2,221 research outputs found

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    A process mining maturity model: Enabling organizations to assess and improve their process mining activities

    Get PDF
    Organizations employ process mining to discover, check, or enhance process models based on data from information systems to improve business processes. Even though process mining is increasingly relevant in academia and organizations, achieving process mining excellence and generating business value through its application is elusive. Maturity models can help to manage interdisciplinary teams in their efforts to plan, implement, and manage process mining in organizations. However, while numerous maturity models on business process management (BPM) are available, recent calls for process mining maturity models indicate a gap in the current knowledge base. We systematically design and develop a comprehensive process mining maturity model that consists of five factors comprising 23 elements, which organizations need to develop to apply process mining sustainably and successfully. We contribute to the knowledge base by the exaptation of existing BPM maturity models, and validate our model through its application to a real-world scenario

    Proceedings of the 18th International Conference on Engineering Design (ICED11):Book of Abstracts

    Get PDF
    The ICED series of conferences is the Design Society's "flagship" event. ICED11 took place on August 15-18, 2011, at the campus of the Danish Technical University in Lyngby/Copenhagen, Denmark. The Proceedings of the conference are published in 10 individual volumes, arranged according to topics. All volumes of the Proceedings may be purchased individually through Amazon and other on-line booksellers. For members of the Design Society, all papers are available on this website. The Programme and Abstract Book is publically available for download

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools

    Product Design

    Get PDF
    Product design is a comprehensive process related to the creation of new products, and the ability to design and develop efficient products are key to success in today’s dynamic global market. Written by experts in the field, this book provides a comprehensive overview of the product design process and its applications in various fields, particularly engineering. Over seven chapters, the authors explore such topics as development of new product design methodologies, implementation of effective methods for integrated products, development of more visualized environments for task-based conceptual design methods, and development of engineering design tools based on 3D photogrammetry, among others

    Safe-guarded multi-agent control for mechatronic systems: implementation framework and design patterns

    Get PDF
    This thesis addresses two issues: (i) developing an implementation framework for Multi-Agent Control Systems (MACS); and (ii) developing a pattern-based safe-guarded MACS design method.\ud \ud The Multi-Agent Controller Implementation Framework (MACIF), developed by Van Breemen (2001), is selected as the starting point because of its capability to produce MACS for solving complex control problems with two useful features:\ud ‱ MACS is hierarchically structured in terms of a coordinated group of elementary and/or composite controller-agents;\ud ‱ MACS has an open architecture such that controller-agents can be added, modified or removed without redesigning and/or reprogramming the remaining part of the MACS

    Production Engineering and Management

    Get PDF
    The annual International Conference on Production Engineering and Management takes place for the sixth time his year, and can therefore be considered a well - established event that is the result of the joint effort of the OWL University of Applied Sciences and the University of Trieste. The conference has been established as an annual meeting under the Double Degree Master Program ‘Production Engineering and Management’ by the two partner universities. The main goal of the conference is to provide an opportunity for students, researchers and professionals from Germany, Italy and abroad, to meet and exchange information, discuss experiences, specific practices and technical solutions used in planning, design and management of production and service systems. In addition, the conference is a platform aimed at presenting research projects, introducing young academics to the tradition of Symposiums and promoting the exchange of ideas between the industry and the academy. Especially the contributions of successful graduates of the Double Degree Master Program ‘Production Engineering and Management’ and those of other postgraduate researchers from several European countries have been enforced. This year’s special focus is on Direct Digital Manufacturing in the context of Industry 4.0, a topic of great interest for the global industry. The concept is spreading, but the actual solutions must be presented in order to highlight the practical benefits to industry and customers. Indeed, as Henning Banthien, Secretary General of the German ‘Plattform Industrie 4.0’ project office, has recently remarked, “Industry 4.0 requires a close alliance amongst the private sector, academia, politics and trade unions” in order to be “translated into practice and be implemented now”. PEM 2016 takes place between September 29 and 30, 2016 at the OWL University of Applied Sciences in Lemgo. The program is defined by the Organizing and Scientific Committees and clustered into scientific sessions covering topics of main interest and importance to the participants of the conference. The scientific sessions deal with technical and engineering issues, as well as management topics, and include contributions by researchers from academia and industry. The extended abstracts and full papers of the contributions underwent a double - blind review process. The 24 accepted presentations are assigned, according to their subject, to one of the following sessions: ‘Direct Digital Manufacturing in the Context of Industry 4.0’, ‘Industrial Engineering and Lean Management’, ‘Management Techniques and Methodologies’, ‘Wood Processing Technologies and Furniture Production’ and ‘Innovation Techniques and Methodologies

    Student motivation and academic success: Examining the influences, differences, and economics of mechatronic experiences in fundamental undergraduate courses

    Get PDF
    In this study, we examined influences, differences, meanings, and economics of mechatronic experiences in a first-year, fundamental technology course. Our first objective examined the primary and secondary influences of mechatronic experiences on student engagement. Using a systematic review methodology, we collected n=402 articles. Screened by title and abstract, we mapped six parent and 22 child codes to the remaining n=137 articles. From these, we appraised n=17 studies, assessing eight as high quality. Our synthesis included these n=8 articles, from which we identified five primary influences (Student Motivation, Self-Efficacy, Course Rigor, Learning Retention, and Gender) and two secondary influences (Accreditation and Ease-of-Implementation). In these influences, we found evidence that mechatronic experiences can increase student motivation, self-efficacy, and course rigor. Also, positive impacts on learning, gender diversity, accreditation efforts, and ease of course content implementation were identified. Our second objective was to quantify differences in students’ motivational orientation and academic success in a mechatronic experience vs. a non-mechatronic experience. To this end, we developed, piloted, and deployed a mechatronic experience in a first-year technology course. Using a quasi-experimental, non-equivalent control vs. treatment design (n=84) we found no statistically significant difference in students’ motivational orientation – specifically value choices [F(6,77)=0.13, p=0.7224] and expectancy beliefs [F(6,77)=0.38, p=0.5408] – between mechatronic and non-mechatronic experiences. This is an encouraging outcome, as literature would indicate students’ motivation drops over the course of a semester and wane towards the end of a project. In contrast, statistically significant increases in project scores [F(5,78)=6.51, p=0.0127, d=0.48, d95%CI=0.00 to 0.98] and course grades [F(5,78)=7.76, p=0.0067, d=0.70, d95%CI=0.20 to 1.20] were observed in the mechatronic experience group (three and eight percentage points, respectively). However, when we analyzed the correlation between motivational orientation and academic success, we found no relationship. We concluded that students’ motivational orientation did not moderate differences in academic success, as others have indicated. Our final objective was to quantify the costs and scalability of implementing our mechatronic experience. We found limited literature focusing on costs of such efforts, and therefore developed a novel costing method adapted from medical and early childhood education literature. We implemented this method using marginal (above baseline) time and cost ingredients that were collected during the development, pilot, and steady-state phases of the mechatronic experience. Our evaluation methods included descriptive statistics, Pareto analysis, and cost per capacity estimate analysis. For our 121-student effort, we found that the development, pilot, and steady-state phases cost just over 17.1k( 17.1k (~12.4k for personnel and ~4.7kforequipment),basedon2015US4.7k for equipment), based on 2015 US and an enrollment capacity of 121 students. Total cost vs. capacity scaled at a factor of -0.64 (y = 3,121x-0.64, R2 = 0.99), which was within the 95% interval for personnel and capital observed in the chemical processing industry. Based on a four-year operational life and a range of 20 – 400 students per year, we estimated per seat total costs to range from 70–70 – 470, with our mechatronic experience coming in just under $150 per seat. The development phase cost, as well as the robot chassis and microcontroller capital cost were the primary cost terms for our mechatronic experience
    • 

    corecore