )

c

)t−3

· 16t−3 · 16(t−3
2 ) =

(
8 · p(V )

c

)t−3

· 16(t−2
2 ),

using the definition of c′ and Claim 9.4(ii). If we consider i ∈ {1, . . . ,m}, then scaling up by 1/wi

causes the maximum value to be at most

1

wi
×
(
8 · p(V )

c

)t−3

· 16(t−2
2 ) ≤

(
8 · p(V )

c

)t−2

· 16(t−2
2 )

by Claim 9.4(i). If we consider i = 0, then using that M0 ≡ 1, the maximum value is 4/3, which is
only smaller (since t ≥ 3).

For property (P3), observe that E[M logM ] ≤ E[M ] · logMmax, where Mmax is the maximum value
M takes. But if M(v) is a m.o. r.v. then E[M(v)] = 1, so E[M(v) logM(v)] is bounded by the
logarithm of the expression in property (P2). �

9.4.3 Satisfying the Assumptions

We still have to address the issue of the validity of the assumptions in Assumption 9.3. We assume
we start off with a Kr-free graph with p(V ) ≤ O(log∆), and a contraction parameter c = 1

4 (say).
Let pt(v) be the probability values at some stage where the current vertex set is V t (which is
Kt-free), then by Claim 9.4 and algebra.

(a) pt(V t) ≤ 8r−tp(V ), and

(b) for all v ∈ V t, pt(v) ≤ p(v) · p(V )r−t16(
r−t
2 )

cr−t .

Consequently, pt(v) ≤ p(v) · (p(V )r · 16r2), and if we start off with p(v) ≤ p⋆ and r ≪ √
log ∆,

we ensure assumption (ii) that pt(v) ≤ 1 for all stages t. Assumption (i) demands qt(v) = pt(v)
ct

=

O(pt(v) · 2t) ≤ 1 which is satisfied again by the same conditions.

A Probabilistic Tools and Useful Lemmas

A.1 Concentration Bounds

The following large-deviation bound is standard, see, e.g., [AS92].

Theorem A.1 (A Large Deviation Bound) For independent [0,m]-bounded random variables
X1,X2, . . . , with X :=

∑
iXi having mean E[X] ≤ µ, given any λ ≥ 0,

Pr [|X − E[X]| ≥ λ] ≤ 2 exp

{
− λ2

m(2µ + λ)

}
.

In particular, this probability is at most 1/poly(∆) when λ = O(
√
µm ln∆ +m ln∆).
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For a multilinear polynomial f(x) = f(x1, x2, . . . , xn) with nonnegative coeffecients and degree ≤ q,
and n independent random variables Y = (Y1, Y2, . . . , Yn), we define µr (for every r ≤ q) as follows

µr = max
S⊆[n],|S|=r
S={s1,...,sr}

(
∂rf

∂xs1∂xs2 . . . ∂xsr

∣∣∣∣
E[|Y1|],...,E[|Yn|]

)

Building on a long line of work, the following bound is presented by Schudy and Sviridenko [SS12].

Theorem A.2 (Large Deviation for Polynomials) Consider independent [0,m]-bounded r.v.s
X1,X2, . . . and let X := (X1,X2, . . . ,Xn). Let f(x) = f(x1, x2, . . . , xn) be a multilinear polynomial
of degree q with non-negative coefficients, and let f(X) have moment parameters µ0, µ1, . . . , µq.
There exists a universal constant C = C(q) such that

Pr [|f(X)− E[f(X)]| ≥ λ] ≤ e2 max

{
max

r=1,...,q
exp

{
− λ2

C ·mr · µ0µr

}
, max

r=1,...,q
exp

{
−
(

λ

C ·mr · µr

)1/r
}}

.

Proof: Use Theorem 1.2 of the Schudy-Sviridenko paper [SS12] and the observation that any
[0,m]-bounded r.v. is moment bounded by parameter L = m. �

Corollary A.3 Consider independent [0, 1]-bounded r.v.s X1,X2, . . . and let X := (X1,X2, . . . ,Xn).
Let f(x) = f(x1, x2, . . . , xn) be a multilinear polynomial of degree 2 with non-negative coefficients,
and let f(X) have mean E[f(X)] ≤ µ and moment parameters µ1, µ2 ≤ O(1). Then

Pr [|f(X)− E[f(X)]| ≥ λ] ≤ e2 max

{
exp

{
− λ2

O(µ)

}
, exp

{
−O(λ)1/2

}}
.

In particular, this probability is at most 1/poly(∆) when λ = O(
√
µ ln∆ + ln2 ∆).

A.2 The Lovász Local Lemma

The following theorem essentially follows from Moser and Tardos [MT10].

Theorem A.4 Consider a set of n independent random variables F = {Xi}ni=1, and assume that
sampling each r.v. from the underlying distribution can be done in constant time. Given a collection
of m subsets {Sj ⊆ F}mj=1 such that the “bad” event Bj is completely determined by the r.v.s in
subset Sj , define the degree dj = |{j′ ∈ [m] | Sj ∩ Sj′ 6= ∅}|. Define pj := Pr[Bj]. Suppose

(max
j

pj) · (max
j

dj) ≤ 1/4

then there is an algorithm running in time poly(m,n) to find a setting of the random variables Xi

such that none of the bad events occur.

A.3 Auxiliary Lemmas

Lemma A.5 Suppose h(v, p) ≥ (1 − δ) ln∆ and p(Pv) ∈ (1 ± ν), then pa(Pv) ≥ 1 − 6(δ + ν). If
ξG(v, p) ≤ 2K also holds, then pc(Pv) ≥ 1− 6(δ + ν)− 2ε.
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Proof: First, we prove the bound on pa(Pv). Recall that pa(v, γ) = p(v, γ) · 1(p(v,γ)≤p̂). Since any
non-zero probability is at least 1/s ≥ 1/∆, the entropy

h(v, p) = −
∑

γ

p(v, γ) ln p(v, γ) ≤
( ∑

γ:p(v,γ)∈(1/s,p̂]
p(v, γ)

)
ln∆ +

( ∑

γ:p(v,γ)>p̂

p(v, γ)

)
ln 1/p̂ (50)

Let B :=
∑

γ:p(v,γ)>p̂ p(v, γ); since p(Pv) ∈ (1± ν), we have that

pa(Pv) =
∑

γ:p(v,γ)∈[0,p̂]
p(v, γ) =

∑

γ:p(v,γ)∈(1/s,p̂]
p(v, γ) ∈ (1−B ± ν).

Moreover, ln 1/p̂ = (34 + 5ε) ln ∆. Finally, by assumption, h(v, p) ≥ (1 − δ) ln∆. Substituting
into (50) and dividing throughout by ln∆, and using ε = 1/100, we get

(1−B + ν) +

(
3

4
+ 5ε

)
B ≥ 1− δ =⇒ B ≤ 5(δ + ν). (51)

Hence pa(Pv) ∈ [1− 6(δ + ν), 1 + ν], which proves the first part of the claim.

Next, the bound on pc(Pv). Recall that pc(v, γ) = pa(v, γ) · 1(∑u∼v p(u,γ)≤100 ln∆). Since ε = 1/100,

the threshold for zeroing out is ln∆
ε ≥ K

ε . Consequently, if Sv := {γ | ∑u∼v p(u, γ) ≥ K
ε }, then

pc(Pv) ≥ pa(Pv)−
∑

γ∈Sv
p(v, γ). To bound the latter sum, observe that

∑

γ∈Sv

p(v, γ) ≤ ε

K

∑

γ∈Sv

p(v, γ)
∑

u∼v

p(u, γ) ≤ ε

K

∑

u∼v

ξG(uv, p) =
ε

K
ξG(v, p) ≤ 2ε.

Hence pc(Pv) ≥ 1− 6(δ + ν)− 2ε �
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