3,810 research outputs found

    Computational Resources to Filter Gravitational Wave Data with P-approximant Templates

    Get PDF
    The prior knowledge of the gravitational waveform from compact binary systems makes matched filtering an attractive detection strategy. This detection method involves the filtering of the detector output with a set of theoretical waveforms or templates. One of the most important factors in this strategy is knowing how many templates are needed in order to reduce the loss of possible signals. In this study we calculate the number of templates and computational power needed for a one-step search for gravitational waves from inspiralling binary systems. We build on previous works by firstly expanding the post-Newtonian waveforms to 2.5-PN order and secondly, for the first time, calculating the number of templates needed when using P-approximant waveforms. The analysis is carried out for the four main first-generation interferometers, LIGO, GEO600, VIRGO and TAMA. As well as template number, we also calculate the computational cost of generating banks of templates for filtering GW data. We carry out the calculations for two initial conditions. In the first case we assume a minimum individual mass of 1M1 M_{\odot} and in the second, we assume a minimum individual mass of 5M5 M_{\odot}. We find that, in general, we need more P-approximant templates to carry out a search than if we use standard PN templates. This increase varies according to the order of PN-approximation, but can be as high as a factor of 3 and is explained by the smaller span of the P-approximant templates as we go to higher masses. The promising outcome is that for 2-PN templates the increase is small and is outweighed by the known robustness of the 2-PN P-approximant templates.Comment: 17 pages, 8 figures, Submitted to Class.Quant.Gra

    The Cauchy convergence of T and P-approximant templates for test-mass Kerr binary systems

    Full text link
    In this work we examine the Cauchy convergence of both post-Newtonian (T-approximant) and re-summed post-Newtonian (P-approximant) templates for the case of a test-mass orbiting a Kerr black hole along a circular equatorial orbit. The Cauchy criterion demands that the inner product between the nn and n+1n+1 order approximation approaches unity, as we increase the order of approximation. In previous works, it has been shown that we achieve greater fitting factors and better parameter estimation using the P-approximant templates for both Schwarzschild and Kerr black holes. In this work, we show that the P-approximant templates also display a faster Cauchy convergence making them a superior template to the standard post-Newtonian templates.Comment: 5 pages, Replaced with shortened published versio

    Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors

    Get PDF
    The two-body dynamics in general relativity has been solved perturbatively using the post-Newtonian (PN) approximation. The evolution of the orbital phase and the emitted gravitational radiation are now known to a rather high order up to O(v^8), v being the characteristic velocity of the binary. The orbital evolution, however, cannot be specified uniquely due to the inherent freedom in the choice of parameter used in the PN expansion as well as the method pursued in solving the relevant differential equations. The goal of this paper is to determine the (dis)agreement between different PN waveform families in the context of initial and advanced gravitational-wave detectors. The waveforms employed in our analysis are those that are currently used by Initial LIGO/Virgo, that is the time-domain PN models TaylorT1, TaylorT2, TaylorT3, TaylorT4 and TaylorEt, the effective one-body (EOB) model, and the Fourier-domain representation TaylorF2. We examine the overlaps of these models with one another and with the prototype effective one-body model (calibrated to numerical relativity simulations, as currently used by initial LIGO) for a number of different binaries at 2PN, 3PN and 3.5PN orders to quantify their differences and to help us decide whether there exist preferred families that are the most appropriate as search templates. We conclude that as long as the total mass remains less than a certain upper limit M_crit, all template families at 3.5PN order (except TaylorT3 and TaylorEt) are equally good for the purpose of detection. The value of M_crit is found to be ~ 12M_Sun for Initial, Enhanced and Advanced LIGO. From a purely computational point of view we recommend that 3.5PN TaylorF2 be used below Mcrit and EOB calibrated to numerical relativity simulations be used for total binary mass M > Mcrit.Comment: 27 pages, 8 figures, 4 tables, submitted to PR

    Length requirements for numerical-relativity waveforms

    Get PDF
    One way to produce complete inspiral-merger-ringdown gravitational waveforms from black-hole-binary systems is to connect post-Newtonian (PN) and numerical-relativity (NR) results to create "hybrid" waveforms. Hybrid waveforms are central to the construction of some phenomenological models for GW search templates, and for tests of GW search pipelines. The dominant error source in hybrid waveforms arises from the PN contribution, and can be reduced by increasing the number of NR GW cycles that are included in the hybrid. Hybrid waveforms are considered sufficiently accurate for GW detection if their mismatch error is below 3% (i.e., a fitting factor about 0.97). We address the question of the length requirements of NR waveforms such that the final hybrid waveforms meet this requirement, considering nonspinning binaries with q = M_2/M_1 \in [1,4] and equal-mass binaries with \chi = S_i/M_i^2 \in [-0.5,0.5]. We conclude that for the cases we study simulations must contain between three (in the equal-mass nonspinning case) and ten (the \chi = 0.5 case) orbits before merger, but there is also evidence that these are the regions of parameter space for which the least number of cycles will be needed.Comment: Corrected some typo

    Semiclassical Quantization by Pade Approximant to Periodic Orbit Sums

    Full text link
    Periodic orbit quantization requires an analytic continuation of non-convergent semiclassical trace formulae. We propose a method for semiclassical quantization based upon the Pade approximant to the periodic orbit sums. The Pade approximant allows the re-summation of the typically exponentially divergent periodic orbit terms. The technique does not depend on the existence of a symbolic dynamics and can be applied to both bound and open systems. Numerical results are presented for two different systems with chaotic and regular classical dynamics, viz. the three-disk scattering system and the circle billiard.Comment: 7 pages, 3 figures, submitted to Europhys. Let

    How Many Templates for GW Chirp Detection? The Minimal-Match Issue Revisited

    Full text link
    In a recent paper dealing with maximum likelihood detection of gravitational wave chirps from coalescing binaries with unknown parameters we introduced an accurate representation of the no-signal cumulative distribution of the supremum of the whole correlator bank. This result can be used to derive a refined estimate of the number of templates yielding the best tradeoff between detector's performance (in terms of lost signals among those potentially detectable) and computational burden.Comment: submitted to Class. Quantum Grav. Typing error in eq. (4.8) fixed; figure replaced in version

    A Comparison of search templates for gravitational waves from binary inspiral

    Get PDF
    We compare the performances of the templates defined by three different types of approaches: traditional post-Newtonian templates (Taylor-approximants), ``resummed'' post-Newtonian templates assuming the adiabatic approximation and stopping before the plunge (P-approximants), and further ``resummed'' post-Newtonian templates going beyond the adiabatic approximation and incorporating the plunge with its transition from the inspiral (Effective-one-body approximants). The signal to noise ratio is significantly enhanced (mainly because of the inclusion of the plunge signal) by using these new effective-one-body templates relative to the usual post-Newtonian ones for binary masses greater than 30M 30 M_\odot, the most likely sources for initial laser interferometers. Independently of the question of the plunge signal, the comparison of the various templates confirms the usefulness of using resummation methods. The paper also summarizes the key elements of the construction of various templates and thus can serve as a resource for those involved in writing inspiral search software.Comment: eta-dependent tail terms corrected after related errata by Blanchet (2005
    corecore