123 research outputs found

    Improving the use of equational constraints in cylindrical algebraic decomposition

    Get PDF
    When building a cylindrical algebraic decomposition (CAD) savings can be made in the presence of an equational constraint (EC): an equation logically implied by a formula. The present paper is concerned with how to use multiple ECs, propagating those in the input throughout the projection set. We improve on the approach of McCallum in ISSAC 2001 by using the reduced projection theory to make savings in the lifting phase (both to the polynomials we lift with and the cells lifted over). We demonstrate the benefits with worked examples and a complexity analysis

    Formulating problems for real algebraic geometry

    Get PDF
    We discuss issues of problem formulation for algorithms in real algebraic geometry, focussing on quantifier elimination by cylindrical algebraic decomposition. We recall how the variable ordering used can have a profound effect on both performance and output and summarise what may be done to assist with this choice. We then survey other questions of problem formulation and algorithm optimisation that have become pertinent following advances in CAD theory, including both work that is already published and work that is currently underway. With implementations now in reach of real world applications and new theory meaning algorithms are far more sensitive to the input, our thesis is that intelligently formulating problems for algorithms, and indeed choosing the correct algorithm variant for a problem, is key to improving the practical use of both quantifier elimination and symbolic real algebraic geometry in general.Comment: To be presented at The "Encuentros de \'Algebra Computacional y Aplicaciones, EACA 2014" (Meetings on Computer Algebra and Applications) in Barcelon

    Validity proof of Lazard's method for CAD construction

    Full text link
    In 1994 Lazard proposed an improved method for cylindrical algebraic decomposition (CAD). The method comprised a simplified projection operation together with a generalized cell lifting (that is, stack construction) technique. For the proof of the method's validity Lazard introduced a new notion of valuation of a multivariate polynomial at a point. However a gap in one of the key supporting results for his proof was subsequently noticed. In the present paper we provide a complete validity proof of Lazard's method. Our proof is based on the classical parametrized version of Puiseux's theorem and basic properties of Lazard's valuation. This result is significant because Lazard's method can be applied to any finite family of polynomials, without any assumption on the system of coordinates. It therefore has wider applicability and may be more efficient than other projection and lifting schemes for CAD.Comment: 21 page

    The Potential and Challenges of CAD with Equational Constraints for SC-Square

    Get PDF
    Cylindrical algebraic decomposition (CAD) is a core algorithm within Symbolic Computation, particularly for quantifier elimination over the reals and polynomial systems solving more generally. It is now finding increased application as a decision procedure for Satisfiability Modulo Theories (SMT) solvers when working with non-linear real arithmetic. We discuss the potentials from increased focus on the logical structure of the input brought by the SMT applications and SC-Square project, particularly the presence of equational constraints. We also highlight the challenges for exploiting these: primitivity restrictions, well-orientedness questions, and the prospect of incrementality.Comment: Accepted into proceedings of MACIS 201

    Iterated Resultants in CAD

    Get PDF

    Iterated Resultants in CAD

    Full text link
    Cylindrical Algebraic Decomposition (CAD) by projection and lifting requires many iterated univariate resultants. It has been observed that these often factor, but to date this has not been used to optimise implementations of CAD. We continue the investigation into such factorisations, writing in the specific context of SC-Square.Comment: Presented at the 2023 SC-Square Worksho

    Iterated Resultants in CAD

    Get PDF

    Need Polynomial Systems Be Doubly-Exponential?

    Get PDF
    Polynomial Systems, or at least their algorithms, have the reputation of being doubly-exponential in the number of variables [Mayr and Mayer, 1982], [Davenport and Heintz, 1988]. Nevertheless, the Bezout bound tells us that that number of zeros of a zero-dimensional system is singly-exponential in the number of variables. How should this contradiction be reconciled? We first note that [Mayr and Ritscher, 2013] shows that the doubly exponential nature of Gr\"{o}bner bases is with respect to the dimension of the ideal, not the number of variables. This inspires us to consider what can be done for Cylindrical Algebraic Decomposition which produces a doubly-exponential number of polynomials of doubly-exponential degree. We review work from ISSAC 2015 which showed the number of polynomials could be restricted to doubly-exponential in the (complex) dimension using McCallum's theory of reduced projection in the presence of equational constraints. We then discuss preliminary results showing the same for the degree of those polynomials. The results are under primitivity assumptions whose importance we illustrate.Comment: Extended Abstract for ICMS 2016 Presentation. arXiv admin note: text overlap with arXiv:1605.0249

    Curtains in Cylindrical Algebraic Decomposition

    Get PDF

    The Complexity of Cylindrical Algebraic Decomposition with Respect to Polynomial Degree

    Get PDF
    Cylindrical algebraic decomposition (CAD) is an important tool for working with polynomial systems, particularly quantifier elimination. However, it has complexity doubly exponential in the number of variables. The base algorithm can be improved by adapting to take advantage of any equational constraints (ECs): equations logically implied by the input. Intuitively, we expect the double exponent in the complexity to decrease by one for each EC. In ISSAC 2015 the present authors proved this for the factor in the complexity bound dependent on the number of polynomials in the input. However, the other term, that dependent on the degree of the input polynomials, remained unchanged. In the present paper the authors investigate how CAD in the presence of ECs could be further refined using the technology of Groebner Bases to move towards the intuitive bound for polynomial degree
    corecore