144,696 research outputs found

    Adaptive Random Walks on the Class of Web Graph

    Full text link
    We study random walk with adaptive move strategies on a class of directed graphs with variable wiring diagram. The graphs are grown from the evolution rules compatible with the dynamics of the world-wide Web [Tadi\'c, Physica A {\bf 293}, 273 (2001)], and are characterized by a pair of power-law distributions of out- and in-degree for each value of the parameter β\beta, which measures the degree of rewiring in the graph. The walker adapts its move strategy according to locally available information both on out-degree of the visited node and in-degree of target node. A standard random walk, on the other hand, uses the out-degree only. We compute the distribution of connected subgraphs visited by an ensemble of walkers, the average access time and survival probability of the walks. We discuss these properties of the walk dynamics relative to the changes in the global graph structure when the control parameter β\beta is varied. For β≥3\beta \geq 3, corresponding to the world-wide Web, the access time of the walk to a given level of hierarchy on the graph is much shorter compared to the standard random walk on the same graph. By reducing the amount of rewiring towards rigidity limit \beta \to \beta_c \lesss im 0.1, corresponding to the range of naturally occurring biochemical networks, the survival probability of adaptive and standard random walk become increasingly similar. The adaptive random walk can be used as an efficient message-passing algorithm on this class of graphs for large degree of rewiring.Comment: 8 pages, including 7 figures; to appear in Europ. Phys. Journal

    Rough set theory applied to pattern recognition of partial discharge in noise affected cable data

    Get PDF
    This paper presents an effective, Rough Set (RS) based, pattern recognition method for rejecting interference signals and recognising Partial Discharge (PD) signals from different sources. Firstly, RS theory is presented in terms of Information System, Lower and Upper Approximation, Signal Discretisation, Attribute Reduction and a flowchart of the RS based pattern recognition method. Secondly, PD testing of five types of artificial defect in ethylene-propylene rubber (EPR) cable is carried out and data pre-processing and feature extraction are employed to separate PD and interference signals. Thirdly, the RS based PD signal recognition method is applied to 4000 samples and is proven to have 99% accuracy. Fourthly, the RS based PD recognition method is applied to signals from five different sources and an accuracy of more than 93% is attained when a combination of signal discretisation and attribute reduction methods are applied. Finally, Back-propagation Neural Network (BPNN) and Support Vector Machine (SVM) methods are studied and compared with the developed method. The proposed RS method is proven to have higher accuracy than SVM and BPNN and can be applied for on-line PD monitoring of cable systems after training with valid sample data

    Lazy Model Expansion: Interleaving Grounding with Search

    Full text link
    Finding satisfying assignments for the variables involved in a set of constraints can be cast as a (bounded) model generation problem: search for (bounded) models of a theory in some logic. The state-of-the-art approach for bounded model generation for rich knowledge representation languages, like ASP, FO(.) and Zinc, is ground-and-solve: reduce the theory to a ground or propositional one and apply a search algorithm to the resulting theory. An important bottleneck is the blowup of the size of the theory caused by the reduction phase. Lazily grounding the theory during search is a way to overcome this bottleneck. We present a theoretical framework and an implementation in the context of the FO(.) knowledge representation language. Instead of grounding all parts of a theory, justifications are derived for some parts of it. Given a partial assignment for the grounded part of the theory and valid justifications for the formulas of the non-grounded part, the justifications provide a recipe to construct a complete assignment that satisfies the non-grounded part. When a justification for a particular formula becomes invalid during search, a new one is derived; if that fails, the formula is split in a part to be grounded and a part that can be justified. The theoretical framework captures existing approaches for tackling the grounding bottleneck such as lazy clause generation and grounding-on-the-fly, and presents a generalization of the 2-watched literal scheme. We present an algorithm for lazy model expansion and integrate it in a model generator for FO(ID), a language extending first-order logic with inductive definitions. The algorithm is implemented as part of the state-of-the-art FO(ID) Knowledge-Base System IDP. Experimental results illustrate the power and generality of the approach
    • …
    corecore