37,147 research outputs found
In Silico methods for the study of the interactions between drugs and their protein targets
In silico methods are a set of theoretical computer tools that analyze and correlate a series of physical, chemical and mathematical parameters with the purpose of studying the behavior of drugs and their protein therapeutic targets. These studies relate experimental data and theoretical data of interactions. drug-protein based on molecular descriptors. Among these methods, the most relevant are molecular docking, which relates the molecular dynamics between drug-protein structures, and the structure-activity relationship or QSAR method, which correlates physicochemical, electronic, and steric parameters of drugs with their biological activity. The mathematical results obtained through these methods allow generating a series of predictions of theoretical-experimental relationship
Integration and mining of malaria molecular, functional and pharmacological data: how far are we from a chemogenomic knowledge space?
The organization and mining of malaria genomic and post-genomic data is
highly motivated by the necessity to predict and characterize new biological
targets and new drugs. Biological targets are sought in a biological space
designed from the genomic data from Plasmodium falciparum, but using also the
millions of genomic data from other species. Drug candidates are sought in a
chemical space containing the millions of small molecules stored in public and
private chemolibraries. Data management should therefore be as reliable and
versatile as possible. In this context, we examined five aspects of the
organization and mining of malaria genomic and post-genomic data: 1) the
comparison of protein sequences including compositionally atypical malaria
sequences, 2) the high throughput reconstruction of molecular phylogenies, 3)
the representation of biological processes particularly metabolic pathways, 4)
the versatile methods to integrate genomic data, biological representations and
functional profiling obtained from X-omic experiments after drug treatments and
5) the determination and prediction of protein structures and their molecular
docking with drug candidate structures. Progresses toward a grid-enabled
chemogenomic knowledge space are discussed.Comment: 43 pages, 4 figures, to appear in Malaria Journa
Exploring Protein-Protein Interactions as Drug Targets for Anti-cancer Therapy with In Silico Workflows
We describe a computational protocol to aid the design of small molecule and peptide drugs that target protein-protein interactions, particularly for anti-cancer therapy. To achieve this goal, we explore multiple strategies, including finding binding hot spots, incorporating chemical similarity and bioactivity data, and sampling similar binding sites from homologous protein complexes. We demonstrate how to combine existing interdisciplinary resources with examples of semi-automated workflows. Finally, we discuss several major problems, including the occurrence of drug-resistant mutations, drug promiscuity, and the design of dual-effect inhibitors.Fil: Goncearenco, Alexander. National Institutes of Health; Estados UnidosFil: Li, Minghui. Soochow University; China. National Institutes of Health; Estados UnidosFil: Simonetti, Franco Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Shoemaker, Benjamin A. National Institutes of Health; Estados UnidosFil: Panchenko, Anna R. National Institutes of Health; Estados Unido
The efficiency of multi-target drugs: the network approach might help drug design
Despite considerable progress in genome- and proteome-based high-throughput
screening methods and rational drug design, the number of successful single
target drugs did not increase appreciably during the past decade. Network
models suggest that partial inhibition of a surprisingly small number of
targets can be more efficient than the complete inhibition of a single target.
This and the success stories of multi-target drugs and combinatorial therapies
led us to suggest that systematic drug design strategies should be directed
against multiple targets. We propose that the final effect of partial, but
multiple drug actions might often surpass that of complete drug action at a
single target. The future success of this novel drug design paradigm will
depend not only on a new generation of computer models to identify the correct
multiple hits and their multi-fitting, low-affinity drug candidates but also on
more efficient in vivo testing.Comment: 6 pages, 2 figures, 1 box, 38 reference
An integrative in-silico approach for therapeutic target identification in the human pathogen Corynebacterium diphtheriae
Corynebacterium diphtheriae (Cd) is a Gram-positive human pathogen responsible for diphtheria infection and once regarded for high mortalities worldwide. The fatality gradually decreased with improved living standards and further alleviated when many immunization programs were introduced. However, numerous drug-resistant strains emerged recently that consequently decreased the efficacy of current therapeutics and vaccines, thereby obliging the scientific community to start investigating new therapeutic targets in pathogenic microorganisms. In this study, our contributions include the prediction of modelome of 13 C. diphtheriae strains, using the MHOLline workflow. A set of 463 conserved proteins were identified by combining the results of pangenomics based core-genome and core-modelome analyses. Further, using subtractive proteomics and modelomics approaches for target identification, a set of 23 proteins was selected as essential for the bacteria. Considering human as a host, eight of these proteins (glpX, nusB, rpsH, hisE, smpB, bioB, DIP1084, and DIP0983) were considered as essential and non-host homologs, and have been subjected to virtual screening using four different compound libraries (extracted from the ZINC database, plant-derived natural compounds and Di-terpenoid Iso-steviol derivatives). The proposed ligand molecules showed favorable interactions, lowered energy values and high complementarity with the predicted targets. Our proposed approach expedites the selection of C. diphtheriaeputative proteins for broad-spectrum development of novel drugs and vaccines, owing to the fact that some of these targets have already been identified and validated in other organisms
Quantitative assessment of cell fate decision between autophagy and apoptosis
Abstract Autophagy and apoptosis are cellular processes that regulate cell survival and death, the former by eliminating dysfunctional components in the cell, the latter by programmed cell death. Stress signals can induce either process, and it is unclear how cells ‘assess’ cellular damage and make a ‘life’ or ‘death’ decision upon activating autophagy or apoptosis. A computational model of coupled apoptosis and autophagy is built here to analyze the underlying signaling and regulatory network dynamics. The model explains the experimentally observed differential deployment of autophagy and apoptosis in response to various stress signals. Autophagic response dominates at low-to-moderate stress; whereas the response shifts from autophagy (graded activation) to apoptosis (switch-like activation) with increasing stress intensity. The model reveals that cytoplasmic Ca2+ acts as a rheostat that fine-tunes autophagic and apoptotic responses. A G-protein signaling-mediated feedback loop maintains cytoplasmic Ca2+ level, which in turn governs autophagic response through an AMP-activated protein kinase (AMPK)-mediated feedforward loop. Ca2+/calmodulin-dependent kinase kinase β (CaMKKβ) emerges as a determinant of the competing roles of cytoplasmic Ca2+ in autophagy regulation. The study demonstrates that the proposed model can be advantageously used for interrogating cell regulation events and developing pharmacological strategies for modulating cell decisions
Systems approaches and algorithms for discovery of combinatorial therapies
Effective therapy of complex diseases requires control of highly non-linear
complex networks that remain incompletely characterized. In particular, drug
intervention can be seen as control of signaling in cellular networks.
Identification of control parameters presents an extreme challenge due to the
combinatorial explosion of control possibilities in combination therapy and to
the incomplete knowledge of the systems biology of cells. In this review paper
we describe the main current and proposed approaches to the design of
combinatorial therapies, including the empirical methods used now by clinicians
and alternative approaches suggested recently by several authors. New
approaches for designing combinations arising from systems biology are
described. We discuss in special detail the design of algorithms that identify
optimal control parameters in cellular networks based on a quantitative
characterization of control landscapes, maximizing utilization of incomplete
knowledge of the state and structure of intracellular networks. The use of new
technology for high-throughput measurements is key to these new approaches to
combination therapy and essential for the characterization of control
landscapes and implementation of the algorithms. Combinatorial optimization in
medical therapy is also compared with the combinatorial optimization of
engineering and materials science and similarities and differences are
delineated.Comment: 25 page
In silico identification of essential proteins in Corynebacterium pseudotuberculosis based on protein-protein interaction networks
Background Corynebacterium pseudotuberculosis (Cp) is a gram-positive bacterium that is classified into equi and ovis serovars. The serovar ovis is the etiological agent of caseous lymphadenitis, a chronic infection affecting sheep and goats, causing economic losses due to carcass condemnation and decreased production of meat, wool, and milk. Current diagnosis or treatment protocols are not fully effective and, thus, require further research of Cp pathogenesis. Results Here, we mapped known protein-protein interactions (PPI) from various species to nine Cp strains to reconstruct parts of the potential Cp interactome and to identify potentially essential proteins serving as putative drug targets. On average, we predict 16,669 interactions for each of the nine strains (with 15,495 interactions shared among all strains). An in silico sanity check suggests that the potential networks were not formed by spurious interactions but have a strong biological bias. With the inferred Cp networks we identify 181 essential proteins, among which 41 are non-host homologous. Conclusions The list of candidate interactions of the Cp strains lay the basis for developing novel hypotheses and designing according wet-lab studies. The non-host homologous essential proteins are attractive targets for therapeutic and diagnostic proposes. They allow for searching of small molecule inhibitors of binding interactions enabling modern drug discovery. Overall, the predicted Cp PPI networks form a valuable and versatile tool for researchers interested in Corynebacterium pseudotuberculosis
- …
