54,181 research outputs found

    Automated Game Design Learning

    Full text link
    While general game playing is an active field of research, the learning of game design has tended to be either a secondary goal of such research or it has been solely the domain of humans. We propose a field of research, Automated Game Design Learning (AGDL), with the direct purpose of learning game designs directly through interaction with games in the mode that most people experience games: via play. We detail existing work that touches the edges of this field, describe current successful projects in AGDL and the theoretical foundations that enable them, point to promising applications enabled by AGDL, and discuss next steps for this exciting area of study. The key moves of AGDL are to use game programs as the ultimate source of truth about their own design, and to make these design properties available to other systems and avenues of inquiry.Comment: 8 pages, 2 figures. Accepted for CIG 201

    Sciduction: Combining Induction, Deduction, and Structure for Verification and Synthesis

    Full text link
    Even with impressive advances in automated formal methods, certain problems in system verification and synthesis remain challenging. Examples include the verification of quantitative properties of software involving constraints on timing and energy consumption, and the automatic synthesis of systems from specifications. The major challenges include environment modeling, incompleteness in specifications, and the complexity of underlying decision problems. This position paper proposes sciduction, an approach to tackle these challenges by integrating inductive inference, deductive reasoning, and structure hypotheses. Deductive reasoning, which leads from general rules or concepts to conclusions about specific problem instances, includes techniques such as logical inference and constraint solving. Inductive inference, which generalizes from specific instances to yield a concept, includes algorithmic learning from examples. Structure hypotheses are used to define the class of artifacts, such as invariants or program fragments, generated during verification or synthesis. Sciduction constrains inductive and deductive reasoning using structure hypotheses, and actively combines inductive and deductive reasoning: for instance, deductive techniques generate examples for learning, and inductive reasoning is used to guide the deductive engines. We illustrate this approach with three applications: (i) timing analysis of software; (ii) synthesis of loop-free programs, and (iii) controller synthesis for hybrid systems. Some future applications are also discussed

    Evolving web-based test automation into agile business specifications

    Get PDF
    Usually, test automation scripts for a web application directly mirror the actions that the tester carries out in the browser, but they tend to be verbose and repetitive, making them expensive to maintain and ineffective in an agile setting. Our research has focussed on providing tool-support for business-level, example-based specifications that are mapped to the browser level for automatic verification. We provide refactoring support for the evolution of existing browser-level tests into business-level specifications. As resulting business rule tables may be incomplete, redundant or contradictory, our tool provides feedback on coverage

    SPIDA: Abstracting and generalizing layout design cases

    Get PDF
    Abstraction and generalization of layout design cases generate new knowledge that is more widely applicable to use than specific design cases. The abstraction and generalization of design cases into hierarchical levels of abstractions provide the designer with the flexibility to apply any level of abstract and generalized knowledge for a new layout design problem. Existing case-based layout learning (CBLL) systems abstract and generalize cases into single levels of abstractions, but not into a hierarchy. In this paper, we propose a new approach, termed customized viewpoint - spatial (CV-S), which supports the generalization and abstraction of spatial layouts into hierarchies along with a supporting system, SPIDA (SPatial Intelligent Design Assistant)

    The REVERE project:Experiments with the application of probabilistic NLP to systems engineering

    Get PDF
    Despite natural languageā€™s well-documented shortcomings as a medium for precise technical description, its use in software-intensive systems engineering remains inescapable. This poses many problems for engineers who must derive problem understanding and synthesise precise solution descriptions from free text. This is true both for the largely unstructured textual descriptions from which system requirements are derived, and for more formal documents, such as standards, which impose requirements on system development processes. This paper describes experiments that we have carried out in the REVERE1 project to investigate the use of probabilistic natural language processing techniques to provide systems engineering support

    Model checking embedded system designs

    Get PDF
    We survey the basic principles behind the application of model checking to controller verification and synthesis. A promising development is the area of guided model checking, in which the state space search strategy of the model checking algorithm can be influenced to visit more interesting sets of states first. In particular, we discuss how model checking can be combined with heuristic cost functions to guide search strategies. Finally, we list a number of current research developments, especially in the area of reachability analysis for optimal control and related issues
    • ā€¦
    corecore