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Abstract

In this report, we address the problem of low-dose tomographic image
reconstruction using dictionary priors learned from training images. In
our recent work [22] dictionary learning is used to incorporate priors from
training images and construct a dictionary, and then the reconstruction
problem is formulated in a convex optimization framework by looking for
a solution with a sparse representation in the subspace spanned by the
dictionary. The work in [22] has shown that using learned dictionaries in
computed tomography can lead to superior image reconstructions compar-
ing to classical methods. Our formulation in [22] enforces that the solution
is an exact representation by the dictionary; in this report, we investigate
this requirement. Furthermore, the underlying assumption that the scale
and orientation of the training images are consistent with the unknown
image of interest may not be realistic. We investigate the sensitivity and
robustness of the reconstruction to variations of the scale and orientation
in the training images and we suggest algorithms to estimate the correct
relative scale and orientation of the unknown image to the training images
from the data.
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1 Introduction

The linear computed tomographic (CT) reconstruction problem is often formu-
lated as Ax ≈ b where the vector x ∈ Rn represents the unknown image, the
vector b ∈ Rm is the given (usually inaccurate/noisy) data, and the matrix
A ∈ Rm×n represents the forward model. To regularize the (often) ill-posed to-
mographic image reconstruction, we use prior information in the form of “train-
ing images” that characterize the geometrical or visual features of the property
of interest.

Consider an over-complete dictionary D ∈ Rp×s with s > p that is com-
posed of s columns – representing a “basis” of s images – which are referred to
as elements of the dictionary, i.e., the dictionary D contains prototype image-
elements. Let y ∈ Rp be an arbitrary image. We say that y admits a sparse
representation over the dictionary D if one can find a linear combination of a
small number of dictionary elements that approximates the image y.

The term dictionary learning was first introduced by Olshausen and Field
(1996) [20], referring to discovering basis elements of the dictionary and sparse
linear combination of those elements using unlabeled training images. Dictio-
nary learning methods and sparse decomposition are now widely used to model
natural signals/images (see e.g., [1, 6, 8, 14]). Sparse representation in terms of
learned dictionaries has attracted increased interest in solving imaging problems
such as denoising [9], deblurring [18] and restoration [15], in addition to solving
tomographic image reconstruction problems [22, 26].

In a recent paper [22] we formulated and implemented a two-stage algorithm
for using training images in tomographic reconstruction, in which we first form
a dictionary from patches extracted from the training images and then use
this dictionary as a prior when computing the reconstruction. Analysis of the
image in the patch-based formulation enables the dictionary to find localized
features of training images effectively and reduces the computational work. In
[22], a nonnegative sparse coding formulation [12] is proposed for learning a
single generic dictionary for sparse representation of gray scale training image
patches. By means of a sparsity prior on all the non-overlapping patches in
the image, the dictionary is used for finding a tomographic solution in the
space (cone) defined by the dictionary. Non-overlapping patches are used so
that we avoid blurring and over-smoothing the textures in the overlap regions
of the reconstruction. Being successful in incorporating the desirable features of
the training image in the dictionary prior, leads to a superior solution comparing
to classical tomographic reconstruction methods. We also showed that the use
of the nonnegative dictionary had a regularizing effect on the solution.

There is no guarantee that the training images have the correct orientation
or scale when trying to solve the image reconstruction problem for an unknown
object, which is often neglected when using learned dictionary approaches in
tomographic image reconstruction, e.g., see [22, 23, 26]. On the other hand in
[22] we have been working under the assumption that the solution lies in the
cone spanned by the learned dictionary elements. Searching for solutions in the
cone spanned by the dictionary elements is a strong assumption in the recon-
struction formulation, therefore we are interested to investigate how relaxing
this assumption affects the reconstructed solution.

In this report, we continue the work initiated in [22], in order to increase an
understanding of the model’s limitations and capabilities, we analyze sensitiv-
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ity and robustness of our algorithm to scale and rotation variances as well as
the assumptions in the problem formulation with various computational tests.
Moreover, we propose algorithms to detect rotation and scale of the reconstruc-
tion from the sinogram of the tomographic measurement data.

This paper is organized as follows. In Section 2 we first describe the two-
stage tomographic reconstruction framework using leaned dictionaries, present a
reference example from [22], and describe our numerical test setup. In Section 3
we investigate the assumption that the solution lies strictly in the space spanned
by the dictionary elements. Then, in section 4 we study the sensitivity of the
reconstruction towards changes in scale and rotation and present algorithms to
determine the correct scale and rotation from the measurement tomographic
data. The conclusion follows in Section 5.

We use the following notation, where A is an arbitrary matrix:

‖A‖F =
(∑
ij

a2
ij

)1/2
, ‖A‖sum =

∑
ij

|aij |.

2 The Dictionary Learning Approach in Tomo-
graphic Image Reconstruction

For the sake of completeness, in this section we briefly summarize the formu-
lation used in the tomographic reconstruction formulation from [22], and we
present our computational scheme and numerical results from a reference prob-
lem in [22].

2.1 The Problem Formulation

Let the matrix Y ∈ Rp×t+ consist of t training image patches of size P × Q
arranged as vectors of length p = PQ. Then the dictionary learning problem
can be viewed as the problem of approximating the training matrix as a prod-
uct of two matrices, Y ≈ DH, where D ∈ Rp×s+ is the dictionary of s basis
elements (the columns of D), and H ∈ Rs×t+ is the matrix of coefficients. Such
a decomposition is not unique, so we need to incorporate further priors on the
approximation in order to obtain the dictionary. The matrix D is required
to have nonnegative elements, such that its columns represent image patches.
Similarly, imposing non-negativity constraints on the representation matrix H
corresponds to each training image being represented as a conic combination of
dictionary images. Imposing a sparsity-inducing norm penalty on H allows one
to control the sparseness of the representation of training patches, as well as
alleviate non-uniqueness drawback of the approximation.

Then the dictionary learning problem is given by the non-negative sparse
coding of the non-negative data matrix Y

min
D,H

1

2
‖Y −DH‖2F + λ‖H‖sum s.t. D ∈ D, H ∈ Rs×t+ , (1)

where λ ≥ 0 is a regularization parameter and we introduce

D ≡ {D ∈ Rp×s+ | ‖di‖2 ≤
√
p, i = 1, . . . , s}
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to avoid trivial solutions and to ensure similar bounds on all dictionary elements.
The sparsity prior for the representation matrix H is imposed by ‖H‖sum. Each
training patch and dictionary image is a column vector in Y and D respectively.
We use the algorithm based on the Alternating Direction Method of Multipliers
(ADMM) [5], for computing a dictionary at a local minima of the non-convex
dictionary learning problem (1).

Now let the vector x represent the unknown M × N image of absorption
coefficients with x ∈ Rn+ and n = MN .

Without loss of generality we assume that the size of the image is a mul-
tiple of the patch sizes in the dictionary. We partition the image into q =
(M/P )(N/Q) non-overlapping blocks of size (M/P ) × (N/Q), i.e., patches are
represented by the vectors xj ∈ Rp for j = 1, . . . , q. Then each block of the image
x can expressed as a conic combination of dictionary images, i.e., Πx = (I⊗D)α.
The permutation matrix Π re-orders the vector x such that the correct shuffling
of the pixels from the patches is ensured.

The simplicity of this approach is that once the basis elements have been
determined, the solution is linear in these new variables, and the data fitting
proceeds as usual i.e., from Ax ≈ b we obtain AΠT (I ⊗ D)α ≈ b. The tomo-
graphic image reconstruction is hence given by:

minimizeα
1

2m‖AΠT (I ⊗D)α− b‖22 + µ
q ‖α‖1 + δ2 ψ(ΠT (I ⊗D)α)

subject to α ≥ 0
(2)

where α ∈ Rsq+ . The image prior δ2ψ(·) penalize block artifacts that may arise
in the reconstruction based on non-overlapping blocks, so the function ψ(·)
penalizes jumps across the pixels at the boundary of neighboring patches:

ψ(z) =
1/2

M(M/p− 1) +N(N/q − 1)
‖Lz‖22, (3)

where L is a finite-difference approximation matrix. The denominator is the
total number of pixels along the boundaries of the blocks in the image. The
1-norm regularization of α is known to produce sparse coefficients in terms of
the dictionary [8]. The problem formulation (2) is normalized by the division
of the squared residual norm by the number of measurement m, and division of
the 1-norm constraint by the number of blocks q.

We note that (2) is a convex but non-differentiable optimization problem.
One can solve the optimization problem (2) by means of sparse approximation
methods, see e.g., [24]. We use the software package TFOCS (Templates for
First-Order Conic Solvers) [4].

2.2 The Numerical Setup and a Reference Problem

In Sections 3 and 4 we use numerical examples to demonstrate and quantify
the behavior of our two-stage algorithm when we encounter uncertainty in the
tomographic reconstruction stage such as model assumptions and changes in
the scale and orientation of the object. In particular we explore the influence of
relaxing the representation in the cone defined by the dictionary, and illustrate
the role of scale and orientation of the learned dictionary in the reconstruction
stage.

4 DTU Compute Technical Report-2015-04



S. Soltani Sensitivity in the Dictionary Learning Approach to CT

All experiments are run in MATLAB (R2014a) on a 64-bit Linux system.
In the dictionary learning stage we use a data set of images which are similar
to the ones we wish to reconstruct. The ground-truth or exact image xexact

is not contained in the training set, so that we avoid committing an inverse
crime. All images are gray-level and scaled in the interval [0, 1]. We use an
implementation of the ADMM algorithm presented in [22] to obtain a dictionary
and the reconstruction problems are solved using the software package TFOCS
version 1.3.1 [4].

All test problems represent a parallel-beam tomographic measurement, and
we use the function paralleltomo from the MATLAB package AIR Tools [10]
to compute the matrix A. The number of rays in each projection is given by
Nr = b

√
2Nc. If the total number of projections is Np then the number of rows

in A is m = NrNp while the number of columns is n = MN . In particular we
are interested in scenarios with a small number of projections. The exact data
is generated with the forward model after which we add Gaussian white noise,
i.e., b = Axexact + e.

We consider a reference test image from a high-resolution photo of peppers
with uneven surfaces, which is an interesting test image for studies of the re-
construction of textures. Figure 1 shows the 1600× 1200 high-resolution image
and the exact image of dimensions M ×N = 200× 200.

Figure 1: Left: the high-resolution image from which we obtain the training
image patches. Right: the 200× 200 exact image xexact.

We choose Np = 25 projections corresponding to uniformly distributed an-
gles in [0◦, 180◦]. Hence the matrix A has dimensions m = b

√
2·200c·25 = 7, 075

and n = 2002 = 40, 000, so the problem is highly underdetermined. We use the
relative noise level ‖e‖2/‖Axexact‖2 = 0.01. The quality of a solution x is eval-
uated in terms of the reconstruction error

RE =
‖x− xexact‖2
‖xexact‖2

. (4)

Patch sizes should be sufficiently large to capture the desired structure in the
training images, but the computational cost of the dictionary learning increases
as the patch size increases. A study of the patch size p = P ×Q and the number
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of dictionary elements s in [22] shows that a reasonably large patch size gives
a good trade-off between the computational work and the approximation error
by the dictionary, and that the over-representation factor s/(pr) can be smaller
for larger patches. For these reasons we use square patch sizes of 10 × 10 and
20 × 20 and learn dictionary matrices D(10) and D(20) in D of size 100 × 300
and 400× 800 respectively. An empirical study of the regularization parameter
λ in (1) and (2) suggest that the smallest reconstruction error can be obtained
in D(10) and D(20) for λ ≈ 3.

The parameters µ and δ in the reconstruction problem (2) both play a role
in terms of regularization; to simplify (2) we set τ = µ/q. As described in [22],
the nonnegative constraint in the reconstruction problem plays an extra role
of regularization and therefore the reconstruction is not very sensitive to the
regularization parameters δ and τ , hence they are chosen from a few numeri-
cal experiments such that a solution with the smallest error is obtained. The
reconstruction solutions of problem (2) are shown in Fig. 2, which shows that
while using D(10) leads to a slightly smaller reconstruction error, the solution
obtained with D(20) is also appealing.

δ=13.34

(a) 10 × 10, RE = 0.220

δ=237.14

(b) 20 × 20, RE = 0.226

Figure 2: Reconstructions for different patch sizes, with D ∈ D, λ = 3.16, and
τ = 0.022. RE denotes the reconstruction error (4).

3 Importance of the Representation in the Cone
Defined by the Dictionary

In this section we perform an empirical study of the reconstruction’s robustness
to the assumption in the reconstruction step that the solution is a conic combi-
nation of dictionary elements and its effect on the success of reconstruction.

Searching for a reconstruction in the space spanned by the dictionary, i.e.,
x = (I ⊗D)α, is a very strong prior. Let us construct our tomographic recon-
struction formulation in a different way. We know that a simple/naive tomo-
graphic reconstruction problem for Gaussian noise could be formulated as

min
x

1

2
‖Ax− b‖22 s.t. x ∈ Rn+, (5)

where the non-negativity of the image is imposed as a prior. Due to the ill-
posed nature of the underlying problem, the lack of other priors results in un-
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satisfactory results from solving (5). Now to incorporate our dictionary prior,
we consider Πx ≈ (I ⊗D)α rather than assuming that Πx = (I ⊗D)α, i.e., x
does not have an exact representation in the dictionary and instead it is close
to a solution that lies in the space spanned by the dictionary elements. Thus
we consider the following reconstruction problem:

min
x,α

1

2m
‖Ax− b‖22 + δ2ψ(x) + β‖x−ΠT (I ⊗D)α‖22, (6)

s.t. x ≥ 0, α ≥ 0,

where the function ψ(·) is defined in (3).
For simplicity of this study, we dropped the sparsity prior µ/q‖α‖1 from

(2) in (6). This is motivated by the results from [22] that for sufficiently large
values of δ and patch sizes, the reconstruction error is almost independent of µ
as long as it is small.

The problem (6) can equivalently be written as:

min
x,α

1

2

∥∥∥∥∥∥∥


1√
m
A 0

δ√
κ
L 0√

2βI −
√

2βΠT (I ⊗D)

(xα
)
−

b0
0


∥∥∥∥∥∥∥

2

2

(7)

s.t.

(
x
α

)
≥ 0.

Note the similarity of the (7) to the generic nonnegative least squares problem
formulation (5).

The regularization parameter β in (6) and (7) balances the fitting term and
the regularization induced by the dictionary. The larger the β, the more weight
is given to minimization of ‖x− ΠT (I ⊗D)α‖22, while for small β more weight
is given to fitting the noisy data, resulting in solutions that are less regular (we
obtain the problem (5) and the naive solution when β = 0). We expect that for
sufficiently large β we obtain solutions not far from solutions obtained with the
exact dictionary approach (i.e., from problem (2)).

Consider the tomographic problem from section 2.1 withNp = 25 projections
and 1% additive relative noise. Moreover, we use the 20 by 20 patch dictionary
D(20) ∈ D of size 400× 800.

The reconstructions for various values of β are shown in Fig. 3; they are
similar across the larger values of β, however pronounced artifacts have appeared
for small values of β from over-fitting the noisy data and reducing the weight
on the dictionary prior. As can be see in Fig. 3, with larger values of β and less
weight given to fit the tomographic data, the solution tends to be smooth.

We define the relative dictionary misfit by ‖ΠT (I ⊗D)α− x‖2/‖x‖2. Plots
of the reconstruction error and the relative dictionary misfit are given in Fig.
3. As illustrated by these plots the reconstruction error decreases and then
levels off for large values of β, e.g., RE= 0.2238 for β = 1000. The relative
dictionary misfit exponentially decreases for large values of β, indicating that
the approximation x ≈ ΠT (I ⊗D)α is almost exact for β sufficiently large.

By considering the problem formulation (7) instead of (2) we are introducing
β as a new regularization parameter, which needs further investigations to find
a suitable value for it. In general relaxing Πx = (I ⊗ D)α does not give an
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Figure 3: Reconstruction results from solving (6) with β ∈ [10−10, 1000]. Bot-
tom: Middle: plot of reconstruction error versus β. Right: plot of the relative
dictionary misfit versus β.
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advantage, i.e., approximating a solution by Πx ≈ (I⊗D)α does not particularly
improve the reconstruction quality, and one can safely assume that the solution
is a conic combination of the dictionary elements.

4 Experiments with Scale and Rotation

It maybe crucial to include the acts of rotation and geometric scaling of the
training images when using the learned dictionaries in the tomographic recon-
struction, where there is no guarantee that the training set will have the correct
orientation and geometric scaling. Rotation and scaling are two unknown pa-
rameters that are needed to be considered in the reconstruction formulation and
hence it is advantageous to determine the correct rotation and scaling parame-
ters or obtain a scale and rotation invariant dictionary prior to the reconstruc-
tion process.

Invariance to rotation and scale are desirable in many practical applications.
For example, in pattern recognition the widely used scale-invariant feature trans-
form (SIFT) algorithm successfully detects the training image under changes in
image scale, noise and rotation [19]. The paper [11] presents a face recognition
method which uses features that are extracted from the log-polar images which
are invariant to scale and rotation. Dictionary learning methods that are in-
dependent of orientation and scale, with applications in classification of images
or clustering, have also been recently developed. A shift, scale and rotation
invariant dictionary learning method for multivariate signals was proposed in
[3]. Hierarchical dictionary learning methods for invariant classification have
also been proposed in [2]. These methods learn a dictionary in a log-polar do-
main. In the paper [7] a rotation and scale invariant clustering algorithm using
dictionaries is presented where the image features are extracted in the Radon
transform domain.

To the best of our knowledge, no study has investigated and explored the
role played by scale and rotation in tomographic reconstruction approaches using
dictionaries.

4.1 Sensitivity to Scale

It is possible that the scale of the training images differ from the one we would
like to achieve in the reconstruction process. While the dictionary learning
approaches in image processing problems such as image denoising and image
restoration do not directly suffer from scale issues, it has been explored that with
the existence of multi-scale features in images, using multi-scale dictionaries
would result in superior reconstructions compared to single-scale dictionaries
(see, e.g., [15, 16, 21]). Such dictionaries enforce sparsity at multiple scales.

One idea is to train the dictionary on many possible scaling of the training
images, this approach is computationally expensive in both the learning and
reconstruction stage. Inspired by a multi-scale dictionary, first we investigate
if a generic dictionary of smaller patches (with a fixed patch size) or a learned
dictionary from different scaling of the training images could result in a “better”
reconstruction for an off-scale image.

If the image is represented by a function X then we say X̄ is a scaled copy
of X with scale factor η if X̄(u, v) = X(ηu, ηv).

9 DTU Compute Technical Report-2015-04
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We look at three test examples that we call “peppers”, “matches”, and “bi-
nary” images. The binary test image – a random image with binary pixel values –
is generated by the phantomgallery function from the MATLAB package AIR
Tools [10]. The exact test images of size 200× 200 with the scale factor η = 1.5
are shown in Fig. 4.

Figure 4: The 200 × 200 exact images xexact with scale factor η = 1.5. Left:
peppers, middle: matches, and right: binary test images.

To generate different dictionaries for our tests, we consider a large training
image for each test case and we denote its scale to be the reference scale (scale
1). Knowing that the scale of the training image is different from the image we
want to reconstruct, we can argue that we need a greater over-representation
factor to learn a generic dictionary and be able to represent off-scale images.
Hence for η = 1 we learned dictionaries of 5 × 5 and 10 × 10 patch sizes with
over-representation factors of 10 and 5, respectively, i.e., D(5) ∈ R25×250 and
D(10) ∈ R100×500. We also learn a 20 × 20 patch dictionary of size 400 × 1200
in which the training patches are chosen randomly from training images that
are scaled by a factor of 0.5, 1 and 2. Figure 5 shows examples of 200 × 200
sub-images of our three training test images with scale factors η = 0.5, 1, 2.

The learned multi-scale dictionaries with 20×20 patches and generic dictio-
naries with 10 × 10 patches and λ = 1 are given in Fig. 6. We clearly see the
multi-scale features of the dictionary with 20× 20 patches.

We solve the reconstruction problem (2) using the exact images given in
Fig. 4. We choose Np = 25, projections with uniformly distributed angles in
[0◦, 180◦], Nr = 283 and 1% additive noise level. In Figure 7 we compare our
reconstructions with those computed by the multi-scale dictionary with 20× 20
patches (η = 0.5, 1, 2) and the generic dictionaries of scale factor η = 1 with
5 × 5 and 10 × 10 patch sizes. To be fair, the regularization parameters τ and
δ were chosen to yield an optimal reconstruction in terms of the reconstruction
error.

The reconstructions shown in the right column of Fig. 7 show no particular
advantage in terms of reconstruction errors when using a multi-scale dictionary
(learned from patches of various scale) over a sufficiently large generic dictionary
of smaller patch sizes, with the reconstructions shown in left and middle columns
of Fig. 7.

Now to better understand the role played by the scale parameter η, we solve
the peppers tomographic reconstruction problem from the Section 2.1 with the
exact image given in the Figure 1 and the matches test problem of size 200×200
where the exact image is given in Figure 8. The scale factor of these test images

10 DTU Compute Technical Report-2015-04
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η = 0.5 η = 1 η = 2

Figure 5: Examples of 200 × 200 sub-images of the training test images with
scale factors η = 0.5, 1, 2. Top: peppers, middle: matches, and bottom: binary
test images.

is assumed to be η = 1. We use Np = 25 projections with angles in [0◦, 180◦]
and relative noise level 0.01. We keep the size of the patches 10 × 10, and the
dictionary size s = 500, and we learn 11 new dictionaries of size 100×500 where
the scale factor of the training images η is varied in the interval [0.4, 4]. Plots of
the reconstruction error versus the scale factor of the training patches, which we
learned our dictionaries from, are given in Figure 9. We also plot the structural
similarity index measure (SSIM) [25] for measuring the similarity between the
reconstructed solution and the exact image in Figures 1 and 9. Recall that a
larger SSIM means a better reconstruction.

Figure 9 shows that unless we are looking for a solution with a higher res-
olution than the training images, i.e., if the scale of the training images are
smaller than the desired image that we want to reconstruct, the reconstruction
is not very sensitive to the scaling factor, choosing a generic dictionary and
sufficiently large number of elements. This is no surprise, one cannot expect
to perfectly reconstruct a high resolution image from a dictionary learned from

11 DTU Compute Technical Report-2015-04
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Peppers Matches Binary

Figure 6: Top: Examples of the multi-scale dictionary elements (images) with
20×20 patches and λ = 1. Bottom: Examples of the generic dictionary elements
(images) with scale factor 1, 10× 10 patches and λ = 1.

lower resolution training images since some important details of textures and
structure are missing in those images.

4.2 An Algorithm to Determine Scale

One may think of a preprocessing step to find the appropriate scale of the image
before training the dictionary. The simplest case is downsizing the training
images and learn the dictionary in the right scale or downsizing/shrinking the
dictionary images in the right way. One simple way is to reconstruct a naive
filter back projection (FBP) solution – see, e.g., [17, §2.3]) – and compare the
solution with the training images to find the correct scale. The scale can be
detected by comparing similar single objects in both images; however the limited
tomographic data and presence of noise often result in obtaining unreliable naive
solutions where most textures and image structures have disappeared, which
makes such an estimation difficult.

Another option is to find scales from the sinogram of the 2D unknown image.
Recall that the tomographic data can be represented – for some 2D applications –
as a matrix called the sinogram. We denote the sinogram by the matrix S. The
2D Radon transform is graphically represented as the sinogram, which means
by the intensity values in the coordinate system of variables (t, θ). The Radon
transform of a two variable function X is defined as

RθX(t) =

∫ +∞

−∞
X(t cos θ − s sin θ, t sin θ + s cos θ)ds,

(t, θ) ∈ (−∞,∞)× [0, π).

12 DTU Compute Technical Report-2015-04
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(a) 5 × 5, RE=0.1973 (b) 10 × 10, RE=0.2025 (c) 20 × 20, RE=0.2035

(d) 5 × 5, RE=0.0782 (e) 10 × 10, RE=0.0712 (f) 20 × 20, RE=0.0717

(g) 5 × 5, RE=0.4236 (h) 10 × 10, RE=0.4577 (i) 20 × 20, RE=0.4624

Figure 7: Reconstructions for the generic and multi-scale dictionaries with dif-
ferent patch sizes (Figure 6), using the exact images given in Figure 4. RE
denotes the reconstruction error.

Figure 8: The 200× 200 matches exact image xexact with scale factor η = 1.

13 DTU Compute Technical Report-2015-04



S. Soltani Sensitivity in the Dictionary Learning Approach to CT

0 1 2 3 4
0.215

0.22

0.225

0.23

0.235
Peppers

η

R
E

0 1 2 3 4
0.104

0.106

0.108

0.11

0.112

0.114

0.116

Matches

η

0 1 2 3 4
0.465

0.47

0.475

0.48

0.485

0.49

0.495

0.5
Peppers

η

S
S

IM

0 1 2 3 4
0.62

0.64

0.66

0.68

0.7

Matches

η

Figure 9: Top: left: peppers, and right: matches reconstruction errors versus the
scaling factor of dictionaries. Bottom: left: peppers, and right: matches SSIM
measures versus the scaling factor of dictionaries.

Let X̄ be a scaled copy of X with the scaling factor η. Then the Radon trans-
forms of X̄ and X are related as follows:

RθX̄(t) =

∫ +∞

−∞
X̄(t cos θ − s sin θ, t sin θ + s cos θ)ds (8)

=

∫ +∞

−∞
X(ηt cos θ − ηs sin θ, ηt sin θ + ηs cos θ)ds (9)

=
1

η
Rθx(ηt). (10)

Let us define:
MX = max

t,θ
|RθX(t)|

Then for any pair X̄ and X related by X̄(u, v) = X(ηu, ηv) with η > 0 the
following holds:

MX̄ =
1

η
MX .

Since from (8):

MX̄ = max
t,θ
|RθX̄(t)|

= max
t,θ
|1
η

RθX(ηt)|

=
1

η
max
t,θ
|RθX(ηt)|

=
1

η
max
t,θ
|RθX(ψ)| (if ψ = ηt)

=
1

η
MX .
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This proof is adopted from [7]. In the sinogram matrix S given by the discretized
Radon transform, column indices correspond to discrete values of θ, while row
indices correspond to discrete values of t. Hence MX is the element-wise maxi-
mum of the values in the sinogram matrix.

Consider an unknown image X, where a noisy sinogram of X is available. We
can make an artificial sinogram of a training image with the same tomographic
setting/scenario. We can claim that if the training image Z̄ with a similar
dimension as X is given, then we can compute the relative scale factor η by

η ≈ MX

MZ̄

.

We emphasize that the practical use of this approach relies on a careful imple-
mentation, and use of the Radon transform such that the integrals are correctly
evaluated. Matlab’s radon satisfies this requirement.

For a test problem we use the 200 × 200 resolution Shepp-Logan phantom
in a 800× 800 image grid given in Fig. 10 with η = 1. We compute the matrix
A and the measurement data b with Np = 25 projections, Nr = 1131 rays per
projection and 1% additive noise. We construct Z̄ as reference training images
with scale factors 0.5, 2, 3, and 4 (see Fig. 10). We should here mention that it
is important that all of these images have the same number of pixels, to avoid
scaling issues with the numerical computations. We create an artificial noise-
free sinogram of this training images. The images X, Z̄ and the corresponding
sinograms of our tomographic data are shown in Fig. 10. The number of pixels
in the images given in Fig. 10 is 8002.

We compute MX and MZ̄ from the given sinograms in Fig. 10. We obtain
η = [0.51, 2.05, 3.11, 4.17], which are an approximation to the correct scale
factors [0.5, 2, 3, 4].

Now let us consider our textural 200 × 200 peppers test image with η = 1
given in Fig. 1. We identically consider Z̄ as training images of size 200× 200,
similar to our test image with scale factors 0.5, 2, 3, 4 and compute the sino-
gram matrix S with analogous tomographic scenario, i.e., Np = 25 projections
in [0◦, 180◦], Nr = 283 rays per projection and 1% additive noise (see Fig. 11).
Computing MX and MZ̄ from the given sinograms in Fig. 11 results in approx-
imating the scale factors to be [0.9647, 1.0000, 1.0738, 0.9649, 1.3451], showing
that this method is not suited for images with textures.

We can conclude that this method only works well if the unknown image is
a single object with an unknown scale, and a training image includes a similar
object with a different scale.

Finding the scale factor in 3D tomographic reconstruction where the tomo-
graphic data is available in form of projection images in which a multitude of
details of the shapes and features are already visible, is a fairly straightforward
process. Because the shapes in 2D slices of training images can be compared
with similar shapes in the 2D projection data and the scale factor can be found
with simple mathematical functions from geometry, e.g., we need to find a cor-
responding side in each similar shape in two images where we can measure the
length of both. The ratio between the length of these sides is the scale factor.
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Figure 10: Right: The reference Shepp-logan phantom image X, η = 1 and
training images Z̄ with scale factor η = 0.5, 2, 3, 4. Left: The clean sinograms
(S ∈ RNr×Np) of Z̄ and noisy sinogram of X with Np = 25 projections and
Nr = 1131 rays.
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Figure 11: Right: The reference peppers image X, η = 1 and training images Z̄
with scale factor η = 0.5, 2, 3, 4. Left: The clean sinograms (S ∈ RNr×Np) of Z̄
and noisy sinogram of X with Np = 25 projections and Nr = 283 rays.
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4.3 Sensitivity to Rotation

In this section we analyze the sensitivity of the reconstruction results to a ro-
tation parameter. We use three test images of size 200 × 200 which we call
“peppers”, “binary” and “D53”. The D53 test image is chosen from the nor-
malized brodatz texture database [27]. For the peppers test image we use the
exact image given in Fig. 1. The binary and D53 test images are given in Figure
12. We expect that the peppers test image is invariant to rotation while the
binary and D53 test images, as can be seen in Figure 12, are highly directional
and sensitive to rotation.

Figure 12: The 200× 200 test images for the rotation sensitivity analysis. Left:
the D53 and right: the binary test images.

We choose rotation angles of [5◦, 10◦, 30◦, 45◦, 60◦, 90◦] and we rotate the
test images with the chosen angles. Since the rotated images are not exactly
equivalent to the original test images, for the comparison of the reconstruction
qualities to be fair, we extracted 4 smaller test images of size 50× 50 from each
rotated image. We use a reconstruction scenario with 12 projections and 70 rays
in [0◦, 180◦] and 1% noise. We obtain a reconstruction for each 50×50 image in
every rotation and average over the reconstruction errors and SSIM measures.
Figure 13 shows the plots for the average reconstruction errors (RE) and SSIM
measures versus the rotation angles for our three test images.
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Figure 13: Left: The plots for the average reconstruction errors (RE) and, Right:
SSIM measures versus the rotation degrees for our three test images, where 4
smaller test images of size 50× 50 are extracted from each rotated test image.

The plots in Figure 13 show that while, as expected, no particular sensitivity
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trends for the peppers test image can be detected by changing the rotation
angles, the binary test image and D53 are highly sensitive to rotation and the
worst reconstructions in term of RE and SSIM measures are obtained with the
60◦ and 90◦ rotation.

4.4 An Algorithm to Determine Rotation Angle

If the angle of rotation is known in advance to the reconstruction step, one
can learn the dictionaries with larger patch sizes and then rotate the dictionary
images by the known angle. The pixels that fall outside the boundaries of the
original dictionary image are, in MATLAB, set to 0 and appear as a black
background in the rotated image. However, we can specify a smaller patch
size and exclude the boundary pixels with zero values in the rotated dictionary
elements and extract rotated dictionary images of smaller size than the original
one, to include in the reconstruction step.

If an image is given, the principal direction of the image can be estimated
from the Radon transform of the image [7]. The Radon transform can be used to
detect linear trends in images. For general images, the principal orientation may
be taken as the direction along which the Radon transform has the maximum
variability.

Let vj denote the variance of the sinogram data for the jth projection, i.e.,
the jth column of the sinogram matrix S:

vj =
1

Nr − 1

Nr∑
k=1

(
Sk,j −Mj

)2
, ∀ j = 1, . . . , Np,

where Mj is the mean of each column vector in S,

Mj =
1

Nr

Nr∑
k=1

Sk,j , ∀ j = 1, . . . , Np.

An important observation in [13] was that the sinogram RθX(t) along θ has
larger variations with respect to t for the principal angle with most directional
lines. Hence in our case with angles θj , j = 1, . . . , Np:

Θ = θj? , j? = arg max
j
vj

is the direction with most linear trends along it. Such an estimate is useful for
estimating the presence of rotation in the images.

We can assume that z̃ ∈ Rn is a sub-image from the training image of
a similar size as the unknown image x. We compute the sinogram of z̃ by
generating the tomographic data by Az̃ and representing it as a matrix. We
compute maxθ ṽθ and find Θ̃ to be the angle of most directional trends in the sub-
image z̃. We refer to Θ̃ as the reference angle of the training image. Similarly,
we compute Θ = arg maxθ vθ for the unknown image x. Then the rotation is
approximately the difference between the angles, i.e., Θ− Θ̃.

To test this claim, let us choose 200 × 200 test images – similar to the D53
test image given in Fig. 12 – rotated by [5◦, 10◦, 30◦, 45◦, 60◦, 90◦], making six
test images. We consider a training image with no rotation, i.e., with rotation
angle 0◦ of size 200 × 200. In our first computational test, to find the correct
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rotation angle, we consider a tomographic scenario with a full data set, i.e.,
projections from all possible angles. The Np = 180 projections are sampled
with equidistant steps over [0◦, 180◦], moreover we consider Nr = 283 and 1%
noise in the data.

Figure 14 shows the variance plots of the sinograms of our training image
and rotated test images with different orientations. The sinogram of the refer-
ence training image with no rotation is noise free, while noise is present in the
sinograms of the rotated test images. Note that the variance of the projections
has two local maxima at 90◦ and 179◦ for the reference training image with
no rotation. The local maximum at 179◦ is narrower compared with the local
maximum at 90◦, because there are more straight lines along 179◦. Hence 179◦

is the reference orientation.

0 50 100 150

1500

2000

2500

3000

3500

θ

v
θ

(a) 0◦ rotation

0 50 100 150

1500

2000

2500

3000

3500

θ

v
θ

(b) 5◦ rotation

0 50 100 150

1500

2000

2500

3000

3500

θ
v

θ

(c) 10◦ rotation

0 50 100 150

1500

2000

2500

3000

3500

θ

v
θ

(d) 30◦ rotation

0 50 100 150

1500

2000

2500

3000

3500

θ

v
θ

(e) 45◦ rotation

0 50 100 150

1500

2000

2500

3000

3500

θ

v
θ

(f) 60◦ rotation

0 50 100 150

1500

2000

2500

3000

3500

θ

v
θ

(g) 90◦ rotation

Figure 14: The variance of sinograms from the 200 × 200 D53 six test images
with different rotation angles with full tomographic data comparing to a similar
training image with no rotation of 200 × 200 size. Note how the maximum in
the variance plots changes as the rotation degrees varies.

Given the plots in Fig. 14, we calculate the rotation degrees by finding the
angle with the maximum variance in each plot, the difference to the original
orientation in the reference training image gives the correct rotation. The esti-
mations based on the full tomographic data are accurate and we obtain all the
rotation angles, i.e., 5◦, 10◦, 30◦, 45◦, 60◦, and 90◦.
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We now consider tomographic data with data from few projections of the
same directional D53 images, we use 50 projections with uniform angular sam-
pling in [0◦, 180◦] and with relative noise level 1%, i.e., the same noise level as
above. The variances of the sinograms of the training image and the test images
with rotational angles [5◦, 10◦, 30◦, 45◦, 60◦, 90◦] are given in Figure 15.
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Figure 15: The variance of sinograms from the six 200× 200 D53 test images
with different rotation angles with limited tomographic data compared to a
similar training image with no rotation of 200×200 size. Note how the maximum
in the variance plots changes as the rotation degrees varies. With the limited
tomographic data, the maximum disappears when rotating the reference image
with 10◦.

The variance plots in Fig. 15 indicate that with limited tomographic data
where the projection data along some directions are missing and the information
of the variances along all the directions are not attainable, we may not be able
to find the correct orientation of the directional textures in the image. Note
how the peak in the variance plot with the 10◦ rotation is missing. We find the
rotation angles to be

[3.67◦, 180◦, 29.39◦, 44.08◦, 58.78◦, 88.16◦].

We observe that the method fails to find the correct orientation for the image
with 10◦ rotation. One possible way to compensate for the missing projection
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data and construct new data points for these missing projections from the known
ones, is to use interpolation of the tomographic data in the sinogram. Using
linear 2D interpolation for gridded data, we approximate the rotated angles as
before, where we obtain [4◦, 0◦, 29◦, 44◦, 59◦, 88◦] as the rotations. Although
we still can not achieve the correct orientation for the image with 10◦ rotation,
in the presence of noise we can still approximate other rotation angles with a
small error.

To complete this picture, we consider a tomographic problem where an exact
image is given in Fig. 16. This exact image is rotated by 30◦ from the reference
training image. We consider the same tomographic scenario with 50 projections
in [0◦, 180◦] and 1% noise. By the above method for the noisy sinogram we
approximate the rotation angle to be 29◦. A dictionary from 20 × 20 patches
from the training image, i.e., D ∈ R400×800, is computed; each dictionary image
is rotated by 29◦ and then 10 × 10 dictionary elements are extracted from the
rotated 20 × 20 dictionary basis images, and then 300 dictionary elements are
randomly chosen from these 800 rotated dictionary images. Now a new rotated
dictionary such that D̄ ∈ R100×300 is at hand. We reconstruct the image using
the rotated dictionary D̄ and compare it with a reconstruction obtained using
10 × 10 dictionary elements and s = 300, obtained from the reference training
image with 0◦ rotation. The results are illustrated in Fig. 16 which shows
clearly how using a correctly rotated dictionary can improve the reconstruction
significantly.

(a) xexact (b) RE= 0.3354 (c) RE= 0.2507

Figure 16: Left: The 30◦ rotated exact image. Middle: The tomographic recon-
struction using a dictionary obtained from our reference training image without
any knowledge of rotation. Right: The reconstructed solution with a rotated dic-
tionary where the degree of rotation is approximated from the noisy sinogram
of the tomographic data.

5 Conclusions

This work is an extension of the work initialized in [22]. Our approach is sim-
ilar to the work in [22] where we discussed the use of training images as prior
information in the tomographic image reconstruction problem in a two-stage
framework, while here, we continued this work by numerically investigating the
sensitivity of the reconstruction formulation to the representation by the dictio-
nary as well as inconsistency in scale and rotation of the unknown image to the
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training images. In addition, we suggested algorithms to determine the correct
scale and rotation degree of the unknown image from the tomographic sinogram.
Numerical examples showed that both methods can be advantageous in obtain-
ing the correct scale and rotation of the unknown image from the measurement
data, however future work concerning approximating the correct scale of un-
known textural images from the given sinogram where the proposed method
fails should be considered.
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