1,107 research outputs found

    DISCRIMINATIVE LEARNING AND RECOGNITION USING DICTIONARIES

    Get PDF
    In recent years, the theory of sparse representation has emerged as a powerful tool for efficient processing of data in non-traditional ways. This is mainly due to the fact that most signals and images of interest tend to be sparse or compressible in some dictionary. In other words, they can be well approximated by a linear combination of a few elements (also known as atoms) of a dictionary. This dictionary can either be an analytic dictionary composed of wavelets or Fourier basis or it can be directly trained from data. It has been observed that dictionaries learned directly from data provide better representation and hence can improve the performance of many practical applications such as restoration and classification. In this dissertation, we study dictionary learning and recognition under supervised, unsupervised, and semi-supervised settings. In the supervised case, we propose an approach to recognize humans in unconstrained videos, where the main challenge is exploiting the identity information in multiple frames and the accompanying dynamic signature. These identity cues include face, body, and motion. Our approach is based on video-dictionaries for face and body. We design video-dictionaries to implicitly encode temporal, pose, and illumination information. Next, we propose a novel multivariate sparse representation method that jointly represents all the video data by a sparse linear combination of training data. To increase the ability of our algorithm to learn nonlinearities, we apply kernel methods to learn the dictionaries. Next, we address the problem of matching faces across changes in pose in unconstrained videos. Our approach consists of two methods based on 3D rotation and sparse representation that compensate for changes in pose. We demonstrate the superior performance of our approach over several state-of-the-art algorithms through extensive experiments on unconstrained video datasets. In the unsupervised case, we present an approach that simultaneously clusters images and learns dictionaries from the clusters. The method learns dictionaries in the Radon transform domain. The main feature of the proposed approach is that it provides in-plane rotation and scale invariant clustering, which is useful in many applications such as Content Based Image Retrieval (CBIR). We demonstrate through experiments that the proposed rotation and scale invariant clustering provides not only good retrieval performances but also substantial improvements and robustness compared to traditional Gabor-based and several state-of-the-art shape-based methods. We then extend the dictionary learning problem to a generalized semi-supervised formulation, where each training sample is provided with a set of possible labels and only one label among them is the true one. Such applications can be found in image and video collections where one often has only partially labeled data. For instance, given an image with multiple faces and a caption specifying the names, we can be sure that each of the faces belong to one of the names specified, while the exact identity of each face is not known. Labeling involves significant amount of human effort and is expensive. This has motivated researchers to develop learning algorithms from partially labeled training data. In this work, we develop dictionary learning algorithms that utilize such partially labeled data. The proposed method aims to solve the problem of ambiguously labeled multiclass-classification using an iterative algorithm. The dictionaries are updated using either soft (EM-based) or hard decision rules. Extensive evaluations on existing datasets demonstrate that the proposed method performs significantly better than state-of-the-art approaches for learning from ambiguously labeled data. As sparsity plays a major role in our research, we further present a sparse representation-based approach to find the salient views of 3D objects. The salient views are categorized into two groups. The first are boundary representative views that have several visible sides and object surfaces that may be attractive to humans. The second are side representative views that best represent side views of the approximating convex shape. The side representative views are class-specific views and possess the most representative power compared to other within-class views. Using the concept of characteristic view class, we first present a sparse representation-based approach for estimating the boundary representative views. With the estimated boundaries, we determine the side representative views based on a minimum reconstruction error criterion. Furthermore, to evaluate our method, we introduce the notion of geometric dictionaries built from salient views for applications in 3D object recognition, retrieval and sparse-to-full reconstruction. By a series of experiments on four publicly available 3D object datasets, we demonstrate the effectiveness of our approach over state-of-the-art algorithms and baseline methods

    Using basic image features for texture classification

    Get PDF
    Representing texture images statistically as histograms over a discrete vocabulary of local features has proven widely effective for texture classification tasks. Images are described locally by vectors of, for example, responses to some filter bank; and a visual vocabulary is defined as a partition of this descriptor-response space, typically based on clustering. In this paper, we investigate the performance of an approach which represents textures as histograms over a visual vocabulary which is defined geometrically, based on the Basic Image Features of Griffin and Lillholm (Proc. SPIE 6492(09):1-11, 2007), rather than by clustering. BIFs provide a natural mathematical quantisation of a filter-response space into qualitatively distinct types of local image structure. We also extend our approach to deal with intra-class variations in scale. Our algorithm is simple: there is no need for a pre-training step to learn a visual dictionary, as in methods based on clustering, and no tuning of parameters is required to deal with different datasets. We have tested our implementation on three popular and challenging texture datasets and find that it produces consistently good classification results on each, including what we believe to be the best reported for the KTH-TIPS and equal best reported for the UIUCTex databases

    Multi-Layer Local Graph Words for Object Recognition

    Full text link
    In this paper, we propose a new multi-layer structural approach for the task of object based image retrieval. In our work we tackle the problem of structural organization of local features. The structural features we propose are nested multi-layered local graphs built upon sets of SURF feature points with Delaunay triangulation. A Bag-of-Visual-Words (BoVW) framework is applied on these graphs, giving birth to a Bag-of-Graph-Words representation. The multi-layer nature of the descriptors consists in scaling from trivial Delaunay graphs - isolated feature points - by increasing the number of nodes layer by layer up to graphs with maximal number of nodes. For each layer of graphs its own visual dictionary is built. The experiments conducted on the SIVAL and Caltech-101 data sets reveal that the graph features at different layers exhibit complementary performances on the same content and perform better than baseline BoVW approach. The combination of all existing layers, yields significant improvement of the object recognition performance compared to single level approaches.Comment: International Conference on MultiMedia Modeling, Klagenfurt : Autriche (2012

    Studies of Sensitivity in the Dictionary Learning Approach to Computed Tomography: Simplifying the Reconstruction Problem, Rotation, and Scale

    Get PDF
    In this report, we address the problem of low-dose tomographic image reconstruction using dictionary priors learned from training images. In our recent work [22] dictionary learning is used to incorporate priors from training images and construct a dictionary, and then the reconstruction problem is formulated in a convex optimization framework by looking for a solution with a sparse representation in the subspace spanned by the dictionary. The work in [22] has shown that using learned dictionaries in computed tomography can lead to superior image reconstructions comparing to classical methods. Our formulation in [22] enforces that the solution is an exact representation by the dictionary; in this report, we investigate this requirement. Furthermore, the underlying assumption that the scale and orientation of the training images are consistent with the unknown image of interest may not be realistic. We investigate the sensitivity and robustness of the reconstruction to variations of the scale and orientation in the training images and we suggest algorithms to estimate the correct relative scale and orientation of the unknown image to the training images from the data

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure
    • ā€¦
    corecore