5 research outputs found

    Plasmodial enzymes in metabolic pathways as therapeutic targets and contemporary strategies to discover new antimalarial drugs: a review

    Get PDF
    Malaria continues to pose imminent threat to the world population, as the mortality rate associated with this disease remains high. Current treatment relies on antimalarial drugs such as Artemisinin Combination Therapy (ACT) are still effective throughout the world except in some places, where ACT-resistance has been reported, thus necessitating novel approaches to develop new anti-malarial therapy. In the light of emerging translational research, several plasmodial targets, mostly proteins or enzymes located in the parasiteโ€™s unique organelles, have been extensively explored as potential candidates for the development of novel antimalarial drugs. By targeting the metabolic pathways in mitochondrion, apicoplast or cytoplasm of Plasmodium, the possibility to discover new drugs is tremendous, as they have potentials as antimalarial therapeutic targets. This literature review summarizes pertinent information on plasmodial targets, especially enzymes involved in specific metabolic pathways, and the strategies used to discover new antimalarial drugs. ยฉ 2019, University of Malaya. All rights reserved

    In silico screening for Plasmodium falciparum enoyl-ACP reductase inhibitors.

    No full text
    The need for novel therapeutics against Plasmodium falciparum is urgent due to recent emergence of multi-drug resistant malaria parasites. Since fatty acids are essential for both the liver and blood stages of the malarial parasite, targeting fatty acid biosynthesis is a promising strategy for combatting P. falciparum. We present a combined computational and experimental study to identify novel inhibitors of enoyl-acyl carrier protein reductase (PfENR) in the fatty acid biosynthesis pathway. A small-molecule database from ChemBridge was docked into three distinct PfENR crystal structures that provide multiple receptor conformations. Two different docking algorithms were used to generate a consensus score in order to rank possible small molecule hits. Our studies led to the identification of five low-micromolar pyrimidine dione inhibitors of PfENR
    corecore