176 research outputs found

    Taking NIRS-BCIs Outside the Lab: Towards Achieving Robustness Against Environment Noise

    Full text link

    Motor learning induced neuroplasticity in minimally invasive surgery

    Get PDF
    Technical skills in surgery have become more complex and challenging to acquire since the introduction of technological aids, particularly in the arena of Minimally Invasive Surgery. Additional challenges posed by reforms to surgical careers and increased public scrutiny, have propelled identification of methods to assess and acquire MIS technical skills. Although validated objective assessments have been developed to assess motor skills requisite for MIS, they poorly understand the development of expertise. Motor skills learning, is indirectly observable, an internal process leading to relative permanent changes in the central nervous system. Advances in functional neuroimaging permit direct interrogation of evolving patterns of brain function associated with motor learning due to the property of neuroplasticity and has been used on surgeons to identify the neural correlates for technical skills acquisition and the impact of new technology. However significant gaps exist in understanding neuroplasticity underlying learning complex bimanual MIS skills. In this thesis the available evidence on applying functional neuroimaging towards assessment and enhancing operative performance in the field of surgery has been synthesized. The purpose of this thesis was to evaluate frontal lobe neuroplasticity associated with learning a complex bimanual MIS skill using functional near-infrared spectroscopy an indirect neuroimaging technique. Laparoscopic suturing and knot-tying a technically challenging bimanual skill is selected to demonstrate learning related reorganisation of cortical behaviour within the frontal lobe by shifts in activation from the prefrontal cortex (PFC) subserving attention to primary and secondary motor centres (premotor cortex, supplementary motor area and primary motor cortex) in which motor sequences are encoded and executed. In the cross-sectional study, participants of varying expertise demonstrate frontal lobe neuroplasticity commensurate with motor learning. The longitudinal study involves tracking evolution in cortical behaviour of novices in response to receipt of eight hours distributed training over a fortnight. Despite novices achieving expert like performance and stabilisation on the technical task, this study demonstrates that novices displayed persistent PFC activity. This study establishes for complex bimanual tasks, that improvements in technical performance do not accompany a reduced reliance in attention to support performance. Finally, least-squares support vector machine is used to classify expertise based on frontal lobe functional connectivity. Findings of this thesis demonstrate the value of interrogating cortical behaviour towards assessing MIS skills development and credentialing.Open Acces

    Best practices for fNIRS publications

    Get PDF
    The application of functional near-infrared spectroscopy (fNIRS) in the neurosciences has been expanding over the last 40 years. Today, it is addressing a wide range of applications within different populations and utilizes a great variety of experimental paradigms. With the rapid growth and the diversification of research methods, some inconsistencies are appearing in the way in which methods are presented, which can make the interpretation and replication of studies unnecessarily challenging. The Society for Functional Near-Infrared Spectroscopy has thus been motivated to organize a representative (but not exhaustive) group of leaders in the field to build a consensus on the best practices for describing the methods utilized in fNIRS studies. Our paper has been designed to provide guidelines to help enhance the reliability, repeatability, and traceability of reported fNIRS studies and encourage best practices throughout the community. A checklist is provided to guide authors in the preparation of their manuscripts and to assist reviewers when evaluating fNIRS papers

    Brain-Computer Interfaces for Non-clinical (Home, Sports, Art, Entertainment, Education, Well-being) Applications

    Get PDF
    HCI researchers interest in BCI is increasing because the technology industry is expanding into application areas where efficiency is not the main goal of concern. Domestic or public space use of information and communication technology raise awareness of the importance of affect, comfort, family, community, or playfulness, rather than efficiency. Therefore, in addition to non-clinical BCI applications that require efficiency and precision, this Research Topic also addresses the use of BCI for various types of domestic, entertainment, educational, sports, and well-being applications. These applications can relate to an individual user as well as to multiple cooperating or competing users. We also see a renewed interest of artists to make use of such devices to design interactive art installations that know about the brain activity of an individual user or the collective brain activity of a group of users, for example, an audience. Hence, this Research Topic also addresses how BCI technology influences artistic creation and practice, and the use of BCI technology to manipulate and control sound, video, and virtual and augmented reality (VR/AR)

    Neurotechnologies for Human Cognitive Augmentation: Current State of the Art and Future Prospects

    Get PDF
    Recent advances in neuroscience have paved the way to innovative applications that cognitively augment and enhance humans in a variety of contexts. This paper aims at providing a snapshot of the current state of the art and a motivated forecast of the most likely developments in the next two decades. Firstly, we survey the main neuroscience technologies for both observing and influencing brain activity, which are necessary ingredients for human cognitive augmentation. We also compare and contrast such technologies, as their individual characteristics (e.g., spatio-temporal resolution, invasiveness, portability, energy requirements, and cost) influence their current and future role in human cognitive augmentation. Secondly, we chart the state of the art on neurotechnologies for human cognitive augmentation, keeping an eye both on the applications that already exist and those that are emerging or are likely to emerge in the next two decades. Particularly, we consider applications in the areas of communication, cognitive enhancement, memory, attention monitoring/enhancement, situation awareness and complex problem solving, and we look at what fraction of the population might benefit from such technologies and at the demands they impose in terms of user training. Thirdly, we briefly review the ethical issues associated with current neuroscience technologies. These are important because they may differentially influence both present and future research on (and adoption of) neurotechnologies for human cognitive augmentation: an inferior technology with no significant ethical issues may thrive while a superior technology causing widespread ethical concerns may end up being outlawed. Finally, based on the lessons learned in our analysis, using past trends and considering other related forecasts, we attempt to forecast the most likely future developments of neuroscience technology for human cognitive augmentation and provide informed recommendations for promising future research and exploitation avenues

    Adaptive Cognitive Interaction Systems

    Get PDF
    Adaptive kognitive Interaktionssysteme beobachten und modellieren den Zustand ihres Benutzers und passen das Systemverhalten entsprechend an. Ein solches System besteht aus drei Komponenten: Dem empirischen kognitiven Modell, dem komputationalen kognitiven Modell und dem adaptiven Interaktionsmanager. Die vorliegende Arbeit enthält zahlreiche Beiträge zur Entwicklung dieser Komponenten sowie zu deren Kombination. Die Ergebnisse werden in zahlreichen Benutzerstudien validiert
    • …
    corecore