7,161 research outputs found

    Computer simulation and design of a three degree-of-freedom shoulder module

    Get PDF
    An in-depth kinematic analysis of a three degree of freedom fully-parallel robotic shoulder module is presented. The major goal of the analysis is to determine appropriate link dimensions which will provide a maximized workspace along with desirable input to output velocity and torque amplification. First order kinematic influence coefficients which describe the output velocity properties in terms of actuator motions provide a means to determine suitable geometric dimensions for the device. Through the use of computer simulation, optimal or near optimal link dimensions based on predetermined design criteria are provided for two different structural designs of the mechanism. The first uses three rotational inputs to control the output motion. The second design involves the use of four inputs, actuating any three inputs for a given position of the output link. Alternative actuator placements are examined to determine the most effective approach to control the output motion

    Miniaturized modular manipulator design for high precision assembly and manipulation tasks

    Get PDF
    In this paper, design and control issues for the development of miniaturized manipulators which are aimed to be used in high precision assembly and manipulation tasks are presented. The developed manipulators are size adapted devices, miniaturized versions of conventional robots based on well-known kinematic structures. 3 degrees of freedom (DOF) delta robot and a 2 DOF pantograph mechanism enhanced with a rotational axis at the tip and a Z axis actuating the whole mechanism are given as examples of study. These parallel mechanisms are designed and developed to be used in modular assembly systems for the realization of high precision assembly and manipulation tasks. In that sense, modularity is addressed as an important design consideration. The design procedures are given in details in order to provide solutions for miniaturization and experimental results are given to show the achieved performances

    Stiffness modeling of robotic manipulator with gravity compensator

    Get PDF
    The paper focuses on the stiffness modeling of robotic manipulators with gravity compensators. The main attention is paid to the development of the stiffness model of a spring-based compensator located between sequential links of a serial structure. The derived model allows us to describe the compensator as an equivalent non-linear virtual spring integrated in the corresponding actuated joint. The obtained results have been efficiently applied to the stiffness modeling of a heavy industrial robot of the Kuka family

    Multi-Objective Design Optimization of the Leg Mechanism for a Piping Inspection Robot

    Get PDF
    This paper addresses the dimensional synthesis of an adaptive mechanism of contact points ie a leg mechanism of a piping inspection robot operating in an irradiated area as a nuclear power plant. This studied mechanism is the leading part of the robot sub-system responsible of the locomotion. Firstly, three architectures are chosen from the literature and their properties are described. Then, a method using a multi-objective optimization is proposed to determine the best architecture and the optimal geometric parameters of a leg taking into account environmental and design constraints. In this context, the objective functions are the minimization of the mechanism size and the maximization of the transmission force factor. Representations of the Pareto front versus the objective functions and the design parameters are given. Finally, the CAD model of several solutions located on the Pareto front are presented and discussed.Comment: Proceedings of the ASME 2014 International Design Engineering Technical Conferences \& Computers and Information in Engineering Conference, Buffalo : United States (2014

    Optimal dimensional synthesis of force feedback lower arm exoskeletons

    Get PDF
    This paper presents multi-criteria design optimization of parallel mechanism based force feedback exoskeletons for human forearm and wrist. The optimized devices are aimed to be employed as a high fidelity haptic interfaces. Multiple design objectives are discussed and classified for the devices and the optimization problem to study the trade-offs between these criteria is formulated. Dimensional syntheses are performed for optimal global kinematic and dynamic performance, utilizing a Pareto front based framework, for two spherical parallel mechanisms that satisfy the ergonomic necessities of a human forearm and wrist. Two optimized mechanisms are compared and discussed in the light of multiple design criteria. Finally, kinematic structure and dimensions of an optimal exoskeleton are decided

    CAD-based approach for identification of elasto-static parameters of robotic manipulators

    Get PDF
    The paper presents an approach for the identification of elasto-static parameters of a robotic manipulator using the virtual experiments in a CAD environment. It is based on the numerical processing of the data extracted from the finite element analysis results, which are obtained for isolated manipulator links. This approach allows to obtain the desired stiffness matrices taking into account the complex shape of the links, couplings between rotational/translational deflections and particularities of the joints connecting adjacent links. These matrices are integral parts of the manipulator lumped stiffness model that are widely used in robotics due to its high computational efficiency. To improve the identification accuracy, recommendations for optimal settings of the virtual experiments are given, as well as relevant statistical processing techniques are proposed. Efficiency of the developed approach is confirmed by a simulation study that shows that the accuracy in evaluating the stiffness matrix elements is about 0.1%.Comment: arXiv admin note: substantial text overlap with arXiv:0909.146
    corecore