68 research outputs found

    Inter-channel uniformity of a microwave sounder in space

    Get PDF
    We analyzed intrusions of the Moon in the deep space view of the Advanced Microwave Sounding Unit-B on the NOAA-16 satellite and found no significant discrepancies in the signals from the different sounding channels between 2001 and 2008. However, earlier investigations had detected biases of up to 10 K, by using simultaneous nadir overpasses of NOAA-16 with other satellites. These discrepancies in the observations of Earth scenes cannot be due to non-linearity of the receiver or contamination of the deep space view without affecting the signal from the Moon as well. As neither major anomalies of the on-board calibration target nor the local oscillator were present, we consider radio frequency interference in combination with a strongly decreasing gain the most obvious reason for the degrading photometric stability. By means of the chosen example we demonstrate the usefulness of the Moon for investigations of the performance of microwave sounders in flight.</p

    Workshop on Strategies for Calibration and Validation of Global Change Measurements

    Get PDF
    The Committee on Environment and Natural Resources (CENR) Task Force on Observations and Data Management hosted a Global Change Calibration/Validation Workshop on May 10-12, 1995, in Arlington, Virginia. This Workshop was convened by Robert Schiffer of NASA Headquarters in Washington, D.C., for the CENR Secretariat with a view toward assessing and documenting lessons learned in the calibration and validation of large-scale, long-term data sets in land, ocean, and atmospheric research programs. The National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC) hosted the meeting on behalf of the Committee on Earth Observation Satellites (CEOS)/Working Group on Calibration/walidation, the Global Change Observing System (GCOS), and the U. S. CENR. A meeting of experts from the international scientific community was brought together to develop recommendations for calibration and validation of global change data sets taken from instrument series and across generations of instruments and technologies. Forty-nine scientists from nine countries participated. The U. S., Canada, United Kingdom, France, Germany, Japan, Switzerland, Russia, and Kenya were represented

    Remote Measurement of Pollution - A 40-Year Langley Retrospective

    Get PDF
    The National Aeronautics and Space Administration (NASA) phased down its Apollo Moon Program after 1970 in favor of a partly reusable Space Shuttle vehicle that could be used to construct and supply a manned, Earth-orbiting Space Station. Applications programs were emphasized in response to the growing public concern about Earth's finite natural resources and the degradation of its environment. Shortly thereafter, a workshop was convened in Norfolk, Virginia, on Remote Measurement of Pollution (or RMOP), and its findings are in a NASA Special Publication (NASA SP-285). The three primary workshop panels and their chairmen were focused on trace gas species (Will Kellogg), atmospheric particulates or aerosols (Verner Suomi), and water pollution (Gifford Ewing). Many of the workshop participants were specialists in the techniques that might be employed for the regional to global-scale, remote measurements from an Earth-orbiting satellite. The findings and recommendations of the RMOP Report represent the genesis of and a blueprint for the satellite, atmospheric sensing programs within NASA for nearly two decades. This paper is a brief, 40-year retrospective of those instrument developments that were an outgrowth of the RMOP activity. Its focus is on satellite measurement capabilities for temperature and gaseous species that were demonstrated by atmospheric technologists at the Langley Research Center. Limb absorption by solar occultation, limb infrared radiometry, and gas filter correlation radiometry techniques provided significant science data, so they are emphasized in this review

    Pre-Aerosol, Clouds, and Ocean Ecosystem (PACE) Mission Science Definition Team Report

    Get PDF
    We live in an era in which increasing climate variability is having measurable impact on marine ecosystems within our own lifespans. At the same time, an ever-growing human population requires increased access to and use of marine resources. To understand and be better prepared to respond to these challenges, we must expand our capabilities to investigate and monitor ecological and bio geo chemical processes in the oceans. In response to this imperative, the National Aeronautics and Space Administration (NASA) conceived the Pre-Aerosol, Clouds, and ocean Ecosystem (PACE) mission to provide new information for understanding the living ocean and for improving forecasts of Earth System variability. The PACE mission will achieve these objectives by making global ocean color measurements that are essential for understanding the carbon cycle and its inter-relationship with climate change, and by expanding our understanding about ocean ecology and biogeochemistry. PACE measurements will also extend ocean climate data records collected since the 1990s to document changes in the function of aquatic ecosystems as they respond to human activities and natural processes over short and long periods of time. These measurements are pivotal for differentiating natural variability from anthropogenic climate change effects and for understanding the interactions between these processes and various human uses of the ocean. PACE ocean science goals and measurement capabilities greatly exceed those of our heritage ocean color sensors, and are needed to address the many outstanding science questions developed by the oceanographic community over the past 40 years

    CIRA annual report FY 2015/2016

    Get PDF
    Reporting period April 1, 2015-March 31, 2016

    Research theme reports from April 1, 2019 - March 31, 2020

    Get PDF

    CIRA annual report FY 2016/2017

    Get PDF
    Reporting period April 1, 2016-March 31, 2017

    CIRA annual report 2007-2008

    Get PDF

    The Sixth Alumni Conference of the International Space University

    Get PDF
    These proceedings cover the sixth alumni conference of the International Space University, coordinated by the ISU U.S. Alumni Organization, which was held at Rice University in Houston, Texas, on July 11, 1997. The alumni conference gives graduates of the International Space University's interdisciplinary, international, and intercultural program a forum in which they may present and exchange technical ideas, and keep abreast of the wide variety of work in which the ever-growing body of alumni is engaged. The diversity that is characteristic of ISU is reflected in the subject matter of the papers published in this proceedings. This proceedings preserves the order of the alumni presentations given at the 1997 ISU Alumni Conference. As in previous years, a special effort was made to solicit papers with a strong connection to the two ISU 1997 Summer Session Program design projects: (1) Transfer of Technology, Spin-Offs, Spin-Ins; and (2) Strategies for the Exploration of Mars. Papers in the remaining ten sessions cover the departmental areas traditional to the ISU summer session program

    CIRA annual report FY 2017/2018

    Get PDF
    Reporting period April 1, 2017-March 31, 2018
    • …
    corecore