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Deutsche Zusammenfassung

Durch die wachsende Verbreitung von Bildschirmarbeitsplitzen, intelligenten
Telefonen, und multimodalen Tablet-PCs wird die optimale Gestaltung der
Mensch-Computer-Interaktion immer wichtiger. Im Laufe des letzten Jahr-
zehnts ergaben sich entscheidende Verbesserungen durch die Implementie-
rung natiirlicher Ein- und Ausgabemodalitéiten, wie Gestensteuerung, au-
tomatische Spracherkennung oder Sprachsynthese. Durch diese natiirlichen
Schnittstellen steigen auch die Erwartungen der Benutzer an die Systeme.
Die ,Media Equation“ [RN96] belegt, dass Menschen Erfahrungen aus der
Mensch-Mensch-Interaktion auf die Mensch-Computer-Interaktion iibertragen.
Menschen beobachten den affektiven und kognitiven Zustand ihres Inter-
aktionspartners und passen ihr Interaktionsverhalten entsprechend an. Ein
wesentliche Konsequenz der “Media Equation” ist, dass Benutzer solches ad-
aptives Verhalten auch von ihren technischen Systemen erwarten. In dieser
Arbeit beschéftigen wir uns damit, die dafiir notwendigen Fahigkeiten fiir
ein technisches System zu implementieren.

Ein adaptives, kognitives Interaktionssystem erfasst und modelliert den Zu-
stand des Benutzers und reagiert auf diesen Zustand durch eine Anpas-
sung des Interaktionsverhaltens. Ein adaptives, kognitives Interaktionssys-
tem besteht aus drei Komponenten: Dem adaptiven Interaktionsmanager,
dem empirischen kognitiven Modell und dem komputationalen Modell. Ein
adaptiver Interaktionsmanager fithrt die Kommunikation mit dem Benutzer
durch und greift dazu auf die Informationen iiber dessen Zustand zuriick.
An diesen Zustand passt der Interaktionsmanager das Interaktionsverhalten
an. Um die Informationen iiber den Benutzerzustand zu erhalten, greift der
Interaktionsmanager auf zwei verschiedene Arten von kognitiven Modellen
zuriick. Das empirische kognitive Modell zeichnet Sensordaten des Benutzers
auf und verwendet dazu Methoden des maschinellen Lernens, um aus den
Daten Benutzerzustdnde zu erkennen. Ein komputationales kognitives Mo-
dell reprasentiert komplexe kognitive Prozesse und prédiziert das aus diesen
resultierende Verhalten. Diese beiden Ansétze zur kognitiven Modellierung
konnen parallel eingesetzt werden, um sich gegenseitig zu ergénzen (da sie
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unterschiedliche Aspekte desselben Zustands abbilden) und einander zu be-
einflussen (um den Einfluss eines Zustands auf einen anderen zu modellieren).
In dieser Arbeit leisten wir substantielle Beitrédge zum Fortschritt aller drei
Komponenten. Weiterhin zeigen wir, wie die drei Komponenten gemeinsam
in Ende-zu-Ende Interaktionssystemen eingesetzt werden koénnen, um eine
signifikante objektive und subjektive Verbesserung der Mensch-Computer-
Interaktion zu erzielen.

In Bereich der empirischen kognitiven Modellierung konzentrieren wir uns
auf die Zusténde ,mentale Auslastung” und , Verwirrung“. Beide Zusténde
spielen in der Mensch-Computer-Interaktion eine grofie Rolle, da sie — wie
im Falle mentaler Auslastung — direkten Einfluss auf das Verhalten und die
kognitive Leistungsfihigkeit des Benutzers haben oder — wie im Falle der
Verwirrung — Aufschluss iiber den Verlauf der Interaktion liefern. Um diese
beiden Zustdnde zu erkennen, beschreiben wir die Entwicklung und Eva-
luierung eines personenunabhéngigen Modells mentaler Auslastung, basie-
rend auf dem Elektroenzephalogramm (EEG) zur Gehirnaktivitdtsmessung
und anderen physiologischen Signalen. Dieses System wird auf einem aufler-
gewoOhnlich groflen Datensatz ausgewertet. Dieser enthélt Daten von {iber 150
Versuchspersonen, die verschiedene kognitive Aufgaben bearbeiten. Weiter-
hin entwickeln wir das erste empirische kognitive Modell, dass verschiedene
Modalitéten kombiniert, um die Verwendung verschiedener Wahrnehmungs-
modalitdten zu erkennen. Auflerdem stellen wir ein personen-adaptives Mo-
dell zur EEG-basierten Erkennung des Benutzerzustands ,, Verwirrung“ vor.
Diese personen-unabhéngigen und personen-adaptiven empirischen kogniti-
ven Modelle sind besonders fiir den Einsatz im Kontext der Mensch-Compu-
ter-Interaktion geeignet. Sie liefern die erkannten Benutzerzustédnde an die
anderen Komponenten weiter, die Modelle und Interaktionsverhalten an die
geschitzen Zustdnde anpassen.

Im Bereich der komputationalen kognitiven Modellierung entwickeln wir ein
modulares Gedéchtnismodell zur Représentation von dynamischen Assozia-
tionsprozessen im Gedéchtnis fiir die Verwendung in Interaktionssystemen.
Wir zeigen mit zwei verschiedenen Ansétzen, wie ein solches komputationa-
les Modell an verschiedene Niveaus mentaler Auslastung angepasst werden
kann. Das Niveau mentaler Auslastung kann iiber ein entsprechendes empiri-
sches kognitives Modell erfasst werden. Dadurch steigt die Vorhersagegenau-
igkeit bei wechselnder Auslastung gegeniiber einem nicht-adaptiven Modell
signifikant. Am Beispiel einer mehrschrittigen, assoziativen Lernaufgabe zei-
gen weiterhin, dass komputationale und empirische Modellierung kombiniert
werden konnen, um Benutzerzustinde zu erfassen, die keines der Modellie-
rungsparadigmen fiir sich allein erkennen kann.
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Auflerdem entwickeln wir den leichtgewichtigen, adaptiven Interaktionsma-
nager AIM. Mit dessen Hilfe implementieren wir mehrere adaptive, kognitive
Interaktionssysteme fiir verschiedene Einsatzzwecke. AIM erhélt die Schét-
zungen der kognitiven Modelle iiber den Benutzerzustand, um sein Interakti-
onsverhalten an diese Zustédnde anzupassen. Die Interaktionssysteme wer-
den in Benutzerstudien evaluiert, um messbare objektive und subjektive
Usability-Verbesserungen adaptiver kognitiver Interaktionssysteme (gegeniiber
nicht-adaptiven Systemen) zu dokumentieren. Dazu gehort die Auswertung
eines Ende-zu-Ende-Systems, bei dem wir zeigen, dass eine adaptive Stra-
tegie zur Informations-Prisentation signifikante Verbesserungen gegeniiber
einer nicht-adaptiven Strategie erzielen kann, sowohl beziiglich objektiver als
auch subjektiver Qualitdtsmetriken. Wir untersuchen weiterhin, wie sich ver-
schiedene Interaktionsstrategien auf die subjektiv empfundene Intrusivitéit
auswirken. Eine selbst-korrigierende gestenbasierte Benutzerschnittstelle rea-
giert auf Verwirrung des Benutzers nach Fehlinterpretationen von Benut-
zereingaben. Eine Benutzerstudie vergleicht verschiedene Korrekturstrategi-
en hinsichtlich Genauigkeit und Korrekturkosten. Zuletzt beschreiben wir die
Entwicklung einer kognitiven Benutzersimulation fiir sprachbasierte Inter-
aktionssysteme, die statistische Methoden mit komputationalen kognitiven
Modellen verbindet.
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CHAPTER 1

Introduction and Motivation

This chapter serves as a motivation for the present dissertation and as
an introduction to the relevant aspects of adaptive cognitive interaction
systems. We motivate the need for adaptive cognitive interaction sys-
tems and present our proposed architecture, consisting of three main
components: Empirical cognitive model, computational cognitive model
and interaction manager. Finally, the structure and contributions of
this thesis are presented.

1.1 Motivation

As computers and complex technical devices become more present in our
daily life and work environment, we are constantly facing Human-Computer
Interaction (HCI) situations. This development mandates that HCI is as
robust, efficient and satisfactory as possible. Since the 1980s, researchers
in HCI systematically strive to design user interfaces which fulfill those re-
quirements. Traditional user interfaces which use a mouse or keyboard as
input device are established, but those devices lead to artificial and ineffi-
cient means of communication. Interfaces only based on those devices are
oblique to the large number of signals emitted by the user which voluntarily
or involuntarily send a lot of additional information about the user to the
computer.



2 Introduction and Motivation

Since the advent of mobile smartphones, camera-equipped entertainment
consoles and wearable computing devices, user interfaces based on gesture
and speech modalities are used on a regular basis. Such interfaces allow
their users to employ intuitive and efficient means of communication. Ges-
tures and speech can transmit information with a very high transfer rate and
do not need any training for using them efficiently. As novel input techniques
become more common, people get used to interact with seemingly intelligent
devices which use the same modalities humans are using when communicat-
ing with other persons. One major side effect of this development is that
users unconsciously and inevitably develop the expectation that HCI fol-
lows the same explicit and implicit social rules and principles as there are
established for human-human interaction. Byron Reeves and Clifford Nass
describe this phenomenon as the Media Equation and validated its claim in
numerous studies [RN96|. However, current interfaces are not yet prepared
to fulfill those expectations, because besides input modalities, other aspects
of this “human-like” HCI are still not present.

A major gap between user expectations and the State-of-the-Art of HCI is
the fact that most systems are completely oblique to the situation or state
the user is in. For example, a user who interacts with a system while per-
forming a secondary task (e.g. talking to another person, driving, etc.) will
show completely different behavior than a user who completely focuses on
the interaction: Splitting cognitive resources between two tasks may lead to
missed information or a reduced memory span. A considerate human com-
munication partner will pay attention to cues which signal the other person’s
inner state and react appropriately by adjusting his or her interaction behav-
ior. In the example of high workload caused by dual tasking, a considerate
partner will avoid or delay non-critical communication to prevent informa-
tion overload. This process of noting the state of the interaction partner and
adapting interaction behavior accordingly is called empathy [Ick93].

It is the goal of this thesis to enable technical systems to replicate this be-
havior to the best extend possible. To develop empathy-like capabilities for
technical systems requires three components: The system needs to observe
the user to detect his or her user states. The system needs to model those
user states and predict their impact on the interaction. Finally, the system
needs to adapt its interaction behavior to the detected user states. The ex-
pected benefit of this approach is to make HCI more robust, more efficient
and more satisfactory compared to non-adaptive systems.
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In the remainder of this chapter, we define the term user state, describe the
components of an adaptive cognitive interaction system in detail, outline the
contributions of this thesis to the field and present the structure of the thesis.

1.2 User States

In this section, we motivate the need of adaptive system behavior by the
Media Equation. We define the term “user state” and distinguish it from the
term “user trait”. Then, we give examples of user states and discuss their
relevance in HCI applications. This will help us to chose which user states
to concentrate on in this thesis.

1.2.1 Media Equation & Adaptive Behavior

According to the “Media Equation” [RN96], humans tend to react to and
interact with complex machines in ways that are similar to behavior shown
in the interaction with other humans. This phenomenon has been inves-
tigated in a large number of user studies and was shown to be a general
behavioral pattern that is hard to suppress. For example, [NJHT05] pre-
sented a user study of a “virtual passenger” in a car. Experimental results
indicated that both subjective and objective criteria (such as driving quality)
improved when the interaction system adapted its voice characteristics to the
driver’s emotional state. The study demonstrated that a single fixed emo-
tional stance of the virtual passenger is suboptimal. Instead, the system has
to continuously follow and match the changing emotional state of the user.
[NBO5] convincingly showed that the Media Equation is especially valid for
systems that use input or output modalities which imitate natural means
of communication: Humans are “wired for speech” as speech is the primary
way of natural communication. Therefore, speech-based systems (also called
“voice-enabled”) are likely to trigger strong effects as predicted by the Media
Equation. For example, [NLO1] investigated whether similarity attraction of
a human towards another human with similar personality (an effect which
is long known in psychology) transfers to a human who is interacting with
a technical system. The authors manipulated the personality of a voice-
enabled system by adjusting specific speech attributes. Their experiment
showed that users preferred the system which matched their own personal-
ity. The Media Equation also relates to workload induced by multi-tasking
during HCI: [MJ05] and [Cha09] showed that the effect of an inconsiderate
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human passenger is much more detrimental to driving performance than a
conversation with a considerate passenger. The latter flexibly reacts to traffic
situations which increase workload, for example by pausing the conversation
or alerting the driver. The impact of operation of a mobile phone on driving
performance is comparable to the effect of an inconsiderate passenger. The
Media Equation therefore suggests that users expect their systems to behave
like a considerate passenger to avoid this negative effect.

1.2.2 User States vs. User Traits

The Media Equation mandates that an interaction system must flexibly react
to user states if it aims at offering an intuitive and efficient user experience.
We define a user state as a dynamic attribute of the user that may change
over the course of an interaction. A user state refers to the cognitive or
affective condition of the user which influences the user’s behavior and per-
formance during the interaction. Examples for user states are the mental
workload level, the emotional state, fatigue, etc. In contrast to a user state,
a user trait is a characteristic of the user that we consider to be stable during
the lifetime of the interaction system. Examples for user traits are gender,
age [WBGO05, MEBT09] or personality [BLMP12]. While it is clear that cus-
tomization for user traits is useful when building systems which are optimized
for a specific user (for example, Nass’ example of personality-based similar-
ity attraction [NLO1]), in this thesis, we will concentrate on systems which
adapt to user states: Adaptation to dynamically changing user states is more
challenging for HCI as systems can be customized for each stable user trait
once and than load that profile when the user is identified. Additionally, we
can treat adaptation to persistent user traits as special case of a one-time
adaptation to a potentially changing user state.

Of course, there is a vast number of potential user states which determine
a user’s behavior and performance in a cognitive task. Building a compre-
hensive model which represents all potential states is currently beyond the
scope of existing architectures as this would imply developing a model of
human-like complexity. We therefore look for a small selection of user states
for investigating the concept of adaptive cognitive interaction systems in this
thesis. For this purpose of selecting user states, we define a list of five criteria:

e The user state occurs frequently in typical HCI scenarios

e The user state strongly influences user behavior or the outcome of the
interaction
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e There is potential for an adaptive system to react to the detected user
state

e It is feasible to systematically collect data containing different mani-
festations of the user state

e The choice of user state creates new research opportunities

1.2.3 User State: Emotion

One of the most actively researched user states is emotion. Emotions mod-
ulate cognitive processes like memory [Chr92] or problem solving strate-
gies [SWF05] and therefore impact HCI. By coining the term “Affective Com-
puting” [Pic00], Rosalind Picard started the research on computers which
were able to detect the emotional state of their users and react appropriately,
potentially by synthesizing emotion themselves. Affective computing appli-
cations like tutoring systems or entertainment-centered systems are very suc-
cessful and demonstrate the feasibility of this approach. However, full-blown
emotions are often rare in real-world HCI scenarios and often unrelated to the
interaction task itself. The only regular exception to this is anger, induced by
undesired system behavior [BvBET09]. However, when the emotional state is
unrelated to the interaction, the system is limited in its possibilities to adapt,
besides mirroring the emotion or showing sympathy. Additionally, emotion
elicitation for data collections is a challenging task [CB07] and ground truth
is unreliable [DCDM*05, Cow09, MML*09]. Those limitations reduce the
applicability of the affective computing approach to few HCI scenarios. In
the relevant domains (i.e. tutoring, entertainment), affective computing has
already been extensively explored, while other promising user states did not
receive the same attention. For those reasons, we abstain from taking emo-
tion into account as user state and focus on others which we deem to be more
promising as a target user state to make an impact on HCI in general.

1.2.4 User State: Workload

Another important user state is (mental) workload. [HS88] defines workload
as “the perceived relationship between the amount of mental processing ca-
pability or resources and the amount required by the task”. A user who inter-
acts with a system while operating a secondary task (e.g. talking to another
person, driving, etc.) will show completely different behavior than a user
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who can fully focus on the interaction task. This is because increased work-
load may result in compensatory behavior [RH97] and cognitive performance
degradation [HDO1]. Ignorance of a user’s workload level by the system may
cause information overload and low user satisfaction. Due to the increas-
ing presence of mobile applications (for example on smartphones), variable
workload levels become omnipresent in HCI. This means that variable work-
load levels and resulting differences in cognitive performance are a property of
most current HCI scenarios. One important example where such multitasking
situations are omnipresent is the operation of interactive systems in the car.
Navigation systems, entertainment systems, smartphones and other devices
have become a quasi-standard of most current cars. Distraction while driving
is one of the major causes of accidents on the road [LBCKO04]. An adaptive
cognitive interaction system which is able to detect states of high workload
and adapt the interaction appropriately (e.g. by delaying non-critical infor-
mation, changing its style of information presentation, etc.) would increase
both safety and usability in such scenarios.

In experiments, different levels of workload can be systematically induced by
alternating between single-tasking or multitasking or by varying task diffi-
culty. While existing research has shown the general feasibility of detecting
the workload level of a human from sensor signals, little is known about 1)
the feasibility of workload recognition in more realistic HCI scenarios and
2) the possibilities of an interaction system to adapt to changes in workload
level.

For those reasons, we chose to concentrate on workload as one of the central
user states in this thesis.

1.2.5 User State: Confusion

Another user state we are looking at in this thesis is the state of confusion.
We define confusion as the reaction to erroneous behavior exhibited by the
system which was not expected by the user. For example this can occur,
if the user gives input to the system to select an item from a menu using
a potentially error-prone input modality like speech or gestures. Even for
well-trained statistical gesture and conversational speech recognizers, error
rates still are in the double-digits [SLY11]; therefore, erroneous and unex-
pected feedback to user input are common for such recognizers. As the input
modalities speech and gestures find their way into many new technical sys-
tems, such recognition errors and the resulting user state of confusion will
occur frequently in many HCI applications. For conducting experiments on
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confusion detection, this user state can be provoked by systematically intro-
ducing erroneous system feedback in an HCI task.

The user state of confusion is highly relevant for the interaction as unde-
sired behavior of the system forces the user to enter an error correction
sub-interaction [SNG*02] which is time-consuming and distracts from the
original task. Automatic confusion detection would enable systems to proac-
tively recover from recognition input errors, for example by reprompting the
user. This would reduce the effort for error detection and error recovery for
the user. Because of the frequency of recognition errors and the potential
benefits for detecting the resulting user state of confusion (benefits which are
currently untapped in the research community), we include this user state as
one of the regarded states in this thesis.

1.2.6  User State: Memory

Other relevant user states are more complex and cannot be defined by the
absence of presence of a certain condition. One example for such a user
state is the configuration of a user’s memory. Memory determines which
information the user can readily access, which information was already for-
gotten (even if already given earlier by the system) and which information
is currently relevant to the user. As most tasks in HCI comprise a memory
component (e.g. to remember the interaction discourse, or to give appropri-
ate input to the system), modeling the state of the user’s memory and the
capabilities and limitations of memory retrieval are important to accurately
predict user behavior. Psychologically sound models which predict behav-
ior and performance of human memory exist, but have not been researched
thoroughly in the HCI context. Accurate representation of human memory
is especially important when we cannot assume a perfect memory, as most
current interaction systems implicitly do: Cognitive performance (and mem-
ory performance in particular) of a person is variable and depends on the
person’s workload level. This interplay indicates that user states need to
be modeled in context of each other, not in isolation. For this reason, we
investigate a memory model that is able to predict memory performance for
different workload levels.
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1.3 Adaptive Cognitive Interaction Systems

In this section, we define the term adaptive cognitive interaction system
an introduce its three main components. An adaptive cognitive interaction
system is an interaction system (i.e. a technical system which receives input
by the user and generates output for the user in real-time) that models user
states, detects user states automatically and reacts to them appropriately. An
adaptive cognitive interaction system consists of three main components, see
Figure 1.1: An empirical cognitive model, a computational cognitive model
and an adaptive interaction manager. These components are intertwined and
share information about the user.

The first component is an empirical cognitive model which observes the user
to detect user states. In a bottom-up fashion, an empirical cognitive model
uses sensors (cameras, microphones, or physiological sensors) to collect data
from the user. The model processes this data to extract meaningful features,
abd then applies statistical machine learning methods to automatically clas-
sify the data regarding the manifestation of different user states.

Those empirical bottom-up models are complemented by top-down computa-
tional cognitive models which represent the state of the user’s cognitive pro-
cesses to predict user behavior and performance. This is necessary because
not all user states can be inferred from noisy sensor data. A computational
cognitive model formalizes psychological knowledge about human cognition
in a form that allows to make predictions about human cognition, e.g. on the
user’s behavior and performance in a certain task.

Both types of models, empirical and computational cognitive models, ex-
change information to adjust their respective predictions. This exchange can
be used to model a user state with information from both knowledge sources
or to represent the influence of one user state on the other.

The information from both the empirical and computational cognitive model
are sent to the interaction manager. In general, the interaction manager en-
gages the user in interaction and contains all information to generate mean-
ingful responses and queries. In an adaptive cognitive interaction system,
this component also uses information on the user state to adapt to the user
by modifying its behavior.
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Figure 1.1 — General architecture of an adaptive cognitive interaction system.

1.4 Contributions

In this section, we will give an overview over the scientific contributions to
the field of adaptive cognitive interaction systems we present in this thesis.
In this thesis, we contribute several novel findings and methods to all three
central components of an end-to-end adaptive cognitive interaction system.

Considering the empirical cognitive modeling, we contribute the develop-
ment and evaluation of models for different user states. We concentrate on
systems which address challenges occurring in realistic HCI scenarios: the
requirement to deal with artifacts caused by user movement and the en-
vironment; the need to reduce setup time of the model for new users by
exploiting existing data from other people; and the feasibility of transfer-
ring an empirical cognitive model between different scenarios. We show the
versatility of empirical cognitive modeling by regarding three different user
states: We present systems based on Electroencephalography (EEG) and
other physiological signals to recognize a person’s workload level and to de-
tect a state of confusion. We describe the implementation of a multimodal
person-independent workload recognition system, which is evaluated
on an exceptionally large — in the context of EEG data collections for HCI
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— data corpus with more than 150 subjects performing multiple tasks. Our
investigation on modality recognition demonstrates the first hybrid pas-
sive Brain Computer Interface using EEG and functional Near Infrared
Spectroscopy (fNIRS). To demonstrate the versatility of empirical cognitive
modeling, we contribute an EEG-based person-adaptive system for con-
fusion detection for which we also evaluate the potential for task transfer.

Considering computational cognitive models, we contribute the development
and evaluation of such models especially for the HCI context. For this goal,
we addressed the need for real-time model tracing (i.e. the ability to dynam-
ically model the changing cognitive state of a human during the execution
of a task); the accommodation of multiple workload levels by computational
cognitive models to improve the prediction of performance under different
user states; the combination of empirical and computational cognitive mod-
eling. More concretely, our individual contributions are: The development
and evaluation of a generic memory modeling component for inter-
action systems, which model dynamic memory associations on large-scale
databases. Furthermore, we contribute — to our knowledge for the first time
— the description, analysis and comparison of two approaches to model the
impact of workload level on performance in cognitive tasks. We also
show findings on how the combination of empirical cognitive modeling
and computational cognitive modeling yields information which is not
accessible to a system which only resorts to one of those two complimentary
approaches.

In the field of adaptive systems, our contributions focused on the goal of
exploiting the user state predictions of the cognitive to achieve a measurable
benefit for the user of an interaction system. One of our main contributions
is that we do not only look at the detection and modeling of user states
(as the majority of publications in the research community does), but that
we develop multiple end-to-end interaction systems in a common framework
and present extensive evaluations of both objective and subjective perfor-
mance measures. For this purpose, we contribute the implementation of
the light-weight adaptive interaction manager AIM which focuses on
flexible adaptation mechanisms. We use the AIM in three user studies to
demonstrate the benefits and challenges of adaptive systems. Those studies
contribute findings on both objective and subjective usability effects
of adaptive user interfaces and compare different adaptation strategies. Our
final contribution in this field is the development of a cognitive user simu-
lation which combines the benefits of statistical user simulation techniques
with computational cognitive models to generate plausible user and system
utterances.
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1.5 Structure of this Thesis

This thesis is composed of three main chapters. These chapters describe in-
depth the three main components of an adaptive cognitive interaction system.
Each chapter provides related work, including the necessary methodological
fundamentals, and a detailed description of the corresponding contributions.
Chapter 2 deals with empirical cognitive models to recognize workload level,
workload type and the state of confusion from physiological signals. Chap-
ter 3 deals with computational cognitive models and how they can be de-
signed for the application in interaction systems. Chapter 4 focuses on the
development of a framework for adaptive interaction management and its ap-
plication in several evaluation studies. The chapter describes three systems
which investigate different aspects of workload- and confusion-adaptive in-
teraction systems. Chapter 5 concludes the thesis by summarizing the main
results and proposes steps for future work.






CHAPTER 2

Empirical Cognitive Modeling

In this chapter, we introduce the concept of empirical cognitive model-
ing to detect user states from sensor data. We start by discussing the
related work in this field. We then present three examples of empirical
cognitive models to detect the user states workload level, workload type
and confusion. We describe the employed methods and present thorough
evaluations for all three examples.

2.1 Introduction

Adaptive Cognitive Interaction System

Empirical cognitive models are bottom-up
models which recognize the manifestation of
a certain user state (e.g. workload level)
or its absence or presence (e.g. is the user
confused?). Empirical cognitive models are
usually implemented as statistical classifiers
working on features derived from sensor data.
Most of the systems presented in this chap-
ter use signals which capture information on
brain activity, which is the most direct source
of information on the user’s cognitive pro-

cesses. Systems which use such signals to classify certain cognitive user
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states or imagined user commands are usually called Brain-Computer Inter-
faces (BCIs). Throughout this chapter, we often use the terms (statistical)
classifier and BCI to refer to implementations of empirical cognitive models
because these terms are frequently used in the research community:.

To explore different types of user states and associated challenges, we present
empirical cognitive models to detect three different user states. In Sec-
tion 1.2.2, we already motivated why we concentrate on the user states work-
load and confusion. In this chapter, section 2.3 presents a system which uses
EEG and other physiological signals to discriminate different levels of mental
workload. We present a person-independent evaluation on a large data corpus
with more than 150 participants. Section 2.4 describes the development of a
hybrid empirical cognitive model which combines EEG and fNIRS signals to
detect and discriminate different perceptual modalities. Finally, Section 2.5
describes a person-adapted model which uses EEG for the detection of the
user state confusion.

2.2 Related Work

In this section, we discuss related work on systems which classify user states
based on signals recorded from the user. We start with an introduction of
the methodological fundamentals of this field, ranging from signal type se-
lection to the development of the models themselves. Afterwards, we review
the State-of-the-Art of the detection of two user states, workload and confu-
sion. We discuss the strengths and weaknesses of the existing literature and
describe our contributions to this field.

2.2.1  Signal Types for Empirical Cognitive Modeling

To build an empirical cognitive model, we first need to specify the signal
types which are used to supply the model with data. Selection of signal
types influences the accuracy of the model as well as the suitability of the
system for specific applications. User states as defined in Section 1.2.2 may be
extracted from many different signal types. Here, we start by categorizing
systems for user state detection by the employed signal types into three
groups, following [CD10]: audio-based, video-based and physiology-based
systems. For each category of signal types, we discuss its advantages and
drawbacks.
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Audio-based Systems

Audio-based systems are capable of extracting emotions [ZTL107], fatigue
[GFWT06], workload [KCM10] or other user states from speech. Since 2009,
the Interspeech conference hosts yearly contests on the detection of user
states and traits from speech signals [SSB09, SSBT10, SSB*11, SSB*12,
SSBT13]. Speech based systems can exploit information on linguistic content
by extracting counts of words and word sequences etc. and also on paralin-
guistic cues, using features like autocorrelation, pitch, jitter, shimmer, and
frequency attributes. Sensors for recording audio data (i.e. microphones)
are cheap, small and non-intrusive. There exists a number of studies which
demonstrate the feasibility of extracting various user states from audio sig-
nals in natural use cases [ZPRH09].

The major limitation of audio-based empirical cognitive models is their re-
striction to situations where a user is speaking. On the one hand, if the user
is operating an interface which is not voice-enabled, such situations are rare.
On the other hand, if the user is operating a voice-enabled interface, the
user’s speech will be a response to system prompts. However, adaptation to
user states which the system is only able to detect when the interaction is
already ongoing may be too late in many cases. In other situations, no usable
speech of the user will be available because environmental noise suppresses
the speaker’s voice in the audio stream.

Video-based Systems

Video-based systems are another promising venue of research on user state
detection. Such models are able to extract information on the user state
from fine-scale recognition of mimics or large-scale recognition of body pos-
ture and gestures (or both). For example, systems to measure vigilance from
high-resolution, high-frequency video recordings of the eye have a long tra-
dition [JY02] and are already deployed as commercial car accessories. From
facial video recordings, facial action units (FAUs) can be extracted [GE11].
Each FAU encodes contraction or relaxation of one or more muscles in the
face. FAUs can be used for emotion recognition [VKA™11], or for the detec-
tion frustration and boredom [CDWGO8]. [SCL"11] used video-based analy-
sis of posture and body movement to predict engagement of children involved
in human-robot interaction. Video recordings can also act as contact-free
physiological sensors: The Cardiocam [PMP10] is able to estimate the heart
rate of a person at a distance, using an off-the-shelf webcam by applying blind
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source separation techniques to the color channels of the camera. While those
examples have shown that video based approaches for user state recognition
are remarkably successful, they are limited in practice by camera positioning
and the dependency on lighting conditions. For those reasons, video data is
hard to acquire in many mobile scenarios. Video analysis is also limited to
user states that generate reliable and visible reactions in facial expression,
gestures or body language.

Physiology-based Systems

The third category of signal types for empirical cognitive modeling covers
signals which are measured by physiological sensors. This broad definition
summarizes a large group of measurements of specific bodily functions cor-
related to user states. Examples of such measurements are:

e Blood volume pressure (BVP). Can be measured by a photoplethys-
mograph which is placed at a finger or at the mastoid of the participant.
Typical features which can be extracted from BVP are heart rate and
heart rate variability.

e Electrodermal activity (EDA). EDA measures electrical conduc-
tance of a person’s skin. Conductance varies with moisture of the skin,
which is influenced by sweat. EDA is measured with an ohmmeter and
the application of a small current between two points on the surface
of the skin (other ways of measurement are possible). A typical sensor
placement is on the palm of the hand, where many sweat glands are
present.

e Respiration (RESP). Respiratory activity can be recorded with (pres-
sure based or electro-magnetism based) respiration belts around the
chest of a person. From those signals, features like frequency and depth
of breathing can be extracted.

Sensors to record such signals are very cheap and mobile due to their small
size. There exist devices which incorporate such sensors in items of daily
use and make it possible to record physiological data in an non-intrusive
way. Examples include sensors integrated in clothing [SSO11], a computer
mouse [ADL99] or a steering wheel [CLO7] in the car. However, the sensitiv-
ity and specificity we can expect from those signals is limited. While those
signals correlate with user states such as stress, they are also influenced by
physical activity, pressure level, temperature and many other factors unre-
lated to the user’s state. This means that the validity of the relation between
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the captured physiological parameter and user state is often weak [Fai09]. In
Chapter 2.3, we will see that we can reliably use features derived from physio-
logical signals for some classification tasks regarding the user state. However,
we will see that not all user states can be detected reliably using such signals.
As a consequence, we will mostly concentrate on sensors which record brain
activity (or correlates thereof) in this thesis. An advantage of sensors of
brain activity is that their signals are more directly related to the cognitive
processes while parameters like BVP, EDA or respiration are only indirectly
moderated by the peripheral nervous system. Sensors for brain activity usu-
ally provide multi-channel recordings which allow for artifact correction of
individual channels and spatial localization of activity in the brain.

Human-computer-interfaces which operate on signals correlated to brain ac-
tivity are often called Brain-Computer Interfaces (BCIs) in the literature.
Traditional BCIs target handicapped users (e.g. locked-in patients) which
are enabled by a BCI to control a user interface with simple selection com-
mands [WBM™02] or letter spelling [KSM™08]. However, in the last decade,
the term passive BCI was coined [ZK11]|. Passive BCls are targeted to a
more general audience and are designed to detect and react to certain user
states. By far the most common sensor technology for BCIs is Electroen-
cephalography (EEG). EEG directly measures electrical activity of neurons
in the brain — namely, excitatory postsynaptic potentials — at the surface
of the scalp. Signals are not captured from single neurons but from large
clusters of synchronously firing pyramid cells in the cortex of the human
brain. EEG is traditionally measured using an electrode cap with 16 to up
to 256 electrodes. To place electrodes reproducibly on relevant regions of
the scalp, we follow the 10/20 standard or its extension, the 10/10 standard,
for a higher number of electrodes. See Figure 2.1) which defines electrode
positions relative to the anatomy of the skull [Jas58].

EEG technology is affordable, mobile and offers a high temporal resolution.
A drawback of EEG is the low spatial resolution as it measures accumulated
activity of large areas of the cortex and of deeper brain regions. Another
challenge is that EEG signals are characterized by a small amplitude in the
range of microvolts which makes them susceptible to a large number of arti-
facts. Artifact sources are technical, mechanical, or physiological in nature.
In some scenarios, those artifacts may actually contain useful information to
classify the current user state (e.g. to recognize certain facial expressions from
muscular artifacts in the EEG signal [HPS11]). In most cases however, han-
dling artifacts is critical to recover the actual EEG signal for classification.
BCI literature has proposed a number of methods to deal with such arti-
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Figure 2.1 — Arangement of EEG electrodes according to the 10-10 position-
ing system [PBZ11].

facts, ranging from methods for detection and removal [NWR10, MJBB11],
to methods of isolating and filtering of artifacts [JMWT00, SKZ*07].

An alternative or complement to EEG is functional Near Infrared Spec-
troscopy (fNIRS). fNIRS captures the hemodynamic response to cognitive
activity by exploiting the fact that oxygenated and de-oxygenated blood
absorbs different proportions of light of different wavelengths in the near-
infrared spectrum. As active brain regions consume more oxygen than inac-
tive ones, the ratio of oxygenated and de-oxygenated blood correlates with
brain activity. For fNIRS recordings, a set of optodes is placed on the sur-
face of the participant’s head. The optodes function as light sources and
detectors.

On the one hand, due to both the origin of the signal (hemodynamic response
for INIRS vs. electrical process for EEG), EEG has a much higher temporal
resolution than fNIRS. On the other hand, fNIRS potentially has a higher
spatial resolution (compared to an EEG recording for which the number of
electrodes is similar to the number of optodes in the fNIRS recording) and is
less prone to certain types of artifacts, such as those from muscular or ocular
sources, see [SGCT09]. The different origin of both signal types creates the
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potential for the combination of both signal types. A model which extracts
information from both EEG and fNIRS may be more accurate compared to
a system which uses only one signal type as each signal type may capture
different cognitive processes to complement the other one.

In contrast to audio and video sensors, physiological sensors and especially
those to record brain activity, require direct contact to the user’s body. Addi-
tionally, some of them, like classical EEG caps, require a cumbersome setup
procedure prior to application. This is a serious limitation for the acceptance
of interaction systems relying on such sensors. However, due to the fast-
paced development of high-quality electrodes and miniaturization, producers
of gaming accessory and traditional EEG equipment are in a continuous
process of deploying smaller and more convenient devices which work wire-
less, without electrode gel and with fixed electrode setups. Those recording
devices make BCI a possibility for the application in real-world scenarios,
especially if we can demonstrate a significantly measurable benefit for the
user.

2.2.2  Building Blocks of an Empirical Cognitive Model

Technically, the task of an empirical cognitive model can be formulated as a
classification problem: Choosing from a finite set of values, the model has to
classify the manifestation of the user state from a given signal segment. In
this thesis, we will be mostly looking at binary classification. In theory, it
would be desirable to train regression models of user states which predict a
user state on a continuous scale (e.g. workload level). However, the granular-
ity even for subjective assessments of such user states is limited to discrete
levels [RDMPO04], which severely limits the usefulness of regression models.

Empirical cognitive models can be categorized by several criteria. One of
those criteria is the differentiation between models which are trained from
labeled training data (supervised classifiers) and those which use clustering
methods on unlabeled data (unsupervised methods). In this thesis, we con-
centrate on supervised methods as those allow us to make use of knowledge
about the class distribution in the training data. Another important crite-
rion is whether the model processes stimulus-locked data, i.e. data which is
segmented from a data stream with a fixed temporal distance to a known
event, or performs continuous classification which does not rely on such in-
formation. In this thesis, we will look at both types of models. Furthermore,
we can discriminate empirical cognitive models between person-dependent,
person-independent and person-adapted models. Those groups of models
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describe the type of training data which is used to build the model. A
person-dependent model is trained only on data of the current user. A
person-independent model is trained on data from multiple persons and can
be applied to previously unseen users (it may require some amount of unla-
beled calibration data). A person-adapted model is between those extremes
as it combines person-independent training data with labeled data of the cur-
rent user (but in general requires less person-specific training material than
a purely person-dependent model). There are other criteria to categorize
empirical cognitive models, for example type of employed features, type of
classifier, etc. Those criteria will be discussed in the following sections.

The major steps of building an empirical cognitive model are 1) signal pre-
processing, 2) feature extraction and 3) training of the statistical classifier.
For training and evaluation of the model, we further need to 4) provide la-
beled data and to 5) define evaluation metrics. The remainder of this section
provides the necessary fundamentals on those five central steps for building
an empirical cognitive model.

Preprocessing

Preprocessing manipulates the incoming digital signal (i.e. after A/D trans-
formation and sampling). The main purpose of the preprocessing step is to
increase the signal-to-noise ratio, for example by removing the influence of
artifacts on the signal.

Typical preprocessing steps for EDA, BVP, RESP signals are drift removal
by highpass filtering normalization and smoothing by median filtering or by
lowpass frequency filtering. Signal drifts can for example be caused by warm-
ing of sensors or skin. Smoothing has the goal of removing high-frequency
components of the signal which are not caused by the measured physiological
construct but by artifacts, for example movement of the sensor on the skin.

Careful signal preprocessing is especially relevant for signals of brain activity.
To handle the impact of artifacts on the EEG signal and therefore on the re-
sulting features and classification results, a large number of methods has been
proposed. One group of methods tries to identify artifacts, for example by
inspecting the signal for certain non-EEG characteristics. The other group of
methods tries to remove the influence of the artifacts on the signal. One very
important tool for the latter group is the Independent Component Analysis
(ICA). Because of the importance of this method for many EEG applications,
we will now have a more detailed look at it: Independent component anal-
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ysis (ICA) is a statistical blind source separation approach [JH91]. Its goal
is to decompose a set of mixed input signals into a statistically independent
set of unmixed source signals (called components). For EEG preprocessing,
these components may represent localized brain activity or a signal portion
generated from an artifact source. Such artifact components can be filtered
or removed to clean the remaining signal from artifacts.

ICA transformation from signal space to component space is calculated as
a linear transformation applied to each data sample. More formally, let z;
(t=1...,n) beaset of n observed (EEG) channels mixed from the n sources
S1,...,8p,. It is assumed that the observations x; are a linear combination of
the sources:

T; = a;181 + Q282 + ... +am8n, Vi= 1, cee, N
This can be written using vector and matrix notation:
xr=As (2.1)

where A is called the mixing matrix. The only parameter known in Equation
2.1 is the observation vector z, while A and s need to be estimated. The main
assumption of ICA is that the components s; are statistically independent.
Further it is assumed that the independent components are not normally
distributed (with at most one exception). Under these conditions, we can
estimate the mixing matrix A: The Central Limit Theorem says that the
distribution of a sum of independent random variables converges towards a
Gaussian distribution. Therefore, the key to estimate the matrix A is to
maximize the non-Gaussianity of the components s in Equation 2.1 and to
minimize mutual information between them to yield statistically independent
components [HO00]. This general ICA framework is implemented in form of
several different algorithms (for example BinICA, Sobi or AMICA), which
differ in their approaches for measuring the non-Gaussianity of a distribution.
For artifact removal, usually one or several components are identified as
contaminated and then filtered or removed. The inverse transformation is
then applied to convert the signal back to a artifact-cleaned EEG signal.

Feature Extraction

The goal of the feature extraction step is to find a compact and generalizing
representation of signal characteristics which allow the classification of the
signal regarding the given classes. In most cases, the continuous signal stream
is cut into overlapping windows. One feature vector is calculated for each
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] Band Name \ Range ‘

0 4-8Hz
Q@ 8-13 Hz
B8 13-30 Hz
y >30Hz

Table 2.1 — Traditional frequency bands in EEG.

window. Window size and degree of overlap are tuning parameters of an
empirical cognitive model: While long windows and high overlap provide
more data for reliable feature estimation, short windows and low overlap
allow fast reaction to changes in user state.

Feature extraction for physiological signals can take place in time domain and
frequency domain. Time-domain features are most useful when we need to
recognize a temporally localized reaction to a well-defined event or (sensory,
cognitive or motor) stimulus. For EEG, such reactions are called Event Re-
lated Potentials (ERPs). [BLTT11] gives an overview on methods for extract-
ing time-domain features from the EEG signal with spatial-temporal filters.
Those in essence perform downsampling of the signal at specific channels
using non-uniform sampling intervals. Similar methods also apply to other
physiological signals.

Features from the frequency domain provide another form of signal repre-
sentation. Many physiological signal characteristics can be expressed in the
frequency domain, for example heart rate, respiration frequency, etc. For
measuring mental load or activity from EEG, the power distribution of the
frequency spectrum is a popular feature. This is motivated by the very early
observation that the power in different frequency bands responds differently
to different levels of cognitive activity. For example, increasing relative power
in the frequency range of 8 Hz to 13 Hz is correlated with increasing cognitive
load [vWSG84|. Table 2.1 shows the traditional definition of five frequency
bands measured in EEG. While those bands allow very general conclusions on
cognitive activity (e.g. resting state vs. cognitive activity), features for classi-
fication of cognitive states usually require a finer resolution to represent the
highly individual frequency power distributions [KRDP98] and more complex
user states (e.g. to determine the type of cognitive activity). For a more de-
tailed description of (EEG) frequency features, [KM11] compares a number of
feature characterizations which use different algorithms and representations
to extract frequency information.
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Data Labeling

In this thesis, we concentrate on supervised statistical classifiers. Training
of such a classifier requires to provide labeled training feature vectors. The
ground truth for labeling the classes of the training data must be provided
externally. There are different approaches to provide labels for user states.
Depending on the user state and the style of data collection, this can be
done a-priori (i.e. before the data collection) or post-hoc (i.e. after the data
collection). We will discuss the different labeling approaches for the example
of the user state workload. For this user state, a-priori labels can be generated
from different task difficulty levels which can be assumed to correlate to the
resulting workload level. Post-hoc labels for the user state of workload can be
generated using single- or multidimensional subjective workload assessment
questionnaires [RDMP04, Pau08]. One instrument for subjective workload
assessment which is used throughout this thesis is the NASA Task Load Index
(TLX) [HS88]. The TLX is a six-dimensional questionnaire which defines
workload as the individually weighted sum of the scales for mental demand,
physical demand, time pressure, performance, required effort and frustration.
Each dimension is measured on a 20-point scale. We often resort to the
RTLX variant [BBH89] which uses an unweighted sum of the individual,
which removes the time consuming process to determine the weights.

Classification

As the final step for building an empirical cognitive model, a statistical clas-
sifier is trained. While there exists a large variety of available classifiers (for
example Artificial Neural Networks, Gaussian Classifiers or Bayesian meth-
ods), we concentrate on the two classifiers which are the most frequently
used classifiers for BCIs: Linear Discriminant Analysis (LDA) and Support
Vector Machines (SVMs). Both offer good generalization capabilities and are
fast to compute. LDA (we follow the characterization of [DHS12]) is a lin-
ear feature transformation technique which maximizes between-class scatter
while simultaneously minimizing within-class scatter on the training data.
A transformation is defined as a linear function # ~ w?z. LDA chooses
the weight vector w which maximizes the discriminability of classes in the
training data. To this end, we first define the scatter $? as a measure of the
spread of a sample Y; with label 7+ and mean feature vector m;:

5 = Z(wTy —wim;)? (2.2)
yeY;
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Using this definition, we calculate the within-class scatter §% + 53 yielding a
measure of the samples’ joint spread. Having this, we can define the Fisher
linear discriminant function as the vector w that maximizes the criterion
function

CwTmy — w mg?

52+ 352

J(w) . Jwl =1 (2.3)
This criterion maximizes the distance between the projected sample means,
while minimizing the joint within-class scatter by varying the direction of w.
This can be solved as a generalized Eigenvalue problem. The LDA projects
the data in a one-dimensional space! and we can easily train a linear discrim-
ination function as a threshold in the center between the projected classes of
training data.

A Support Vector Machine (SVM) [CV95] is a linear binary statistical classi-
fier (extensible to more classes [WWo099]) that is optimized during training to
maximize the margin of the training samples to the separating hyperplane.
Given a set of sample-label pairs (z;,y;), ¢ = 1,...,n with z; € RP and
y € {—1,1}" the SVM hyperplane can be identified by solving the following
optimization problem:
1oy -

min oo w + C'iz:;fZ (2.4)
such that: ;- (wia; +b) > 1-§,
& = 0. '
The normal vector w and the offset b specify the separating hyperplane and
the slack variable & measures the allowed degree of misclassification of x;.
The training examples which are at the minimum distance to the separating
hyperplane are called support vectors. Many real-world classification prob-
lems are not linearly separable; in these cases, the SVM is often combined
with a kernel function ® which transforms the original feature space to a new
space of higher dimensionality, in which linear separability is possible. There
are several types of kernel functions, such as linear, polynomial, sigmoidal,
or radial basis functions.

When using multiple signal types or multiple types of features, it is often
beneficial to combine those different information sources in one fusion classi-
fier. [DK12] shows in a meta-study on affect recognition from different signal
types that fusion has a positive effect on recognition accuracy compared to
using classifiers which only employ one signal type. This effect is modest in

'In this thesis, we only give the definition of a 2-class LDA. In general, the LDA space
has at most £ — 1 non-singular dimensions, where k is the number of classes.
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size but consistent and statistically significant. There exist many techniques
for early fusion (on a signal or feature level) and late fusion (on a decision
level). In this thesis, we employ weighted majority voting as decision level
technique. This means that one classifier is trained per signal type and clas-
sifiers vote on the final result, whereby each vote is scaled with a weight
between 0 and 1. The advantages of this decision-level approach (compared
to early fusion on feature level) are little dependency on temporal alignment
of the involved signal types and the possibility to combine signal types of
different reliability by assigning appropriate weights.

Classifier Evaluation Metrics

When assessing the quality of an empirical cognitive model on labeled test
data, we can resort to several evaluation metrics. The most common met-
ric is accuracy. Accuracy is the ratio of the number of correctly classified
samples from the test data set to the number of all samples in the test data
set. When regarding test data with unbalanced class distribution or when
interested in the ability of the model to detect a specific class ¢, we can in-
stead calculate precision and recall. Equation 2.5 gives the definition of both
metrics, where T'P denotes the number of true positives (i.e. test samples
which are correctly classified as ¢), F'P the number of false positives (i.e. test
samples incorrectly classified as ¢) and F'N the number of false negatives (i.e.
test samples incorrectly not classified as ¢) for the regarded class. Finally,
the F-Score is the harmonic mean of precision and recall.

TP
precision = TP+FP .
Tp (2.5)
e —
reca TP+FN

2.2.3 Workload Recognition

The previous subsection has introduced the fundamentals of empirical cog-
nitive modeling. In this subsection (and the following one), we will turn our
attention to related work on models for a specific user state; this subsection
focuses on the user state “workload”.

Mental workload is known to influence a large number of physiological pa-
rameters — for example heart rate, respiration frequency, or brain activity —
which can be directly or indirectly measured and classified. In the following,
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we will summarize the State-of-the-Art in form of a number of successful eval-
uations of such systems to establish a common base of methods for empirical
workload modeling.

For example, [HP05] used several physiological signals, namely electrocardio-
gram, electromyogram, skin conductance, and respiration, to reliably classify
stress for 5-minute segments of real-world driving of 24 participants, catego-
rized in three different difficulty levels, defined by road characteristics. The
authors also performed an analysis of continuous, short-time recognition of
workload on 1-second windows. [LJB13] used completely non-invasive sensors
like microphones, camera and CAN-Bus information to assess the workload
of a driver in a realistic driving situation. The authors showed that certain
multi-tasking situations can be discriminated very reliably from pure driving
situations using their set of sensors, while multitasking conditions which did
induce only little visible or audible behavior changes are more difficult to
detect.

[LR11] used EEG to assess driver’s workload. The authors used a simulated
driving task by employing the Lane Change Task (LCT). While driving, par-
ticipants were operating a secondary n-back memory task. Both driving task
and secondary task were available in two difficulty settings and all combina-
tions were recorded, leading to nine different conditions which were labeled
according to the subjective workload assessment instrument NASA TLX.
The authors showed significant effects in EEG power spectrum, e.g. power
attenuation in the a-band with increased working memory load. They also
noted interaction effects on the power spectrum by the two tasks and also
noted differences between different types of tasks, e.g. the memory-loading
n-back and the vision- and motion-loading LCT task. [Mur05] recognized
different workload levels in a continuous matching task where workload is
controlled by levels of task difficulty. Evaluation of the NASA TLX and the
different reaction times validated that those difficulty levels actually corre-
spond to different workload levels. The authors used wavelets to estimate
spectograms of each block and used 6, o and [ band power and latency
of peak power in each band as features for classification. [BLR105] used
the Aegis simulator and generated realistic combat scenarios to generate five
levels of difficulty assigned to certain events and operations. EEG band
power features were used to classify four different workload levels on epochs
of one second length. The authors showed that they could identify events
dichotomized in a high and low workload group with near perfect accuracy.
[DWM13] recorded EEG data from 34 participants in a driving simulator.
They used stages of different driving demand levels to induce different levels
of workload. Common Spatial Filters (CSPs), which maximize the difference
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in variance between two given classes of signals, are applied to signals filtered
with band pass filters at different frequencies to extract participant-specific
spatial patterns for feature extraction. The authors also discussed the fact
that not all differences in the signals may be caused by actual brain activity
but by task-correlated EMG-artifacts. [WHW12] controls workload levels
using different levels of difficulty of the Multi-Attribute Task battery. The
authors concentrated on cross-participant classification. They employed a
hierarchical Bayesian model trained on data from multiple participants for
classification and power in the classical frequency bands as features. They
achieved a recognition accuracy of 80% for person-independent classification
on a corpus of eight participants. The authors of [BHVE™12] collected EEG
data from 35 participants performing an n-back memory task with different
levels of working memory load. Apart from frequency-based features, they
argued that time-domain features which capture Event Related Potentials
(ERPs) like the P300 also change when workload increases. They showed
that both types of signal characteristics can be used to predict the workload
level and that their combination leads to the best classification results, es-
pecially when only little data is available. Changes in P300 characteristics
are also exploited by [APO08]. Here, the authors assessed workload induced
by a first-person computer game, modulated by game difficulty. To achieve
the stimulus-lock required for ERP analysis, a parallel single-stimulus odd-
ball paradigm was used and the P300 response was evaluated as workload
index as high workload due to the primary task leads to increased latency
and reduced peak amplitude.

As most presented systems rely on some variation of frequency extraction
but may differ in the details of preprocessing, spatial filtering or feature
calculation, [KM11] reports the results of a comparison of eleven different
workload classification BCls using different features. Data is employed from
eight participants performing the Multi-Attribute Task battery, collected in
multiple sessions spread across one month. The authors compare feature
extraction methods using direct frequency estimates and methods extracting
frequency from spatially filtered estimated brain sources.

Recently, fNIRS was established as an alternative input modality for BCIs.
While fNIRS provides a lower temporal resolution compared to EEG, it can
potentially provide a higher spatial resolution [BPM™11]. The authors of
[SZH'08] placed fNIRS optodes on the forehead to measure concentration
changes of oxyhemoglobin and deoxyhemoglobin in the prefrontal cortex
during memory tasks. Using nearest neighbor classification, they achieved
better-than-chance accuracy for all three participants to discriminate be-
tween three different levels of workload. Similarly, the authors of [BIAT11]
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discriminated different workload levels for a complex Warship Commander
Task, for which task difficulty was manipulated to create different levels of
workload. They record fNIRS from 16 optodes at the dorsolateral prefrontal
cortex. While they did not perform single-trial classification, they saw signif-
icant differences in oxygenation between low and high workload conditions.
There was a significant difference in signal responses to different difficulty
settings for expert and novice users, which was mirrored by the behavioral
data. [HHF*14] showed that it is possible to classify different levels of n-back
difficulty corresponding to different levels of mental workload on a single tri-
als for prefrontal fNIRS signals with an accuracy of up to 78%.

[DK12] performed an extensive meta-study to investigate the impact of fu-
sion methods to improve recognition of user states by combining signals from
several signal types. The authors showed that across a large number of stud-
ies, fusion leads to a significant improvement in recognition performance,
although the effect size is often only modest (they find an improvement of
8.12% from the best individual classifier to the fusion classifier, averaged
across all studies). Their results also indicate that the performance of the
single-best individual modality has a strong impact on the fusion perfor-
mance. The term hybrid BCI generally describes a combination of several
individual BCI systems. A sequential hybrid BCI allows the first system to
act as a “brain switch” [PAB*10], while a simultaneous hybrid BCI system
usually combines entirely different brain signals to improve the result of each
individual signal modality. The first simultaneous hybrid BCI that was based
on simultaneous measures of fNIRS and EEG was proposed by [FMS*12] for
classification of motor imagery and motor execution recordings. The authors
reported an improvement in recognition accuracy by combining both signal
types.[HCG109] combined EEG and fNIRS data for workload estimation in
a counting task and see better results for fNIRS in comparison to frequency
based EEG-features. In contrast, [CBE12] presented results from a similar
study but showed worse results for the fNIRS features. As those few studies
on the combination of EEG and fNIRS present contradictory results, we see
that the synergistic potential between both signal types and their applicabil-
ity to specific classification tasks is still largely unknown.

To summarize, we note that there exists a large body of research on the detec-
tion of workload from various physiological sensors, with a focus on sensors
which capture brain activity. However, the task of detecting workload is far
from solved. Most of the presented evaluations used highly controlled setups,
which limits the validity of the results for realistic, uncontrolled scenarios.
Evaluation is usually performed on small corpora, which limits the generaliz-
ability of the results. Additionally, most research which uses signals of brain
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activity to recognize workload uses person-dependent systems, which limits
the applicability of such systems in situations where a short setup time is
required. Finally, nearly all research treats workload as a uniform construct
and does not differentiate types of workload, for example induced by tasks
which use different input signal types (e.g. vision or hearing). In this chapter,
we will address those limitations.

2.2.4 Confusion Detection

In this subsection, we review related work on the empirical cognitive models
for the user state confusion. Especially, we are interested in confusion which
results from erroneous system behavior caused by recognition errors of user
input. There exists a number of systems which make use of confidence scores
to estimate the presence of recognition errors [GHWO08, SSYH12]. However,
when statistical models are unreliable and generate incorrect results, it is
unreasonable to expect a very reliable confidence estimate. For example,
Vu et al. [VKS10] showed that confidence scores in ASR correlate well to
recognition performance for well-trained models but confidence reliability
starts to deteriorate for models which are trained on small data corpora or
data which does not match the testing data. This indicates that in order
to provide self-correcting behavior for a user interface, we need additional
information sources on the presence of an error besides confidence scores.
One promising candidate in this regard is the detection of Error Potentials
(ErrPs) from EEG. An ErrP is a characteristic pattern of brain activity which
is triggered by the perception of unexpected feedback of another agent (e.g.
a technical system) resulting from erroneous interpretation of the person’s
activity (e.g. user giving input to the system).

The analysis and recognition of ErrPs for improving both BCI-based and
other HCI applications already has some history. [SWMPO00] did one of the
first investigations of error potentials in the context of (BCI-based) HCI. In
their study, four participants performed at least 160 trials of a cursor control
task and the authors reveal differences in grand averages of data following
correctly classified and misclassified trials. They also noted that EEG data
immediately following the completion of a cognitive task (i.e. usually when
the feedback is presented) contained systematic eye blink artifacts as par-
ticipants often suppress blinking until the concentration phase is over. The
authors used artifact correction and rejection methods to reduce the influence
of those artifacts on their analysis. [FJO08] detected ErrPs from EEG data
recorded during the operation of a simulated BCI for spatial control with a
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predefined error rate of 20%. Using temporal features from electrodes Fz and
FCz without correction for ocular artifacts, calculated from 750 trials, they
achieved a correct classification rate of 0.82 for both classes (trial with or
without ErrP) and were also able to maintain this accuracy when transfer-
ring between sessions of the same participant from different days. [ICM*12]
described an approach to reduce the number of required calibration trials
by transferring data of the same participant from one ErrP task to another.
While the authors were able to achieve impressive improvements in calibra-
tion time and classification accuracy (from 0.69 to 0.74 accuracy for one con-
dition by using 200 transferred trials), they also see unstable results for some
conditions (i.e. for which the adaptation decreased recognition performance).
[VS12] propose an ErrP recognition system based on a consumer-level EEG
device. They perform person-dependent single trial classification, using a
test set of 80 trials of a cognitive task and achieve a recognition accuracy
of about 0.7. They also show that already a non-perfect recognition rate
between 0.65 and 0.8 is good enough to enhance an interactive system for
spatial item selection.

Most of the work on ErrP detection is rooted in the aim of improving BCI
performance. As an exception, describes the recognition of ErrPs for the
application in general HCI scenarios. They develop a gesture recognizer
which performs online learning from trials which were identified as erroneous
by an ErrP classifier. Their Bayesian classifier is based on temporal features
derived from electrodes at positions Fz and FCz. For each participant, the
system uses more than 2700 trials, or over two hours, of data. The reported
precision and recall are not very high (0.65 resp. 0.62), but nevertheless
impressive due to the realistic, unconstrained task.

To summarize, we see the that it is feasible to develop EEG-based empirical
cognitive models for the user state confusion. However, there is a lack of
research on models which are explicitly designed for realistic HCI applica-
tions. To overcome this lack, we see two main challenges: First, we need to
look for ways to reduce the required setup time for the user, for example by
providing person-adapted models. Second, we need to evaluate models on
realistic data which is recorded not only in pure BCI scenarios. One example
of such realistic scenario would target the detection of ErrPs in response to
gesture recognition errors. In this chapter, we will address both challenges.
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2.3 Person-Independent Workload Recogni-
tion

In this section, we pursue the goal of building an empirical cognitive model
for the user state workload?. We implement this model in the form of a
person-independent classifier that is able to discriminate two levels of work-
load induced by a selection and combination of different tasks. We record
EEG as well as other physiological signals to investigate the contributions of
different signal types to classification accuracy. We also aim for a validation
of the potential of workload recognition by providing a reliable estimate of
recognition accuracy. For this purpose, we perform the analysis on a large
data corpus of more than 150 participants performing a variety of cognitive
tasks.

While workload recognition from physiological data is not new per se (see
Section 2.2.3), this section contributes to the research community the devel-
opment of a person-independent workload model (in contrast to the strong
focus on person-dependent models in the literature). Furthermore, this model
is evaluated on a data corpus which exceeds existing evaluations by far in
terms of number of participants, number of evaluated tasks and number of
classification conditions (e.g. controlled vs. uncontrolled recording environ-
ment, task engagement vs. task count vs. task difficulty).

2.3.1 Tasks and Recording Environments

For training and evaluation of the workload classifier, we collected data sets of
152 participants. The data collection took place during an extensive biosignal
collection study ’CogniFit’® at Karlsruhe Institute of Technology (KIT). The
CogniFit study was a large data collection with the purpose of investigat-
ing the relationship between physical activity and cognitive performance. For
more details on the CogniFit study, refer to [KBB*12|. Each participant was
tested on three days. During one test day, participants performed a num-
ber of cognitive tasks while physiological data (EEG, BVP, EDA, RESP)
was recorded. For the purpose of the following evaluation, we look at the

2The experiments and results in this section are partially based on the diploma thesis
of Jan-Philip Jarvis which was co-supervised by the author of this thesis.

3We owe special thanks to Janina Krell and Klaus Bos of KIT and Alexander Stahn of
Charité Berlin for collaborating in participant recruitment and organization of the study.
CogniFit was partially funded by a Young Investigator Group grant to Alexander Stahn.
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recorded data from this day. Using the performed cognitive tasks, we defined
a number of classification conditions of different types. Fach classification
condition consists of a low workload and a high workload class. The three
types of classification conditions are: Task engagement (i.e. discriminating a
relaxed state from the state of cognitive activity induced by a task; abbrev.
TE), task count (i.e. discriminating a single-task condition from a multi-task
condition; abbrev. TC) and task difficulty (i.e. discriminating an easy task
from a difficult task; abbrev. TD). Additionally, we also look at two different
recording environments: Controlled recordings of a physically inactive par-
ticipants placed in front of a desktop computer and uncontrolled recordings
in an ecologically more valid scenario (i.e. increased relevance for real-world
HCI applications) in which the participant moved during recording.

Cognitive Tasks

To increase validity of the evaluation, we cover a number of different cognitive
tasks during our recordings. In the following, we briefly explain the employed
task paradigms.

In the Switching task (SWT) [Mon03], participants were asked to respond to
a sequence of trials. In each trial, the participants were presented a numeric
stimulus from the set [1,...,4,6,...,9]. The stimulus was padded either by
a solid or dashed line. If presented with a dashed line, the participants were
supposed to determine whether the stimulus was higher or lower than five. If
presented with a solid line, the task was to check if the stimulus was even or
odd. Participants gave responses using a computer keyboard. The Switching
task was conducted in two difficulty levels: For the easy variant, only trials
with solid line padding were presented. For the difficult variant, solid and
dashed line padding were presented. For both difficulty levels, each trial was
presented for 200 ms, with an inter-trial interval of 2000 ms.

The Lane Change Task (LCT) [Mat03] was executed in a driving simulator.
Here, participants were asked to drive down a three-lane highway at a speed
of up to 120 km/h. At regular intervals signs on both roadsides indicated a
request for a lane change (see left part of Figure 2.2). The participants were
asked to perform the lane changes as they would do in real life and travel at a
comfortable and safe speed. The metric to measure LCT performance is the
mean distance to the center of the optimal track (the mean track deviation).

The Visual Search Task (VST) was chosen following [Kuh05]. It was origi-
nally implemented to act as an abstraction of operating of a graphical in-car
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Figure 2.2 — Example of the Lane Change Task (left) and the Visual Search
Task (right).

user interface, e.g. for navigation. We used the implementation of the VST
provided together with the LCT with modified parameters. The participant
was presented a set of symbols (crosses, circles and squares) on a display and
was asked to identify and locate a target symbol (see right part of Figure 2.2).
The target symbol differs from the distraction symbols in line thickness and
symbol size. We defined two levels of difficulty by varying the relative size
of target symbol to distraction symbols and the number of fields that can be
selected as target symbol location. The participants controlled the task using
a number pad keyboard. A new screen was presented whenever participants
confirmed a decision on the current screen by pressing a button. The partic-
ipants’ task performance in the VST was measured using the percentage of
correctly identified target symbols.

The final cognitive task which we employed is the (auditory) n-Back task
(ANB). The n-Back (in our implementation) is a working memory task which
uses acoustic stimuli. The participants listened to a prerecorded series of
numbers in the range of one to ten and were asked to identify pairs of identical
numbers placed exactly n positions apart. The task difficulty was controlled
by n. We defined two difficulty levels: n = 1 for the easy level, n = 3 for
the difficult level. Independently of the difficulty level, inter-trial distance
was at 2000 ms. In this task, the participants responded using a number pad
keyboard. The participants’ task performance for the ANB was measured
using the number of correctly identified targets, independent of the response
time.
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Recording Environments

The four tasks SWT, LCT, VST and ANB were distributed across two dif-
ferent recording environments. In the controlled recording environment, the
participant sat on a chair on a desk in front of a 20” computer monitor. The
participant remained motionless apart from manual operation of a keyboard.
In this environment, we recorded the SWT (in both difficulty settings) and
a relaxing phase (REL). In the uncontrolled recording environment, the par-
ticipant was seated in a realistic driving simulator, see Figure 2.3. We based
our driving simulator on a real car and kept the interior fully intact and
functional to provide a realistic in-car feeling. The car is surrounded by a
projection wall, covering the view of the windshield and the side windows.
The simulator features acoustic feedback via engine sound and environmental
surround sound as well as haptic feedback in the seat (via tactile transduc-
ers) and steering wheel (via Force-Feedback). In the uncontrolled recording
environment, we recorded another relaxing phase as well as the LCT, either
without any additional task (“LCT baseline”) or combined with either the
VST or the ANB task (“LCT4+VST” and “LCT+ANB”). As there are two
difficulty levels for VST and ANB, this resulted in five runs of the LCT in
total. For task response in the driving simulator, a numeric keyboard was
strapped to the participant’s left thigh. We expected the recorded biosignals
in the uncontrolled environment to contain an increased amount of artifacts
compared to the controlled recording environment, e.g. caused by movement
of the participant. As most real-life HCI scenarios take place in uncontrolled
environments, it is important to investigate whether we are still able to cor-
rectly discriminate different workload levels in such environments.

Corpus Summary

The SWT in the controlled recording environment was performed twice, with
128 trials for the easy variant and 256 trials for the difficult variant. All tasks
in the uncontrolled environment were performed for a duration of 60 seconds
for each difficulty level. Relaxing phases lasted for 60 seconds in both record-
ing environments. Additionally, for each task, the participant was allowed a
free training period to get comfortable with it. The duration of the training
period was variable until participants were comfortable with the operation
of the task. Training involved both training of the individual tasks as well
as the regarded task combinations. Task order was counterbalanced across
participants to avoid systematic temporal effects on the recorded biosignals.
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Figure 2.3 — Driving Simulator with biosignal recording setup.

] Task(s) | Controlled? |
Relax both
easy SWT yes
difficult SWT yes
LCT no
LCT + easy ANB no
LCT + difficult ANB no
LCT + easy VST no
LCT + difficult VST no

Table 2.2 — Recorded combinations of cognitive tasks in the CogniFit corpus.

To summarize, the subset of the CogniFit corpus which we use in this section
consists of two relaxed recordings (one in each recording environment), one
recording of each difficulty level of the SWT, one baseline recording of the
LCT, and two recordings each of the VST and the ANB task in combination
with the LCT. Table 2.2 summarizes the different combinations of cognitive
tasks which were recorded for the CogniFit corpus. In total, 20 minutes
of recorded biosignal data for each participant were available. While this
corpus composition provided a variety of different task combinations and
task difficulty levels, it also created the challenge of data sparseness for each
experimental condition. We addressed this challenge by building person-
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Id low workload task high workload task
REL \ SWT \ LCT \ VST \ ANB || REL \ SWT \ LCT \ VST \ ANB

C_TE x diff.

C_TD easy diff.

U_TE X X diff.
U_TC_ANB X X diff.
U_TC_VST X X diff.
U_TD_ANB X easy b diff.
U_TD_VST X easy X diff.

Table 2.3 — Binary classification conditions, using data from controlled (u)
and uncontrolled (c) recording environments. We differentiate task engage-
ment (TE), task count (TC) and task difficulty (TD) to define different work-
load levels. The columns list the tasks involved in the definition of the condi-
tions.

independent empirical models. Such a model is able to exploit data from
many different persons, as are provided by the CogniFit corpus.

Classification Conditions

Using this set of tasks and recording environments, we define the binary clas-
sification conditions listed in Table 2.3. Each condition C_TE to U_TD_VST
defines a low workload class and a high workload class. In the following
subsections, we will implement and evaluate empirical cognitive models to
discriminate low from high workload classes for all conditions. We expect
the ¢_TE condition (REL vs. difficult SWT in the controlled recording envi-
ronment) to be easy to discriminate as cognitive inactivity is characterized
for example by typical resting rhythms in the EEG. For the u_TC_ANB and
U_TC_VST conditions, we are required to differentiate single-tasking from
multi-tasking situations for participants which are always engaged in a cog-
nitive task. The additional coordination effort for multi-tasking compared
to single tasking is known to correspond to characteristic neural activation
patterns [SSMvC02, DVP*13] which we will exploit to differentiate both
conditions. For the ¢_TD, U_TD_ANB and U_TD_VST conditions, we have to
discriminate two structurally identical task setups for which only the diffi-
culty of primary or secondary task varies. We expect that those are the most
challenging conditions for person-independent classification as the difference
between low and high workload class is not in the presence or absence of a
distinct cognitive process, but only gradually in the level of resource demand,
which is highly variable between different persons [RDMP04].
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2.3.2  Physiological Data Acquisition

To build the empirical cognitive workload model, we record data from a num-
ber of different physiological sensors. An active EEG cap (Brain Products’
ActiCap) was used to measure brain activity. The EEG-cap contains 16
active electrodes placed at the following positions according to the interna-
tional 10-20-positioning system: FP1, FP2, F3, F4, F7, F8, T3, T4, C3, Cz,
C4, P3, Pz, O1 and O2 with reference to the left mastoid. EEG data was
recorded at a sampling rate of 256 Hz.

Peripheral blood volume pressure was measured using a photoplethysmo-
graph to measure blood volume pressure (BVP) placed on the participant’s
left index finger and recorded at a sampling rate of 256 Hz. Electrodermal
activity (EDA) was recorded at a sampling rate of 256 Hz and measured by
a skin conductivity sensor placed on the palm of the participant’s left hand.
EDA and BVP sensor were both placed in a glove transmitting the signals
to the recording system via BlueTooth. Respiration (RESP) was measured
using a respiration belt at a sampling rate of 512Hz. The belt was placed
below the participant’s thorax and worn above all layers of clothing.

We used the BiosignalsStudio [HPAT10] (developed at the Cognitive Systems
Lab) to record the various data streams in a simultaneous fashion.

2.3.3 Biosignal Labeling & Behavioral Data

For supervised classification, it is necessary to assign a label to each data
segment. The label of a data segment corresponds to the workload level in
the segment. This section discusses several possibilities to define labels and
looks at relevant behavioral data to investigate the consistency of resulting
labels when using different approaches.

Defining labels for user states is ambiguous as many inner states cannot al-
ways reliably elicited and observed from the outside. There are three ways
to define such labels: Using a-priori labels depending on the condition under
which the data segment was recorded, using task performance as an objective
post-hoc indicator for workload or using subjective post-hoc self-assessment
of the participants from a questionnaire like the NASA-TLX [HS88] (see
Section 2.2.2). Potentially, those methods can lead to different labels, for
example when a variation of task difficulty does not lead to a correlated vari-
ation in task performance because participants are able to compensate for
the increased difficulty. In this section, we will compare the different labeling



38 Empirical Cognitive Modeling

methods and related behavioral data for the CogniFit corpus. This involves
an analysis of behavioral data to asses the impact of workload level on hu-
man performance in the tasks. Furthermore, we investigate the relationship
between the metrics for workload level and performance which are relevant
for label definition. We do this to learn whether different labeling methods
would lead to substantially different outcomes.

The raw task load index (RTLX) is an instrument (i.e. a questionnaire)
for subjective workload assessment. It is the average of the six different
TLX scales, mapped to a real number in the interval [0,1]. Zero is the
lowest and one the highest measure of perceived workload level assessed by
a questionnaire. The participants were presented an RTLX questionnaire
sheet after each task in the uncontrolled environment. Therefore, a total of
five questionnaires per participant was available for evaluation. Table 2.4
presents the resulting RTLX scores. We see significant differences between
the LCT baseline and LCT plus both easy secondary tasks. Additionally,
there are also significant differences in RTLX score between the LCT plus
easy secondary task and the corresponding LCT plus difficult secondary task.
p-values were corrected for multiple hypotheses testing using the Bonferroni-
Holm method (p < 0.001 for all listed comparisons). This validates the choice
of the classification conditions as low and high workload tasks.

y Task | RTLX |

LCT baseline 15.91 (o = 0.11)
LCT + easy ANB | 21.09 (¢ = 0.13)
LCT + diff. ANB | 46.01 (0 = 0.12)

( )
)

LCT + easy VST | 31.48 (¢ = 0.13
LCT + diff. VST | 45.96 (o = 0.12

Table 2.4 — Mean and standard deviation of RTLX results for different tasks.

After inspecting subjective workload assessment, we look at task performance
as objective metric of task difficulty. As most conditions in the uncontrolled
recording setup where dual-tasks, we have to look at the performance of both
LCT and the respective secondary tasks. To assess the impact of secondary
task presentation on driving performance, we performed a one-way ANOVA
on the participants” LCT performance. In Table 2.5, we present the average
LCT performance for all tasks in the uncontrolled recording environment.
The differences between the means are very small and consequently, the
ANOVA fails to detect significant differences between them. This indicates
that participants do not suffer in their main task performance when executing
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a parallel task but compensate either with additional effort or with reduced
attention for the secondary task.

] Task \ LCT Track Deviation \
LCT baseline 13.5 (0 = 3.3)
LCT + easy ANB 12.37 (0 = 2.4)
LCT + diff. ANB 16.48 (0 = 4.2)
LCT + easy VST 14.46 (o0 = 2.5)
LCT + diff. VST 14.95 (o = 4.7)

Table 2.5 — Mean and standard deviation of LCT error rate for different
combinations of cognitive tasks.

In Table 2.6, we show average performance for the secondary tasks in the
uncontrolled recording environment. For the ANB, we measured task perfor-
mance as average hit rate for the target stimuli. For the VST, we measured
task performance as hit rate with respect to the zone the target symbol was
in. Task performance significantly decreased in the difficult tasks of both
kinds, compared to the corresponding easy tasks. This shows that task dif-
ficulty has a substantial impact on secondary task performance.

] Task \ Hit Rate \

LCT + easy ANB | 92.36 (0 = 0.10)
LCT + diff. ANB | 82.51 (¢ = 0.07)
LCT + easy VST | 95.10 (o = 5.46)
LCT + diff. VST | 82.93 (0 = 17.41)

Table 2.6 — Mean and standard deviation of secondary task performance for
different combinations of cognitive tasks.

To investigate how we should assign class labels to the different recordings,
we performed a prestudy with 13 participants. This study confirmed that the
results of the different labeling methods are strongly correlated, see Table 2.7:
Task difficulty, secondary task performance and subjective workload assess-
ment all exhibit pairwise correlation of 0.82 or higher. This result implies
that using any of those measures to generate labels would yield very similar
results (in contrast, LCT performance would lead to very different labels, as
it is not correlated to any of the three measures with more than 0.5). This
observation encourages us to proceed with a-priori labels (i.e. derived from
task count or task difficulty) as those are easy to generate and do not need
to be dichotomized for binary classification.
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| | TLX [ ERR | LEV | puzer | orer |

TLX | 1.00 | 0.83 0.82 | 0.45 | 0.43
ERR | 0.83 | 1.00 094 | 0.54 | 0.46
LEV | 082 | 0.94 1.00 | 043 | 0.32
prer | 0.45 | 0.54 0.43 | 1.00 | 0.80
orcr | 043 | 0.46 0.32 | 0.80 | 1.00

Table 2.7 — Correlation coefficients of potential ground truth scores for VST:
RTLX, Secondary Task Error (ERR), Task Difficulty Level (LEV), mean
(urrx) and std. dev. (orrx) of deviation from ideal route.

2.3.4  Workload Classifier Setup

The design of the empirical workload model follows the general processing
chain described in section 2.2.2. For each signal type, signals were prepro-
cessed, we calculated features and trained an LDA classifier. To combine
information from different signal types, we applied weighted decision fusion.
In the following, we describe the different components of the classification
system in more detail.

Preprocessing

The main goal of our preprocessing is to increase the signal-to-noise ratio. As
signal characteristics are different for each signal type (EDA, BVP, RESP,
EEG), we treated each one individually: For EDA, the signal is filtered us-
ing a 25 sample median filter to remove white noise artifacts. Additionally,
a lowpass filter with a cutoff frequency of 1Hz was applied to the signal.
Finally the linear trend of the signal was removed. For RESP, a rectangular
finite impuls response highpass filter with a cutoff frequency of 1 Hz was ap-
plied to the respiration signal. Adjacent zero crossings of the filtered signal’s
slope were then used to extract respiration cycles. The BVP signal was not
preprocessed as the employed feature extraction itself is robust to artifacts.

For the EEG signal, a preprocessing step based on Independent Component
Analysis (ICA) was applied to remove eye movement artifacts from the raw
signal. The usage of ICA for the purpose of reducing eye movement artifacts
in EEG signals was proposed in [JMW™00]. As eye movement artifacts occur
highly correlated in all electrodes near the frontal lobe, ICA was expected to
return a decomposition containing these artifacts in one single component.
We use the spectral energy for the different ICA components for automatic



2.3 Person-Independent Workload Recognition 41

detection of an eye movement component: The components were filtered
using a band-pass filter with cut off frequencies 1-6 Hz. Choosing the com-
ponent with the highest energy in this band lead to a robust estimate of the
eye movement component. The filtered signal was obtained by applying a
high-pass filter with a cutoff frequency of 20 Hz to the eye movement compo-
nent and calculating the inverse ICA transform of the modified components.

Feature Extraction

After preprocessing, we extracted features for each signal type. To retrieve a
semi-continuous measure of the user’s workload, we extracted features from
sliding windows. In general, the window size governs the time resolution
of the classification system. A small window size yields a high temporal
resolution but only few samples are contained in each time window to esti-
mate the features. In this work, we aim to reduce the window size as far as
possible without affecting classification accuracy. The different physiological
processes influencing the physiological signals used in this study require the
usage of individual window sizes for each signal type. Therefore, an alignment
is necessary for synchronous windowing. We chose to align the windows by
the last sample. The window shift governs the decision output frequency of
the classifier. We chose a window shift of 0.25 s, yielding a decision frequency
of 4Hz.

We will know look at the concrete features for every signal type. The features
derived from the BVP, EDA and RESP signal were chosen following [HP05],
which showed their suitability for stress recognition. For the BVP signal, we
derive a total number of five features in time and frequency domain from a
window of 6s length:

e mean heart rate (PPG_MEAN),

e heart beat standard deviation (PPG_STD),

e bandpower 0 — 0.08 Hz (PPG_BDPWR_1),

e bandpower 0.08 — 0.15 Hz (PPG_BDPWR_2) and
e bandpower 0-15 — 0.5 Hz (PPG_BDPWR_2)

For each window, the mean heart rate was extracted using a peak detec-
tion approach: First, we calculated the Power Spectral Density (PSD) of the
signal using Welch’s method [Wel67] to determine the mean heart rate fre-
quency. The signal was then bandpass filtered using a rectangular bandpass
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filter centered at the mean heart rate frequency and using cutoff frequen-
cies of mean heart rate + 0.2 Hz which corresponds to + 12 heart beats per
minute. A peak detection on the filtered signal was then used to identify
the signal peaks. The standard deviation of the time between two heart
beats is then calculated from the peak positions and is also used as a fea-
ture. The bandpowers for the features PPG_BDPWR_1, PPG_BDPWR_2 and
PPG_BDPWR_3 are calculated using a n-point discrete Fourier transform.

For EDA, we extract a total number of six features from a window of 4s
length:

e signal mean (EDA_MEAN),

e standard deviation of EDA signal (EDA_STD),
e number of startles (EDA_ST_NO),

e sum of startle amplitudes (EDA_ST_SUM),

e sum of startle duration (EDA_ST_DUR) and

e arca under startles (EDA_ST_AREA).

Startles are sudden rises in the signal amplitude that are automatically de-
tected inspecting the signals slope using a thresholding approach. Startles
are associated with reactions to emotional or unexpected stimuli [VSL8S].

We extract the following seven features from the RESP signal from a window
of 10s length:

e mean respiration rate (RESP_MEAN),

e mean respiration depth (RESP_DEPTH),

e signal energy in the frequency band 0-0.1 Hz (RESP_BP_1),
e signal energy in the frequency band 0.1-0.2 Hz (RESP_BP_2),
e signal energy in the frequency band 0.2-0.3 Hz (RESP_BP_3),
e signal energy in the frequency band 0.3-0.4 Hz (RESP_BP_4).

For feature extraction from the EEG signal, we employed two different meth-
ods for frequency analysis, one based on Fourier transformation and one
based on Wavelet transformation. For the short time Fourier transform
(EEG_B) approach, the signal’s PSD was calculated on each window us-
ing Welch’s method [Wel67]. The resulting coefficients were logarithmized.
To smooth the resulting spectrum, we applied a Hamming function to each
window. We received 83 frequency coefficients between 4 and 45 Hz for each
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electrode. We then reduced the dimensionality of the feature space by av-
eraging over three adjacent frequency bins. To generate the final feature
vector, we concatenated the features for all electrodes.

For implementation of the EEG Discrete Wavelet Transformation (EEG_W)
feature extraction method, we employed Daubechies’ order three wavelets
(DB3). This approach serves for a good comparability to the traditional
frequency bands (see Section 2.2.2), as the pseudo frequencies of the wavelet

levels two to five roughly correspond to the y—, f—, a— and #— frequency
bands [AZDO03].

Feature Normalization

To account for inter-personal differences in physiological responses to differ-
ent workload conditions, we normalized the features for each participant. For
different use cases, we compared two different normalization modes. First,
we evaluated feature space normalization using unsupervised person-wise z-
normalization (mean subtraction and division by standard deviation) in ev-
ery feature space dimension (INT_-NORM) on both training and test data.
However, this approach is not suited for many real-world applications, as
the complete test data is used for calculation of normalization statistics.
This data is not generally available to an online recognizer, for example at
the start of a session. Therefore, we also used an alternative normalization
scheme calculating mean and standard deviation for each feature and user
from a previously recorded calibration data set not used in training or testing
(EXT_NORM). This approach can be applied in real-time applications by us-
ing bootstrapping of normalization statistics from unlabeled calibration data
at the beginning of a session. However, it is important to note that mean
and standard deviation estimates — and therefore the z-normalization result
itself — are dependent on class distributions, i.e. class distribution in the cal-
ibration data must be similar to the distribution in the testing data. In our

evaluation, classes were always balanced and this requirement was therefore
fulfilled.

Temporal Smoothing

In most real-world applications, we can expect the frequency with which the
users’ workload level changes to be lower than 4 Hz, which results from a
window shift of 0.25s. Therefore, we applied temporal smoothing to reduce
the frequency of workload estimate outputs to increase robustness in turn:
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We applied a running majority vote filter to the decision output of each
classifier prior to fusion. An n-point running majority vote filter provides a
smoothing on the classification-results yielded by a classification system: Let
wi, ... ,wk be the classification outcome (i.e. a list of classes) of a classifier
for k& > n adjacent windows and n an even filter length. Let count(€,c)
denote the counting function which returns the number of occurrences of a
class label ¢ in list 2. We then obtain the filtered classification outcome
Witz,...,wp—2 by letting:

W; = w;, where j = arg max count([wy, ..., wg], c)
C

In this work, we applied an eight-point running majority vote filter to the
classification outcomes of all individual classifiers prior to decision fusion.

2.3.5 Evaluation of Classification Performance

One central goal of this section was the extensive validation of the person-
independent empirical workload model. Consequently, the evaluation of the
classifiers consists of several parts: The first three parts deal with the clas-
sification performance of the model for three different categories of classi-
fication conditions: detection of task engagement, detection of task count
and detection of task difficulty. We performed these evaluations by using
leave-one-participant-out cross-validation on the first 75 sessions of the data
corpus. In the fourth part of the evaluation, we repeated the analyses from
the first three parts, but trained on the whole 75 first sessions and used the
remaining sessions of the corpus as a one-time testing set. This is followed
by the fifth part of the evaluation, which focuses on task transfer, i.e. the
evaluation of a model which was trained on one classification condition on
a different classification condition. In the final part of the evaluation, we
investigated the effect of temporal ordering on classification accuracy to rule
out than systematic temporal effects influenced classification accuracy.

As evaluation metric, we report classification accuracy in all parts of the
evaluation. Note that for each condition, the low workload and high workload
class are balanced, i.e. baseline accuracy of a trivial classifier is 50%.

Detection of Task Engagement

In Table 2.8, we see classification accuracy for the different signal types as
well as the decision fusion (DEC) for classification conditions C_TE and U_TE
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] | EEG_B | EEG_W | BVP | EDA | RESP | DEC |

C_TE (INT_NORM) 92.5 88.79 | 83.81 | 89.93 | 81.81 | 95.31
C_TE (EXT_NORM) | 85.96 85.0 | 79.05 | 86.97 | 81.92 | 93.46
U_TE (INT_NORM) | 76.94 | 64.28 | 84.0 | 71.54 | 75.99 | 85.02
U_TE (EXT_NORM) | 82.95 | 64.90 | 86.93 | 77.97 | 83.03 | 91.72

Table 2.8 — 2-class classification accuracy using session wise leave-one-
participant-out cross-validation on the C_TE and U_TE classification tasks (re-
lax vs. task engagement) using INT_NORM and EXT_NORM normalization.

which aim for the discrimination of task engagement vs. relax in both the con-
trolled and uncontrolled environment. We observe that while the controlled
recording environment provided higher classification accuracy than the un-
controlled recording environment (95.3% vs. 85.02% for the DEC classifier
using INT_NORM), task engagement can be reliably detected in both envi-
ronments. Furthermore, we see that in general, classifiers for all signal types
were capable of discriminating low vs. high workload. The fusion classifier
was superior to all individual classifiers. This supports the idea of combining
several signal types for robust classification. Finally, we observe that the
application of EXT_NORM had no adverse effect on classification accuracy.
On the contrary, in this evaluation, the average result using EXT_NORM ac-
tually outperforms INT_NORM. One possible reason is the larger variability
of the EXT_NORM calibration data, leading to a more robust estimation of
normalization parameters.

Detection of Task Count

The classification tasks U_TC_ANB and U_TC_VST defined low and high work-
load classes using single-task and dual-task conditions rather than using a
relaxed state and task execution. Table 2.9 summarizes the average classifi-
cation accuracy. Multitasking is more difficult to detect from physiological
parameters than task engagement, because for the U_TC_ANB and U_TC_VST
classification task, the participants are always cognitively active. Conse-
quently, fusion classification rates drop to 70.89% and 76.89% for INT_NORM
and respectively 66.48% and 69.15% for EXT_NORM. We note that in con-
trast to the previous evaluation, the fusion system does not outperform all
individual classifiers. This is because the EEG features are now contribut-
ing most to the overall result, while the other physiological features hardly
surpass the random baseline in terms of accuracy. This indicates that EEG
is more suited for classification tasks with more subtle differences between
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] | EEG_.B | EEG_W | BVP | EDA | RESP | DEC |

U_TC_ANB (INT_NORM) | 70.42 | 77.29 | 47.93 | 58.10 | 55.76 | 70.89
U_TC_ANB (EXT_NORM) | 61.34 | 69.29 | 50.2 | 63.09 | 48.11 | 66.48
U_TC_VST (INT_NORM) | 76.88 | 72.17 | 50.43 | 56.88 | 67.07 | 76.89
U_TC_vST (EXT_NORM) | 75.7 65.4 | 52.41 | 57.18 | 53.06 | 69.15

Table 2.9 — 2-class classification accuracy using session wise leave-one-
participant-out cross validation on the U_TC_ANB and U_TC_VST classification
tasks (single-task vs. multi-task) using INT_NORM and EXT_NORM normaliza-
tion.

conditions. Between the two different feature types for EEG, there is no
clearly superior approach. Therefore, decision fusion is still beneficial — even
if outperformed by a single EEG classifier in three of four cases — as it re-
duces the risk of choosing a suboptimal EEG feature for a given classification
condition.

The conclusions we draw from the results of the first two evaluation steps is
as follows: Simple physiological signals like BVP, EDA and RESP are good
choices for simple classification tasks (e.g. relax vs. task engagement), when
differences in signal characteristics are large. When the two classes become
more similar (e.g. single- vs. multi-tasking), performance of physiological sig-
nals deteriorates. In contrast, the performance for the EEG based classifiers
was only a bit lower for the U_TC_ANB and U_TC_VST conditions compared
to the task engagement conditions, but stayed relatively stable and provided
classification accuracy still far beyond the baseline. This indicates that a
person-independent workload classification from EEG is feasible and more
versatile compared to other physiological signals.

Detection of Task Difficulty

Table 2.10 shows results for the most difficult classification tasks, i.e. de-
tecting workload level induced by varying task difficulty for a single-tasks
(c_tp) and two dual-tasks (U_TD_ANB, U_TD_VST). Here, task count was
identical for both classes, only the difficulty of the tasks varied. For this cat-
egory of classification conditions, we only employed INT_NORM, as the large
individual differences required calibration data which optimally matched the
testing condition. As expected, accuracy was lower compared to the other
classification tasks. Still, the models significantly outperformed (p < 0.001
for all three cases) the random baseline for all three conditions with the de-
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] | EEG_B | EEG_W | BVP | EDA | RESP | DEC |
C_TD 71.08 69.91 62.92 | 61.56 | 62.02 | 76.19

U_TD_ANB | 61.68 | 62.38 | 53.26 | 40.72 | 54.62 | 59.95
U_TD_VST | 52.53 54.13 | 56.12 | 60.51 | 59.24 | 64.34

Table 2.10 — 2-class classification accuracy using session wise leave-one-
participant-out cross validation on the C_TD, U_TD_ANB and U_TD_VST classi-
fication tasks (task difficulty) using INT_NORM normalization.

] | EEGB | EEG.W | BVP | EDA | RESP | DEC |

U_TE 81.18 | 75.76 | 86.97 | 66.83 | 83.33 | 93.41
U_TC_ANB | 63.49 | 66.96 | 51.50 | 58.20 | 49.58 | 65.86
U_TC_VST | 73.99 | 68.63 | 48.49 | 53.97 | 53.104 | 66.02
Table 2.11 — 2-class classification accuracy obtained on a test set for different
classification conditions using the EXT_NORM normalization method.

cision fusion classifier. As expected, classification accuracy was highest for
the controlled condition ¢_TD. For ¢_TD and U_TD_ANB, the best individual
classifier was based on EEG features. For u_TD_ANB, EEG did not outper-
form the other signal types. Overall, this part of the evaluation shows that
person-independent classification was able to contribute to a discrimination
between different workload levels. This holds even if workload is not induced
by the number of processed tasks but by task difficulty.

Evaluation on Test Set

The previous results were obtained using session-wise cross validation on the
first 75 sessions of the data corpus. In Table 2.11, we present the classifica-
tion accuracy values yielded by our classification system trained on these 75
sessions and evaluated on the test set consisting of the remaining 77 sessions
of the CogniFit corpus. This test set was never presented to the algorithm
or used by the developer during the development and tuning process of the
classification systems. Although the classification accuracies of the individ-
ual classifiers differ slightly from the values obtained during cross validation,
the accuracy scores obtained by decision fusion are within 3% absolute range
of the results obtained by cross-validation for all investigated classification
conditions (and even slightly better for U_TC_vST). These results indicate
that the system generalizes well across participants.
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] | EEGB | EEG.W | BVP | EDA | RESP | DEC |
U_TC_ANB on U_TC_VST | 53.17 | 66.89 | 47.46 | 56.87 | 49.20 | 55.61
U_TC_VST on U_TC_ANB | 58.17 | 69.47 | 48.89 | 53.78 | 47.93 | 61.64

Table 2.12 — 2-class classification accuracy obtained on test set for task

transfer between U_TC_ANB and U_TC_VST using the EXT_NORM normaliza-

tion method.

Evaluation of Task Transfer

In the introduction, we argued that multi-tasking vs. single-tasking (i.e. the
task count) could be identified from general cognitive processes of coordi-
nation between multiple tasks, captured by EEG. To evaluate this claim,
we tested our person-independent models for task transfer. For this pur-
pose, we modified the previous evaluation on the test set in the following
way: A model was trained on the training set of one multi-tasking condi-
tion and evaluated on the test set of the other multi-tasking condition. For
example, in “U_TC_ANB on U_TC_VST”, the classifier was trained on data
from the U_TC_ANB task and evaluated on data from the U_TC_VST task.
We expected a drop in classification accuracy compared to evaluations with
matching training and test conditions, as we transfer between an auditory
memory task and a visual attention task, i.e. it is not possible to transfer
knowledge on the required cognitive resources. Table 2.12 summarizes the
results. We see that while the model lost some performance due to missing
task-specific information, we were still able to achieve classification accuracy
close to 70% from the EEG data. We see that the Wavelet-based features
outperform the STFT features which seem to capture more of the task spe-
cific feature characteristics. Also note that the classification of the fusion
system is not competitive in this evaluation. This is because fusion weights
depend highly on the classification condition, as seen in the previous evalu-
ations. For task transfer, weights were estimated on a condition which does
not match the condition of the test data. This lead to weights which do not
reflect the accuracy of the individual classifiers on the test data reliably.

Effects of Task Order

We know from other investigations of EEG analysis that ordering of tasks
potentially has a strong effect on the resulting EEG data [PWCS09]. Task
order during data collection can impact the participants’ inner state and thus
may negatively impact the validity of the features and the corresponding
ground truth from which the model is trained. Therefore, we analyzed the
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impact of the task order in the uncontrolled data collection scenario on the
physiological measures used for feature extraction.

To assess the impact of task order on the recorded signals, we conducted an
evaluation of a model which used training data from the U_TE setup (REL
vs. LCT + diff. ANB). Instead of workload-dependent class labels, we used
the index of the respective experiment in the task order as class label. This
means: data collected during the REL data was labeled with class label ONE
if REL was conducted first for the regarded participant. If LCT + diff. ANB
was conducted first, the REL data was labeled with class label Two. The
opposite holds for the class labels assigned to the data recorded during the
LCT + diff. ANB. As stated in Section 2.3.1, we adopted four different task
order schemes in the uncontrolled data collection scenario. In two of the
task orders, the LCT + diff. ANB was presented before the REL and in two
task orders the LCT + diff. ANB was presented after REL. Therefore, we
can assume the training data class distributions to be balanced for each fold
of a session-wise leave-one-out cross-validation on the first 75 sessions of the
corpus. When evaluating this classification condition, none of the classifiers
was able to accurately discriminate the sessions’ task orders significantly
better than chance (p > 0.05 for all classifiers in one-sample t-test against
the random baseline). This indicates that task order had no systematic
impact on the physiological measures used for this work.

2.3.6 Discussion

In this section, we described the implementation and evaluation of a person-
independent empirical cognitive model to discriminate workload levels de-
fined by task engagement, task count and task difficulty. We used a large
data corpus which exceeds the size of all known corpora on physiological data
for workload recognition. We investigated task transfer, reproduced the cross
validation results on an unseen test set and validated the results concerning
physiological plausibility and task order. The results showed the general-
izability of the learned models. To our best knowledge, all those results
contribute valuable novel findings to the research community.

Still, there are some open questions which remain for future research: While
we employed different cognitive tasks during the evaluation and also eval-
uated in uncontrolled recording environments, the used tasks are still not
very naturalistic. Recordings which emerge from more realistic (HCI) tasks
are more heterogeneous in workload distribution over time. Switching to
more ecologically valid tasks to induce workload would therefore add new
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challenges to the recognition task, as simple temporal fusion will not suffice
anymore to model the temporal patterns of such tasks. Another limitation
is that the method which we applied for transferring classification models
between participants and tasks only relies on normalization to reduce the
difference between recordings. In the future, we suggest to use more sophis-
ticated methods of transfer learning [PY10], for example transferring know-
ledge of feature representations between setups, to identify a generalizing
joint feature space.

2.4 Workload Modality Recognition

In this section, we describe the design and evaluation of an empirical cogni-
tive model that can detect or discriminate perceptual processes for different
modalities from measures of brain activity?*. We investigate how reliably a
hybrid BCT using synchronous Electroencephalography (EEG) and functional
Near Infrared Spectroscopy (fNIRS) signals can perform such classification
tasks. We describe an experimental setup in which natural visual and au-
ditory stimuli are presented in isolation and in parallel to the participant of
which both EEG and fNIRS data is recorded. On a corpus of 12 recorded ses-
sions, we trained empirical cognitive models using features from one or both
signal types to differentiate and detect the different perceptual modalities.

Multimodality refers to both the possibility to operate a system using mul-
tiple input modalities and to the ability of a system to present information
using multiple output modalities. For example, a system can either present
information on a screen using text, images and videos or it can present the
same information acoustically by using speech synthesis and sounds. How-
ever, such a system has to select an output modality for each given situation.
One important aspect to consider is the user’s workload level. If the workload
level is too high, it may negatively influence task performance and user satis-
faction. The workload level of the user also depends on the output modality
of the system. Which output modality imposes the smaller workload on the
user depends mainly on the concurrently executed cognitive tasks. Examples
for such concurrent tasks are: a spoken conversation with another person,
watching television or virtually any other engagement with a perceptual com-
ponent. Especially in dynamic and mobile application scenarios, users of a

4This section is partially based on the results of the diploma thesis of Sebastian
Hesslinger which was co-supervised by the author of this thesis.
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system are frequently exposed to external stimuli from other devices, people
or their general environment.

According to the multiple resource theory of [Wic08], the impact of a dual
task on the workload level depends on the type of cognitive resources which
are required by both tasks. If the overlap is large, the limited resources
have to be shared between both tasks. Consequently, overall workload will
increase compared to a pair of tasks with less overlap, even if the total in-
dividual task load is identical. For example, [YRM*12] showed a study in
which they combined a primary driving task with an auditory or visual task.
They showed that the difference in the performance level of the driving task
depends on the modality of the secondary task: According to their results,
secondary visual tasks impacted the driving task much more than secondary
auditory tasks, even if individual workload of the auditory tasks was slightly
higher than of the visual tasks. Neural evidence from a study [KMSM13]
of participants switching between bimodal and unimodal processing has also
indicated that cognitive resources for visual and auditory processing should
be modeled separately. Most basic visual processing takes place in the visual
cortex of the human brain, located in the occipital lobe, while auditory stim-
uli are processed in the auditory cortex located in the temporal lobes. Both
brain areas might be captured by non-invasive EEG or fNIRS sensors. This
clear localization of important modality-specific processing at accessible sites
in the cortex hints at the feasibility of separating both types of processing
modes.

These observations on multimodal stimulus processing imply that the choice
of output modality should consider the user’s cognitive processes. It is possi-
ble to model the resource demands of cognitive tasks induced by the system
itself (see [CTN09]). For example, we know that presenting information us-
ing speech synthesis requires auditory perceptual resources while presenting
information using a graphical display will require visual perceptual resources.
However, modeling independent cognitive tasks (i.e. not induced by the sys-
tem) is impossible in an open-world scenario where the number of potential
distractions is virtually unlimited. Therefore, we have to employ sensors to
infer which cognitive resources are occupied. To some degree, perceptual
load can be estimated from context information gathered using sensors like
microphones or cameras. However, if, for example, the user wears earmuffs or
head phones, acoustic sensors cannot reliably relate acoustic scene events to
processes of auditory perception. Therefore, we need a more direct method
to estimate those mental states. An empirical cognitive model can detect or
discriminate perceptual processes for different modalities directly from mea-
sures of brain activity and is therefore a strong candidate to reliably discrim-
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inate and detect modality-specific perceptual processes. In this section, we
investigate how reliably a hybrid BCI using synchronous Electroencephalog-
raphy (EEG) and functional Near Infrared Spectroscopy (fNIRS) signals can
perform such classification tasks.

This section contributes a number of substantial findings to the field of empir-
ical cognitive modeling for HCI: We train and evaluate two types of classifiers:
First, we look at classifiers which which discriminate between predominantly
visual and predominantly auditory perceptual activity. Second, we look at
classifiers which were able to detect visual or auditory activity (e.g. discrimi-
nate modality-specific activation from other or no activation) independently
of each other. The latter is ecologically important as many real-life tasks
demand both visual and auditory resources. We show that both types of
classifiers achieved a very high accuracy both in a person-dependent and
person-independent setup. We investigate the potential of combining differ-
ent feature types derived from different signals to achieve a more robust and
accurate recognition result.

2.4.1 Participants

12 healthy young adults (6 male, 6 female), between 21 and 30 years old
(mean age 23.6 £+ 2.6 years) without any known history of neurological dis-
orders participated in this study. All of them have normal or corrected-to-
normal visual acuity, normal auditory acuity, and were paid for their par-
ticipation. The experimental protocol was approved by the local ethical
committee of National University of Singapore, and performed in accordance
with the policy of the Declaration of Helsinki. Written informed consent was
obtained from all participants and the nature of the study was fully explained
prior to the start of the study. All participants had previous experience with
BCI operation or EEG/fNIRS recordings.

2.4.2 Experimental procedure

Participants were seated in a sound-attenuated room with a distance of ap-
proximately one metre from a widescreen monitor (24” BenQ X1.2420T LED
Monitor, 120Hz, 1920x1080), which was equipped with two loudspeakers on
both sides (DELL AX210 Stereo Speaker). During the experiment, par-
ticipants were presented with movie and audio clips, i.e. silent movies (no
sound; VIS), audiobooks (no video; AUD), and movies with both video and
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audio (MIX). We have chosen natural, complex stimuli in contrast to more
controlled, artificially generated stimuli to keep participants engaged with
the materials and to achieve a realistic setup.

Besides any stimulus material, the screen always showed a fixation cross.
Participants were given the task to look at the cross at all times to avoid an
accumulation of artifacts. When there was no video shown, e.g. during audio
clips and during rest periods, the screen pictured the fixation cross on a dark
gray background. In addition to the auditory, visual and audiovisual trials,
there were IDLE trials. During IDLE, we showed a dark gray screen with a
fixation cross in the same way as during the rest period between different
stimuli. Therefore, participants were not be able to distinguish this trial
type from the rest period. In contrast to the rest periods, IDLE trials did not
follow immediately after a segment of stimulus processing and can therefore
be assumed to be free of fading cognitive activity. IDLE trials were assumed
to not contain any systematic processing of stimuli. While participants re-
ceived other visual or auditory stimulations from the environment during
IDLE trials, those stimulations were not task relevant and of lesser intensity
compared to the prepared stimuli. In contrast to AUD, VIS and MIX trials,
there was no additional resting period after IDLE trials. In the following, we
use the term trial type to discriminate AUD, VIS, MIX, and IDLE trials.

The entire recording, which had a total duration of nearly one hour, consisted
of five blocks. Figure 2.4 gives an overview of the block design. The first block
consisted of three continuous clips (60s audio, 60s video, 60s audio&video
with a break of 20s between each of them. This block had a fixed duration
of 3 minutes 40 seconds. The remaining four blocks had random durations
of approximately 13 minutes each. The blocks 2-5 followed a design with
random stimulus durations of 12.5s + 2.5s (uniformly distributed) and rest
periods of 20s £ 5s (uniformly distributed). The stimulus order of different
modalities was randomized within each block. However, there was no two
consecutive stimuli of the same modality. Figure 2.5 shows an example of
four consecutive trials in the experiment. Counted over all blocks, there were
30 trials of each category AUD, VIS, MIX and IDLE.

st gl woee | x| wooa [ 5] woss [[5] mons |
’ © i g i g i g i (e}
Segments) L (30 Trials) (30 Trials) (30 Trials) (30 Trials)
I ] [ ] ) S -
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3.5 minutes ~ 13 minutes ~ 13 minutes ~ 13 minutes ~ 13 minutes

Figure 2.4 — Block design of the experimental setup.
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Figure 2.5 — Example of four consecutive trials with all perceptual modalities.
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The stimuli of one modality in one block formed a coherent story. During the
experiment, subjects were instructed to memorize as much of these stories
(AUD/VIS/MIX story) as possible. In order to ensure that participants paid
attention to the task, they filled out a set of multiple choice questions (one for
each story) after each block. This included questions on contents, e.g. “what
happens after...?”, as well as general questions, such as “how many different
voices appeared?” or “what was the color of ...7”. According to their
answers, all participants paid attention throughout the entire experiment.
For the the auditory trial type, participants achieved an averaged correct
answer rate of 85%, whereas for the visual trial type there is a correct answer

rate of 82%.

2.4.3 Data acquisition

To capture fNIRS, a frequency-domain oximeter (Imagent, ISS, Inc., Cham-
paign, IL, USA) was used for optical brain imaging. Frequency-modulated
near-infrared light from laser diodes (690nm and 830nm, 110 MHz) was
conducted to the participants head with 64 optical source fibers (32 for
each wavelength), pairwise co-localized in light source bundles. A rigid
custom-made head-mount system (montage) was used to hold the source
and detector fibers to cover three different areas on the head: one for the
occipital cortex (vision-related area) and one on each side of the tempo-
ral lobe (audition-related area). The multi-distance approach as described
in [WWC03, JHFB06] was applied in order to create overlapping light chan-
nels. Figure 2.6 shows the arrangement of sources and detectors in three
probes (one at the occipital cortex and two at the temporal lobe). For each
probe, two columns of detectors were placed between two rows of sources each
to the left and the right, at source-detector distances of 1.7 cm to 2.5 cm. See
Figure 2.6(a) for the placement of the probes and Figure 2.6(b) for the ar-
rangement of the sources and detectors. After separating source-detector
pairs of different probes into three distinct areas, there were a total of 120
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channels on the visual probe and 110 channels on each auditory probe. Thus,
there was a total number of n, = 340 channels for each wavelength. The sam-
pling frequency used was 19.5 Hz. This comparably low sampling rate (when
compared to EEG) results from temporal multiplexing of channels. Because
of the nature of the fNIRS signal (which is determined by a mechanical pro-
cess), this sampling rate is sufficient.

EEG was simultaneously recorded with an asalab ANT neuro amplifier and
digitized with a sampling rate of 256 Hz. The custom-made head-mount sys-
tem, used for fNIRS recording, enabled us to place the following 10 Ag/AgCl
electrodes according to the standard 10-20 system: Fz, Cz, Pz, Oz, O1, O2,
FT7, FT8, TP7, TP8. M1 and M2 were used as reference.

CEEQ elecirode
NIRS source
NIRS detector

| Opt. lightpath

o e X

(a) (b)

Figure 2.6 — Locations of EEG electrodes, fNIRS optrodes, and their corre-
sponding optical lightpath. The arrangement of fNIRS sources and detectors
is shown projected on the brain in subfigure (a) and as unwrapped schematic
in subfigure (b) for the two auditory probes (top left and right) and the visual
probe (bottom).

After the montage was positioned, the locations of fNIRS optrodes, EEG
electrodes, as well as the nasion, pre-auricular points and 123 random scalp
coordinates were digitized with Visor (ANT BV) and ASA 4.5 3D digitizer.
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Using each participant’s structural MRI, these digitized points were then
coregistered, following [WMFGO8], in order to have all participants’ data in
a common space, independent of individual brain geometry.

2.4.4  Preprocessing

The preprocessing of both fNIRS and EEG data was performed offline. Op-
tical data included an AC, a DC, and a phase component; however, only
the AC intensities were used in this study. Data from each AC channel was
normalized by dividing by mean, pulse-corrected following [GC95|, median
filtered with a filter length of 8s, and downsampled from 19.5Hz to 1Hz. The
downsampled optical density changes AOD, were converted to changes in
concentration of oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) using
the modified Beer-Lambert law (MBLL) [SFO04]:

AOD) = L}, DPF*(efy,o A[HbO]. + ey, A[HDR],). (2.6)

L;\J is the distance traveled by the light from source i to detector j; DPF*
is the differential path-length factor, and e,o, €,r are the wavelength-
dependent extinction coefficients of HbO and HbR, respectively. The partic-
ular quantities within this study were based on standard parameters in the
HOMER?2 package, which was used for the conversion process from optical
density to HbO and HbR valuesHDFB09]. That is, DPF* = 6.0 for both
A1 = 830nm and Xy = 690nm. Values of molar extinction coefficients e*
were taken from [Pra98]. Based on equation 2.6, hemoglobin changes were
estimated by the following least-squares solution:

A[HDOL]  rr 1 [AOD,! /LY DPFM
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Finally, common average referencing (CAR) was applied to the converted
data in order to reduce noise and artifacts that are common in all n, chan-
nels ([AYG12]). Thereby, the mean of all channels is substracted from each
individual channel c. It is performed on both A[HbO] and A[HbR]:
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A0, (1) = A[HBOL (1) — 30 AIHO(1),
c =t (2.9)
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EEG data were preprocessed with EEGLAB 2013a [DMO04]. First the data
was bandpass filtered in the range of 0.5-48Hz using a FIR filter of standard
filter order 6 (= m -sampling rate). Then, ocular artifacts were rejected
using Independent Component Analysis (ICA) as proposed by [JMWT00]. In
this process, all 10 channels were converted to 10 independent components.
One component of each participant was manually rejected based on prefrontal
eye blink artifacts. Finally, a pre-stimulus mean of 100ms was substracted

from all stimulus-locked data epochs.

2.4.5 Grand Averages

We will now look at averaged EEG and fNIRS signals for the different classes
to learn about systematic differences between classes. Figure 2.7 shows the
haemodynamic response function (HRF') for selected channels averaged over
all 12 participants for auditory stimuli (AUD, blue), visual stimuli (VIS, red),
and no stimuli (IDLE, black). The stimulus locked data trials (blocks 2-5)
are epoched by extracting the first 10s of each stimulus, and a 2s prestim-
ulus baseline was substracted from each channel. There was a clear peak
in the HRF in response to a VIS stimulus on channels from the occipital
cortex (channels 141 and 311 in the Figure) and a return to baseline after
the stimulus is over after 12.5s. Both effects are absent for an AUD stimu-
lus. Conversely, the channels from the auditory cortex in the temporal lobe
(channels 30 and 133 in the Figure) react much stronger to an auditory than
to a visual stimulus.

Figure 2.8 shows the first second of EEG ERP waveforms of trial types AUD
(blue), VIS (red), and IDLE (black), averaged over all 12 participants. As
expected, it shows distinct pattern for auditory and visual stimuli when
comparing electrodes at the visual cortex (Oz, O1) with electrodes at more
frontal positions (Fz, FT7). Note that the auditory cortex cannot be accessed
by surface EEG. Regarding the frequency domain, it is widely known that
frequency responses can be used to identify cognitive processes [vWSG84].
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Figure 2.7 — Grand averaged HRF's of HbO (top) and HbR (bottom) for visual
(left) and auditory (right) channels. Depicted are averages for the classes AUD
(blue), VIS (red), and IDLE (black).

Figure 2.9 shows EEG power spectral densities on a logarithmic scale at elec-
trodes at prefrontal cortex (Fz), occipital cortex (Cz) and auditory cortex
(FT7). The figure indicates strong differences in frequency power distribu-
tion between classes. The peak in the alpha band (8-13 Hz) for the AUD trial
type is expected, but unusually pronounced. We attribute this to the fact
that the VIS stimuli are richer than the AUD stimuli as the visual stimulus
material often contains multiple focal points of interest (e.g. occurring char-
acters) at once. The difference between VIS and AUD trials does also not
only involve perceptual processes but also other aspects of cognition, as they
differ in content, processing codes and other parameters. On the one hand,
this difference is partially specific to the scenario we employed. On the other
hand, we argue that this difference between visual and auditory information
processing pertains for most natural situations. We will further investigate
the impact of this issue in Section 2.4.7.
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To summarize, given the observed differences in EEG and fNIRS signals

between classes, we expect to be able to successfully discriminate workload
classifiers on a single-trial basis.
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Figure 2.8 — Grand averaged ERPs at 4 different electrode positions (frontal
(top) and occipital (bottom)). Depicted are averages over all 12 participants
for the trial types AUD (blue), VIS (red), and IDLE (black).

2.4.6 Classification

In this study, we first aimed to discriminate auditory from visual perception
processes. Second, we wanted to detect auditory or visual processes, i.e.
distinguish modality-specific activity from no activity or other activity.

To examine the expected benefits of combining the {NIRS and EEG signals,
we first explored two individual classifiers for each signal domain, before
we examined their combination by estimating a meta classifier. The two
individual fNIRS classifiers were based on the evoked deflection from baseline
HbO (HbO classifier) and HbR (HbR classifier). The EEG classifiers were based
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Figure 2.9 — Power Spectral Densities of EEG signals at Fz, Cz, FT7 for
three different trial types AUD (blue), VIS (red), and IDLE (black). PSD is
averaged over all 12 participants.

on induced band power changes (POW classifier) and the downsampled ERP
waveform (ERP classifier).

fNIRS features: Assuming an idealized haemodynamic stimulus response,
i.e. a rise in HbO (HbO features) and a decrease in HbR (HbR features),
stimulus-locked fNIRS features were extracted by taking the mean of the
first § samples (i.e. to — 5,...,%op) subtracted from the mean of the fol-
lowing ¥ samples (i.e. top, - .., tope + %5 ) in all channels ¢ of each trial, similar
to [LCW11]. Equation 2.10 illustrates how the features were calculated.

topt+ topt
2 2 P
f0 == [ Y A[HDO], ZA [HbO],
W\ Z topt t=topt—1 910
2 topt+ topt ( ’ )
f®r == [ Y A[HDR],(t) =Y A[HbR],
w
t=topt t= topt—j

EEG features: For POW, the entire 10 seconds of all 10 channels were trans-
formed to the spectral domain using Welch’s method, and every 1Hz fre-
quency bin in the range of 3-40Hz was concatenated to a 38-dimensional fea-
ture vector per channel. ERP features were always based on the first second
(onset) of each trial. First, we applied a median filter (k,,.q = 5 ~ 0.02s) to
the ERP waveform, followed by a moving average filter (kq,, = 13 ~ 0.05s).
A final downsampling of the resulting waveform (Kgown = kavy) produced a
20-dimensional feature vector for each channel.

In the end, all features, i.e. HbO, HbR, POW, and ERP, were standardized to
zero mean and unit standard deviation (z-normalization).
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Based upon these four different feature types, four individual classifiers were
trained. Then, a fifth meta-classifier was created based on the probabil-
ity values for each of these individual classifier’s prediction outcome. This
META classifier was based on the weighted decision values p,, of each of the
four individual classifiers, mapped to a probability distribution of classes.
Each element in p,, characterized a probability for one particular trial type,
predicted by the m-th classifier (with m being the index to the individual
classifiers). The combined decision values of ourMETA classifier were given by

4
1

—meta - = .

P = E Din * Wi (2.11)

In the following, C' = {1, ..., k} includes the indices of all classes, i.e. k = |C|
indicates the number of classes. Then, the class chet € C, which has the
highest prediction among all four individual classifiers, was selected by the
META classifier.

'pmeta‘
1
Chest = argmax pre®  where pY°'* = |pmeta (2.12)
ceC .
meta
[ D

The weights w,, were estimated based on the classification accuracy for a
development set. Classification accuracy values higher than baseline (pure
chance) were linearly scaled between 0 and 1, while those below baseline were
discarded (w,, = 0). Afterwards, the weight vector W = [wy, wy, w3, w4| was
divided by its 1-norm in order to sum all of its elements to 1.

1 1
[O, E} — 0, and {E’ 1} —[0,1] 3wy, (2.13)

For three classifiers (HbO, HbR, and POW), a linear discriminant analysis (LDA)
classifier was employed, while a linear support vector machine (SVM) was
used for the ERP classifier (using the LibSVM implementation by [CL11]). We
did this because we expected the first three feature sets to be more discrimi-
native as they are less prone to inter-trial variability (caused by outliers) and
intra-trial variability (caused by the complex temporal patterns of an ERP).
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2.4.7 Results

In this section, we present the evaluation results for the proposed hybrid BCI
for a number of binary classification tasks. We call each classification task a
condition. We regard two types of condition: First, a condition to discrimi-
nate visual from auditory activity (assuming that each classified trial belongs
exactly to one of the two classes VIS or AUD). Second, multiple conditions
to detect one type of perceptual activity, independently of other perceptual
or cognitive activity (e.g. also for trials which do not contain any perceptual
activity or both visual and auditory activity).

In the person-dependent case, we applied leave-one-trial-out cross-validation
(resulting in 60 folds for 60 trials per subject). To estimate parameters of
feature extraction and classification (t,,; and w from Equation 2.10 for each
fold, fusion weights w,, from Equation 2.13), we performed another nested
10-fold cross-validation (i.e. 54 trials for training and 6 trials for evaluation
in each fold) for the train set of each fold. The averaged accuracy in the inner
cross-validation is used for parameter selection in the outer cross-validation.
This procedure avoided overfitting of the parameters to the training data.
In the subject-independent case, we performed leave-one-person-out cross-
validation, resulting in a training set of 660 trials and a test set of 60 trials
per fold.

Person-Depdendent Classification

Tables 2.13 summarizes the classification accuracy for all conditions for both
the person-dependent evaluation. The first row is a discriminative task in
which the 2-class classifier learned to separate visual and auditory perceptual
activity. We see that for all four individual classifiers, a reliable classification
is possible. EEG-based features outperform fNIRS features (HbQ: 79.4% vs.
POW: 93.6%). The fusion of all four classifiers (META) yields the best perfor-
mance, significantly better (paired, one-sided t-test, a = 0.05) than the best
individual classifier by a difference of 4.4% absolute. This is in line with the
results of [DK12], who found modest but consistent improvements by com-
bining different modalities for the classification of inner states. Figure 2.10
shows a detailed breakdown of classification results over all participants for
the example of AUD vs. VIS. We see that for every participant, classification
performance for every feature type was above the chance level of 50% and
the performance of META was above 80% for all participants.
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Test Acc. in %

| HbO | HbR | POW | ERP | META |

| AUD vs. VIS

[ 79.4 [ 74.3]93.6 | 93.3 | 97.8*

|

AUD vs. IDLE

80.0

4.7

71.9

91.4

95.6*

VIS vs. IDLE

83.8

78.1

90.7

81.9

96.4*

allAUD vs. nonAUD | 67.2

62.8

69.7

85.9

89.0*

allVIS vs. nonVIS | 68.5

64.7

91.5

81.9

94.8*

Table 2.13 — Stimulus-locked classification accuracies (in %) for person-
dependent classification. An asterisk in the META column indicates a significant
improvement (a = 0.05) over the best corresponding individual feature type.

|

| HbO | HbR | POW | ERP | META |

| AUDvs. VIS | 70.3]65.7 843|904 | 94.6* |
AUD vs. IDLE 64.0 | 61.9 | 66.1 | 84.2 | 86.9*
VIS vs. IDLE | 72.2 | 69.0 | 82.5 | 75.3 | 89.9%
allAUD vs. nonAUD | 60.6 | 58.8 | 41.7 | 85.6 | 84.7
allVIS vs. nonVIS | 62.7 | 62.0 | 84.2 | 73.1 | 86.7

Table 2.14 — Stimulus-locked classification accuracies (in %) for person-
independent classification. An asterisk in the META column indicates a signif-
icant improvement (o = 0.05) over the best corresponding individual feature

type.
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Figure 2.10 — Stimulus-locked classification accuracies of AUD vs. VIS for
person-dependent, as well as for person-independent classification. Recogni-
tion rates of the META classifier are indicated by a grey rectangular overlay
over the individual classifiers’ bars.
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Person-Independent Classification

In the next step, we evaluated person-independent classification on the same
conditions as for the person-dependent evaluation. The results for this eval-
uation are summarized in Table 2.14. Averaged over all conditions, classifi-
cation accuracy degrades by 6.5% compared to the person-dependent results.
This is mostly due to a higher signal variance caused by individual differ-
ences. Still, we managed to achieve robust results for all conditions, i.e.
person-independent discrimination of visual and auditory processes is fea-
sible. The remaining analyses will be reported for the person-independent
systems only as those are more preferable for HCI.

] trained on. .. \ evaluated on. .. \ HbO \ HbR \ POW \ ERP \ META \
AUD vs. IDLE MIX 67% | 63% | 47% | 88% | 88%
VIS vs. IDLE MIX 69% | 68% | 69% | 84% | 7%
AUD vs. IDLE VIS 66% | 66% | 52% | 48% | 48%
VIS vs. IDLE AUD 59% | 61% | 49% | 50% | 48%

Table 2.15 — Subject-independent classification results of classifiers for AUD vs.
IDLE and VIS vs. IDLE, evaluated on different trials from outside the respective
training set.

Detection of Perceptual Modality

The AUD vs. VIS condition denotes a discriminination task, i.e. to classify
a given stimulus as either auditory or visual. However, for an HCI appli-
cation, auditory and visual perception are not mutually exclusive, i.e. they
may either occur at the same time or be both inactive in idle situations. We
therefore need to define conditions which train a detector for specific percep-
tual activity, independently of the presence or absence of other perceptual
activity. Our first approach towards such a detector for either auditory or
visual perceptual activity is to define the AUD vs. IDLE and the VIS vs. IDLE
conditions. A classifier trained on these conditions should be able to identify
neural activity induced by the specific perceptual modality. In Table 2.13, we
see that those conditions can be discriminated with high accuracy of 95.6%
(person-independent) and 96.4% (person-dependent), respectively. To test
whether this neural activity can still be detected in the presence of other per-
ceptual processes, we evaluate the classifiers trained on those conditions also
on MIX trials, which combine perception of auditory and visual stimuli. The
top two rows of Table 2.15 summarize the results for the person-independent
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case and show that perceptual activity is correctly classified in most cases by
the META classifier.

For the AUD vs. IDLE and the VIS vs. IDLE conditions, it is not clear if a
detector trained on them has actually detected visual or auditory activities
or rather general cognitive activity which was present in both the AUD or VIS
trials, but not in the IDLE trials. To analyze this possibility, we trained a
classifier on the AUD vs. IDLE condition and evaluated it on VIS trials (and
accordingly for VIS vs. IDLE on AUD trials). We present the results in the
bottom two rows of Table 2.15. The classifiers yield very inconsistent results
and ’detect’ the modality-specific activity in non-matching trials in nearly
half of the cases. They do not exceed the chance level of 50%. To train a
classifier which is more sensitive for the modality-specific neural character-
istics, we need to include non-IDLE trials in the training data as negative
examples. For this purpose, we define the condition allAUD vs. nonAUD,
where the al1AUD class is defined as al1AUD = {AUD, MIX} and the nonAD is
defined as nonAUD = {IDLE, VIS}. allAUD contains all data with auditory
processing (but potentially not exclusively), while nonAUD contains all data
without auditory processing (but potentially with other activity). The con-
dition allVIS vs. nonVIS is defined respectively. The bottom two rows of
Tables 2.13 and 2.14 document that the trained classifiers can robustly de-
tect modality-specific perceptual activity for both conditions. In the former
case of the AUD vs. IDLE and the VIS vs. IDLE conditions, we showed that
the classifier only learned to separate general activity from a resting state. If
this was also the case for the al1AUD vs. nonAUD and the allVIS vs. nonVIS
conditions, we would expect a classification accuracy of 75% or less (for ex-
ample, in the al1VIS vs. nonVIS condition, we would expect 100% accuracy
for the VIS, MIX and IDLE trials, and 0% accuracy for the AUD trials). This
baseline is outperformed by our classifiers for detection. This result indi-
cates that we were indeed able to detect specific perceptual activity, even
in the presence of other perceptual processes. This result shows that the
new detectors did not only learn to separate general activity from a resting
state (as did the detectors defined earlier). If that would have been the case,
we would have seen a classification accuracy of 75% or less: For example,
if we make this assumption in the allVIS vs. nonVIS condition, we would
expect 100% accuracy for the VIS, MIX and IDLE trials, and 0% accuracy
for the AUD trials, which would be incorrectly classified as they contain gen-
eral activity but none which is specific to visual processing. This baseline
of 75% is outperformed by our classifiers for detection. This result indicates
that we were indeed able to detect specific perceptual activity, even in the
presence of other perceptual processes. For additional evidence, we look at
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how often the original labels (AUD, VIS, IDLE, MIX) were classified correctly
in the two new detection setups by the META classifier. The results are sum-
marized in Table 2.16 as a confusion matrix. We see that all classes are
correctly classified in more than 75% of all cases, indicating that we detected
the modality-specific characteristics in contrast to general cognitive activity.

] | AUD | VIS | IDLE | MIX |

allAUD vs. nonAUD | 91.1 | 85.3 | 85.0 | 77.2
allVIS vs. nonVIS | 81.9 | 94.2 | 82.2 | 88.3

Table 2.16 — Person-independent classification accuracy (in %) of the META
classifier for the al1AUD vs. nonAUD and the allVIS vs. nonVIS conditions,
broken down by original labels.

Comparison of Signal Types

The results in Tables 2.13 and 2.14 indicate that fusion (META) was useful
to achieve a high classification accuracy. There was a remarkable difference
between the results achieved by the classifiers using fNIRS features and by
classifiers using EEG features. This holds across all investigated conditions
and for both person-dependent and person-independent classification. We
suspect that the advantage of the META classifier was mostly due to the com-
bination of the two EEG based classifiers. We investigated this question by
comparing two intermediate fusion classifiers. Those combined only the two
fNIRS features (ENIRS-META) or the two EEG features (EEG-META), respec-
tively. The results are given in Figure 2.11. The results show that for the
majority of the conditions, the EEG-META classifier performed as good as or
even better than the overall META classifier. In contrast, the fNIRS features
contributed significantly to the classification accuracy for the conditions AUD
vs. IDLE and VIS vs. IDLE. To exclude that the difference was due to the
specific fNIRS feature under-performing in this evaluation, we repeated the
analysis with other fNIRS features (average amplitude, value of largest am-
plitude increase or decrease). We did not achieve improvements compared
to the evaluated feature. Overall, we see that fNIRS-based features were
outperformed by the combination of EEG based features on the investigated
task but could still contribute to a high recognition accuracy in some of the
cases.
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Figure 2.11 — fNIRS-META (red) vs. EEG-META (blue) evaluated for both
person-dependent and person-independent classification for different condi-
tions.

Impact of EEG Frequency Band Selection

There are however some caveats to the dominance of EEG features. First,
the ERP classifier is the only one of the four classifiers which uses features that
highly dependent on temporal alignment to the stimulus onset. Therefore, it
is not suited for continuous classification. Second, concerning the POW classi-
fier, we see in Figure 2.9 a large difference in alpha power between VIS on the
one hand and AUD and IDLE on the other hand. As we cannot completely rule
out that this effect is caused at least in parts by the experimental design or
participant selection (e.g. trained participants which can unusually quickly
enter a resting state when no stimulus is presented), we need to verify that
the discrimination ability of the POW classifier does not solely depend on dif-
ferences in alpha power. For that purpose, we repeated the evaluation of AUD
vs. VIS with different sets of filters, of which some excluded the alpha band
completely. Results are summarized in Figure 2.12. We see that as expected,
feature sets including the alpha band performed best. Accuracy dropped by a
maximum of 9.4% relative when removing the alpha band (for the participant
dependent evaluation from 1-40Hz to 13-40Hz). This indicates the upper fre-
quency bands still contain useful discriminating information, but brings the
EEG based results closer to the results of the fNIRS-based features.

2.4.8 Discussion

The results from the previous section indicate that both the discrimina-
tion and detection of modality-specific perceptual processes in the brain
is feasible. This holds for both the person-dependent as well as a person-
independent case with high recognition accuracy. We see that the fusion of



68 Empirical Cognitive Modeling

AUD vs. VIS (subject dependent) AUD vs. VIS (subject independent)
100 919 947 933 100

83.6 82.9

80r

60

40

Accuracy [%]

20t

1-6Hz 7-12Hz 13-20Hz13-40Hz 1-40Hz 1-20Hz 1-6Hz 7-12Hz 13-20Hz13-40Hz 1-40Hz 1-20Hz
Frequency [Hz] Frequency [Hz]

Figure 2.12 — Classification accuracy for different filter boundaries for the POW
feature set, evaluated for both person-dependent (left) and person-independent
(right) classification of AUD vs. VIS.

multiple features from different signal types led to significant improvement
in classification accuracy. However, in general fNIRS-based features were
outperformed by features based on the EEG signal. One difference between
fNIRS and EEG signals is the fact that the f{NIRS signals may still contain
artifacts which we did not account for (like we did for the EEG signal by
ICA). Artifact removal techniques for fNIRS have been applied with some
success in other research on fNIRS BCIs [MD12]. Another difference is that
the coverage of fNIRS optodes was limited mainly to the sensory areas, but
the EEG measures may include activity generated from other brain regions,
such as the frontal-parietal network. Activities in these regions may be re-
flecting higher cognitive processes triggered by the different modalities, other
than purely perceptual ones. It may be worthwhile to extend the f{NIRS con-
dition to include those regions as well. Still, we already saw that fNIRS
features can contribute significantly to certain classification tasks.

While evaluation on stimulus-locked data allows a very controlled evaluation
process and is supported by very high accuracy, this condition is not very
realistic for most HCI applications. In many cases, stimuli will continue
over longer periods of time. Features like the ERP feature explicitly model
the onset of a perceptual process but will not provide useful information for
ongoing processes.

Following the general guidelines of [Fai09], we identify one limitation in va-
lidity of the present study is the fact that there may be other confounding
variables that can explain the differences in the observed neurological re-
sponses to the stimuli of different modalities. Participants were following the
same task for all types of stimuli; still, factors like different memory load or
increased need for attention management due to multiple parallel stimuli for
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visual trials may contribute to the separability of the classes. We address
this partially by identifying the expected effects, for example in Figure 2.7
comparing fNIRS signals from visual and auditory cortex. Also the fact that
detection of both visual and auditory processing worked on MIX trials shows
that the learned patterns were not only present in the dedicated data seg-
ments but were to some extend generalizable. Still, we require additional
experiments with different tasks and other conditions to reveal whether it is
possible to train a fully generalizable detector and discriminator for percep-
tual processes.

2.5 Recognition of Confusion

The last two previous sections dealt with empirical cognitive models for work-
load. As motivated in Section 1.2.2, another important user state relevant for
HCI applications is confusion. We define confusion as the cognitive state re-
sulting from erroneous system feedback presented to the user. This situation
typically occurs when the user’s input is not correctly recognized. Incorrect
recognition of user input is a regular event for interaction systems which use
automatic speech recognition, active BCls for computer control or gesture
recognizers. Users do not directly perceive that their input is incorrectly
recognized. Instead, they indirectly notice erroneous system behavior when
the system feedback to their input (e.g. the selection of a menu entry, the
execution of a certain function, etc.) does not match their expectations. As
a result, the users are confused by such system behavior.

In this section, we describe the development of an empirical cognitive model
for the user state confusion, using EEG. While EEG-based person-dependent
models for confusion detection already exist (see Section 2.2.4), this work
contributes to the research community the development of a person-adapted
classifier for confusion, trained and evaluated on a simple calibration task of
simulated BCI operation. Another contribution to the research community
is that we show that this classifier transfers to data recorded in a realistic,
gesture-based HCI scenario.

2.5.1 Error Potentials & Confusion

We base our implementation of a model for confusion on the detection of error
potentials in the EEG signal. An (interaction) error potential (ErrP) is a
type of Event Related Potential, i.e. a characteristic pattern of brain activity
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triggered by a specific type of stimulus. An ErrP occurs after an erroneous
behavior of an observed agent, which can be another person or a technical
system. In HCI, an ErrP is triggered by the perception of unexpected and
erroneous system feedback to the user’s input. The concept of an ErrP is
related to the concept of Error Related Negativity /Positivity (ERN /Pe):
The ERN and Pe are a low-latency reactions to an error of the acting person
him- or herself. A variant of the ERN, the feedback-related Error Negativity
(fERN) is a reaction to external feedback signaling an error of the person him-
or herself. In contrast to both ERN and fERN, an interaction error potential
(ErrP) is related to errors of another agent. One major difference between the
different types of error signals manifests in the latency of the resulting signals.
While an ERN occurs 80 ms after an error of the person, a typical ErrP can
be measured at front-central electrode positions and occurs in a window of
about 150 ms to 600 ms after the error of the observed agent. This difference
in latency is because an ErrP can only occur after an external stimulus has
been perceived, while an ERN results from internal processes only. The most
pronounced components of an ErrP are a negative peak around 250 ms and
a positive peak around 350 ms [FJ08]. The exact contour and latency of an
ErrP may vary with tasks and individual participants [ICM*12]. Figure 2.15
shows a typical ErrP pattern as difference between brain activity following
error-free (noErrP) and erroneous feedback (ErrP).

The task of modeling the user state “confusion” from ErrPs in the EEG
signal can be defined as a two-class classification problem: A given EEG
data segment either contains an error potential following erroneous feedback
(i.e. it belongs to the ErrP class) or not (i.e. it belongs to the noErrP class).
One fact we can exploit for the classification of error potentials is that in
many situations, it is clear at which point in time exactly we can expect
an error potential to occur. This is for example the case for the common
scenario of graphical system output where feedback to user’s input occurs
instantaneously. This is beneficial for the ErrP detection, because it reduces
the number of segments we need to inspect for ErrPs (and thus decreases the
false alarm rate). Another benefit is that a tight alignment of the inspected
data segment to the stimulus which potentially triggers an ErrP reduces the
variability of signal patterns in the analyzed data segments.

2.5.2  ErrP Elicitation Paradigms

To collect data for training and evaluation of an empirical confusion model,
we need a procedure to elicit the user state confusion. We differentiate two



2.5 Recogpnition of Confusion 71

paradigms to induce confusion in an HCI context. In both cases, we record
data during a live interaction session of a user with a system, during which
erroneous feedback to user’s input occurs.

In the first elicitation paradigm, we manipulate the occurring errors with a
Wizard-of-Oz setup: The user is not actually operating the system by his or
her input commands, but the outcome of each input command is predefined
(i.e. whether the system generates correct or erroneous feedback to a user
command). We call this paradigm Wizard-ErrP. In the second paradigm,
the user is operating a fully functional automatic system, which elicits ErrPs
because of actual input recognition errors. We call this paradigm Automatic-
ErrP.

The advantage of the Wizard-ErrP paradigm is that we have full control over
the balance between ErrP and noErrP trials for every participant. Another
benefit of Wizard-ErrP is that it can be applied even when a fully automatic
input recognizer is not available (e.g. during early stages of development).
However, we may experience label noise (i.e. trials which are not labeled cor-
rectly) with Wizard-ErrP if the user notices the missing relation between his
or her performance and the task outcome. We can also not exploit informa-
tion from the user’s original input for the detection or handling of confusion
in the Wizard-ErrP paradigm, as the input is not actually related to feedback
of the system. The Automatic-ErrP paradigm, i.e. the unconstrained oper-
ation of a fully functional user interface, does circumvent those problems:
Whenever the input recognizer misinterprets the user’s input, we can label
the following EEG segment as belonging to the ErrP class, without the risk of
adding label noise®. The Automatic-ErrP paradigm generates more natural
reactions to erroneous feedback. When using this paradigm, it is possible to
exploit information from the user’s input which lead to an error, for example
to check whether the user’s input was untypical or whether the confidence
of the input classifier was low. A drawback of the Automatic-ErrP is that it
requires a functional user interface. If the error rate of the input recognizer
is too high, too low, or too variable for different users, the generated ErrP
corpus will be very unbalanced regarding ErrP and noErrP class labels.

In the following, we will use data recorded from both paradigms. In both
cases, it is important to not mix error potentials occurring after a simulated or
real system error with error potentials occurring due to a mistake of the user.
Therefore, the task must be designed in way that user errors do not occur or
are clearly distinguishable from system errors. As we are investigating EEG

5This assumes that erroneous feedback is always recognized as such by the user. If not,
label noise will rise for both elicitation paradigms.
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signals prone to various ocular and muscular artifacts, we should also design
experiments in a way that minimize the impact of systematic, class-specific
artifacts.

2.5.3 Experiment Design

To collect data for our research on person-adapted ErrP classification, we
conducted two studies with different experiment setups.

For the first study (which we call BCI-Error), we designed a simple exper-
iment which also functions as a calibration task for new applications. This
experiment follows the Wizard-ErrP paradigm to elicit confusion. In order
to evoke ErrPs generated by unexpected behavior of an interactive system,
we developed a BCI mockup similar to the one presented in [FJO8]. A screen
showed two numbers in one line. Participants where told to operate a BCI
to select the larger of the two numbers. For this purpose, participants were
asked to choose two mental images to represent the concepts ’left” and ’right’
and they reproduced those images to select the target number. Numbers
were presented at a distance of 1 cm such that participants had both num-
bers in the visual focus without producing ocular artifacts. Participants
pressed a button when they concentrated on the command for the number
they wanted to select. Then, they were presented with a predefined feedback
(a circle around the selected number), corresponding to an simulated error
rate of 30%. Before feedback, we inserted a pause of one second for motor
activation to decay. Participants were given the impression that they were
operating a working BCI but were also made aware of the fact that due to
signal noise, they should expect a certain number of errors. The task was
chosen to be simple enough to make sure that for every trial, the participant
actually expected the correct response, i.e. we can regard each simulated
error to actually induce an ErrP. After the experiments, participants were
debriefed about the true nature of the experiment and the operated BCI.

In the second experiment (which we call Gest-Error), errors were not simu-
lated but resulted from the recognition error of an automatic system (i.e. we
followed the Automatic-ErrP paradigm). Here, participants were operating
an automatic gesture recognizer which detected a number of pointing ges-
tures to select one out of six options displayed on a screen. The option which
was recognized by the gesture recognizer as selected was highlighted visually
to give the user feedback to their input. The timing of the task was such that
feedback was presented when the participant was in a resting position, i.e. not
generating motion artifacts. Feedback was presented in form of a pictogram
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symbolizing the selected option. It was presented on a fixed position (to
avoid systematic eye movement artifacts) as a large, high-contrast overlay.
Participants were instructed to pay attention to the feedback with the moti-
vation to improve gesture recognition accuracy. This procedure was chosen
to increase the likelihood and effect size of an ErrP. We deliberately did not
tune the gesture recognizer for maximum recognition accuracy (average of
61%), to achieve an acceptable balance of ErrP /noErrP classes. The system
thus generated erroneous feedback with an average probability of 39%. The
recording setup for the Gest-Error experiment is described in more detail in
Section 4.6, as it was also part of a user study on a self-correcting gesture
interface.

2.5.4 Data Collection

EEG was recorded at 500 Hz using a BrainVision actiCHamp system with
32 active electrodes, of which 23 were used for evaluation®: Fz, F3, F7, FC5,
FC1, C3, T7, CP5, CP1, P3, P7, O1, 02, P4, CP6, CP2, Cz, C4, T8, FC6,
FC2, F4, F8. Impedance was kept below 16k(2 for all electrodes. Pz was used
as reference electrode and an additional light sensor attached to the stimulus
presentation screen was used for synchronization.

Using this setup, we recorded data from 20 participants (one session each)
in the BCI-Error study. Participants were university students from several
different departments and had no previous experience with BCIs. The data
set was balanced for gender. Participants completed a varying number of
trials but never less than 150 plus a small number of training trials. We
decided for this experiment to keep the total recording time around five to
ten minutes. On average, the pure task time, which varies as the task is
self-paced, was less than nine minutes, i.e. it took participants less than four
seconds for one trial. With this short duration, the task can also function as
a calibration task to collect ErrP data of a person for adapting an existing
confusion model to that person.

For the Gest-Error experiment, we collected data from 11 participants (one
session each), using the same recording setup as for the BCI-Error experi-
ment. All participants were university students (4 female, 7 male). For each
participant, we collected 72 or 144 trials. The average gesture recognition ac-
curacy (i.e. the relative frequency of the noErrP class) was 61%. Table 2.17

6 As different electrode montages were used, not all of them were available for all sessions
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summarizes the most important information about the two collected data
sets.

\ \ Experiment I \ Experiment 11 \

Name BCI-Error BCI-Gest
Paradigm of ErrP elicitation | Wizard-ErrP | Automatic-ErrP
Number of participants 20 11

Num of trials per participant 150-200 72-144
Relative freq. of ErrP class 30% 39%

Table 2.17 — Summary of our ErrP experiments and the collected data sets.

2.5.5 ErrP Classifier

In this subsection, we will describe the components of our person-adapted
ErrP classifier. We will use the same classifier for data from both, the BCI-
Error and the Gest-Error data set.

To extract the classification trials, segments of 500 ms succeeding the feed-
back stimulus were extracted. We assigned labels ErrP and noErrP based on
whether correct or incorrect feedback was given. Using stimulus-locked data
extraction is not a limitation for ErrP classification, as in many application
scenarios, the event which triggers an ErrP can be clearly located in time
(e.g. the display of a new screen on a graphical user interface). For prepro-
cessing, data was re-referenced to a common average. Each trial was then
detrended and normalized by subtracting the mean of 200 ms before stimu-
lus. To extract features, the data of the channels Fz and Cz was subsampled,
averaging over a window of 50 ms length with a shift of 25 ms. Features from
both channels were concatenated, which resulted in a feature vector with 28

dimensions’.

Most ErrP classification systems in the literature refrain from the use of ar-
tifact filters (e.g. [FJ08, VS12]) or do not see improvements when using them
(e.g. [SBKT12]). We propose the moderate use of artifact removal techniques
when dealing with EEG data from different participants, as individual eye-
movement artifacts hamper the classifier’s ability to extract generalizable
EEG patterns. To remove the most critical artifacts, we performed an Inde-
pendent Component Analysis (ICA) using the AMICA [PMDROS] algorithm.

"Note that while features where only calculated from two electrodes, the remaining
electrodes where still used for artifact removal.
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Figure 2.13 — Topographic maps of the removed ICA components. Compo-
nents 1 and 2 are dominated by occular artifacts. Components 3 and 4 mainly
contain brain activity.

Two components with strong frontal activity and very smooth power spectra
were automatically removed. Which components were removed was selected
by minimizing cosine distance of the corresponding spatial filters to a proto-
type filter generated from another data set of a similar ErrP task. ICA was
computed on all ErrP trials from all available training sessions. This method
allowed us to perform fast and fully automatic artifact correction. All com-
putationally expensive steps can be performed offline before classification
and all remaining operations for feature extraction and classification are of
low complexity, which makes this approach feasible for online classification.

Figure 2.13 shows the topographic map of the removed components (compo-
nents 1 and 2 in the figure). For comparison, we also show two components
which mainly contain brain activity (components 3 and 4 in the figure). The
effect of the component removal is notable: Figure 2.14 and 2.15 show Grand
Averages of the ErrP and the noErrP class at Fz calculated before and after
artifact removal. We see that the averaged signal after artifact removal clearly
resembles a characteristic ErrP pattern as published in [SBK*12] or [FJ0§]
while the original pattern before correction contains strong artifacts super-
imposed on the brain activity. We will later see how this difference influenced
classification performance.

For classification, we looked at both person-dependent and person-adapted
approaches. As classification model, a Support Vector Machine with Radial
Basis Function Kernel was employed, using the SVMLight implementation of
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Figure 2.14 — Grand average (red: noErrP, blue: ErrP, green: error-minus-
correct) at Fz (raw data)
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Figure 2.15 — Grand average (red: noErrP, blue: ErrP, green: error-minus-
correct) at Fz (after ICA filtering)

the Shogun Toolbox®. Kernel parameters were fixed at C' =1 and vy =5 (y =
25 for the person-dependent system, to account for smaller training corpus
size). Training data was balanced (i.e. the noErrP class was undersampled
by randomly removing trials) to not bias the classifier towards the majority
class. The training data for the model always comprised calibration trials
of the test participant. For the presented evaluation (see Subsection 2.5.6),

8http:/ /www.shogun-toolbox.org
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those calibration trials were a random subset of the available session of the
test participant.

A person-adapted classifier tries to reduce the number of required calibration
trials (compared to a person-dependent classifier) per participant by combin-
ing calibration trials by the test participant with training data from other
participants. While providing additional training data is beneficial in general,
simply adding all available sessions to the training data set can compromise
classification accuracy. This is because some of those sessions might contain
data of sub-optimal recording quality or data from participants with very
different ErrP characteristics compared to the test participant. To identify
the most relevant training sessions for the given testing session, we calcu-
lated the Bhattacharyya distance [Kai67] between the available calibration
features of the test participant and features from each training session. For
training, we then only used the 20% closest sessions plus the provided calibra-
tion data of the test person. Whenever data sets from different participants
were combined, data for each participant was z-normalized individually to
make feature vectors commensurable.

2.5.6 Evaluation

In this section, we will evaluate different configurations of the developed ErrP
classifier on the two collected data corpora, BCI-Error and Gest-Error.

We first evaluated the classifier on the BCI-Error corpus. Evaluation was per-
formed in a leave-one-participant-out cross-validation. As calibration data
was selected randomly, performance metrics for each configuration are aver-
aged across ten evaluation runs. The reported quality metric is the F-score
for the ErrP class if not noted otherwise.

We compare results for four different training configurations of the classifier:
BASE was the baseline person-adapted configuration, for which all available
training sessions were concatenated together with the available calibration
data of the test participant. ICA used the same training data as BASE but ad-
ditionally used the ICA-based artifact correction. DIST was a person-adapted
configuration which selected training sessions in addition to the calibration
data as described in the previous section. PD was a person-dependent con-
figuration trained only on the available calibration data without data from
other participants. DIST and PD both apply ICA. Table 2.18 summarizes the
different classifier configurations.
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] Configuration \ ICA? \ Use of Calibration & Training Data \

PD yes only calibration
BASE no calibration + all training
ICA yes calibration + all training
DIST yes | calibration + training similar to calibration

Table 2.18 — Person-dependent and person adapted ErrP classifier setups.
The term “training data” refers to data which is from participants other than
the test participant.

Effect of Artifact Removal and Calibration Set Size

Figure 2.16 shows classification performance over the number of provided
calibration data. The first observation we make is that that removal of
ocular artifacts consistently has a positive effect (an improvement of up to
7.7% relative of ICA compared to BASE) across all conditions. This indicates
that the classifier does not rely on such artifacts for achieving a high accuracy.
In the contrary, removal of such artifact actually helps the classifier to extract
generalizing EEG patterns.
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Figure 2.16 — F-scores for different modes and calibration set sizes.

Furthermore, we see that adding more calibration trials from the test partic-
ipant consistently improved recognition accuracy. What is the best method
of exploiting available training data and calibration data depended on the
amount of calibration data available: If very little training data was available,
the system performed best with a completely person-dependent training set
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consisting of only the calibration data (PD). We postulate that this happened
because when the calibration data set is very small, complementing it with
a much larger number of trials which do not all fit the current test partici-
pant had a detrimental effect on the classification performance. For a small
calibration set, we were not able to reliably sort out the relevant data using
the DIST configuration.

When the number of calibration trials increased, the superiority of the PD
configuration disappeared: While the performance of the PD mode improved
with a larger calibration set as expected, the slope of the curve is smaller than
the ones for ICA configuration and DIST configuration, which both improved
drastically as more calibration data became available. With 75 calibration
trials, the DIST configuration already lead to better classification performance
than PD. The DIST configuration was also up to 5.2% relative better than ICA
configuration, from an already very good starting point?. This shows that
the selection of suitable training sessions improved performance compared to
the naive person-adapted method which uses all available training sessions.
Paired t-tests on the results of the individual evaluation folds showeds that
performance differences between ICA and DIST for calibration set sizes of 75,
100 and 125 were significant at a level of & = 0.05. The same result holds
for the difference between ICA and BASE.

Analysis of Training Data Selection

To investigate whether features from other participants actually could be
transferred to the test participant, we calculated an all-pair evaluation where
for each possible pair of test participant and training participant, we build
a classifier from data of the latter and evaluate it on data of the former.
When maximizing F-score for each testing session across all such classifiers,
we achieved an average performance of 0.64 which is on par with a person-
dependent system with 25 calibration trials (which is a fair comparison, as in
the all-pair evaluation, the training set always consisted of only one partic-
ipant). When relating classification performance in this all-pair evaluation
with the calculated Bhattacharyya distances between the respective testing
and training feature sets, we got a modest but significant negative Pearson
correlation (r = —0.36, p < 0.001), i.e. a lower distance to the training data
implied a higher classification performance. Both results show that selection
of training data is both required and possible.

9A post-hoc optimization run indicates that those differences do not depend on the
chosen SVM parameters.
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Precision—Recall Trade-off

For the best system using 125 calibration trials in the DIST mode, we achieved
an F-score of 0.86, which corresponds to a recognition accuracy of 0.92, a
precision of 0.86 and a recall of 0.88. Those values indicate a high robustness
and a good balance between false positives and false negatives. If desired for
a certain application (e.g. if false positives are considered very disruptive),
precision can be increased to up 0.96 by relaxing the balancing of the training
data to a ratio of 1 : 1.5. Doing so resulted in a drop of recall to 0.76.

Across all participants, the standard deviation for precision and recall was
always below 0.09, i.e. while there were participants for which the system
performed better than for others, even the worst performance is still in the
range which was deemed useful for Human Computer Interaction by [VS12].

Task Transfer

To understand how the ErrP classifier generalized to more realistic HCI ap-
plications, we investigated how the model trained on the BCI-Error corpus
transferred to data from a realistic HCI scenario, recorded as part of the
Gest-Error corpus. As [ICM'12] showed, transfer between different tasks
may result in performance degradation as characteristics of the ErrP pat-
terns, for example onset latency, change. We wanted to investigate whether
the procedure of building person-adapted models also worked when combined
with task transfer. For this purpose, we evaluated the DIST configuration of
the ErrP classifier with all sessions from the BCI-Error corpus forming the
available training data (from which sessions were selected) and the sessions
from the Gest-Error corpus forming the testing and calibration data. As
the Gest-Error corpus contained fewer trials than the BCI-Error corpus, we
could only spare 60 calibration trials. Still, we achieved an accuracy of 78.3%
(significantly above the baseline of 61%), corresponding to an F-score of 0.69,
a precision of 0.72 and a recall of 0.67. This result shows that recognition
of ErrPs in the presented real-life gesture scenario is feasible with limited
calibration time.

2.5.7 Discussion

In this section, we showed that person-adapted classification of ErrPs is feasi-
ble. Artifact correction and training data selection by minimizing distance to
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calibration data from the test participant proved to be key factors for robust
classification. We further showed that person-adapted ErrP classification
possible even when transferring models between tasks. This result indicates
that the model can be transferred to other error-prone input modalities (e.g.
automatic speech recognition), as long as the system provides an immediate
feedback mechanism. This result is a novel contribution to the research com-
munity. We conclude that EEG-based classification of ErrPs can be used to
provide an empirical confusion model with high accuracy for the application
in adaptive cognitive interaction systems.

One limitation of the described approach is that it is relying on time-locked
evaluation of EEG data relative to feedback presentation. This works well
for situations were the system can give instantaneous feedback in an un-
ambiguous way, for example global feedback on a graphical user interface.
Time-locked evaluation becomes more challenging when feedback is given
more locally (e.g. in a small window instead of a global overlay), is not im-
mediately obviously erroneous (e.g. because correct and incorrect feedback
are very similar) or is extended across longer periods of time (e.g. because
feedback is given by synthesized speech). In such cases, the ErrP classifica-
tion would have to rely on additional information sources (e.g. eye tracking to
determine when a presented feedback was perceived) or become less relying
on temporal alignment (e.g. by using methods in [MRM13]).

2.6 Discussion

In this chapter, we presented empirical cognitive models for the detection
of three different user states: workload level, workload type and confusion.
For each user state, we provided a model using physiological sensors and
performed extensive evaluations to validate the ability of the models to
detect the user states in different conditions. While the investigated user
states had different characteristics, there are some strong similarities be-
tween the different models: In all three sections of this chapter, we looked at
person-independent or person-adapted empirical cognitive models to reduce
the setup time of the model compared to a person-dependent approach. Ad-
ditionally, we performed data recordings in uncontrolled environments (e.g.
in the car or while performing gestures), and with realistic stimulus material
(pictures, videos). Both, reduced setup time and realistic scenarios, are im-
portant steps to transfer empirical cognitive models from a laboratory setting
to real HCI applications. Given that we applied the generic processing chain
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of empirical cognitive modeling to three different user states successfully, we
assume that the approach can be extended to many additional user states
for which neural or physiological correlates exist.

In the following chapters, we will employ the developed empirical models for
two main use cases: First, information from an empirical cognitive model
will be used to adapt a computational cognitive model for the prediction
of human behavior and performance at different workload levels. We will
look at different variants of this application in Chapter 3. Second, the infor-
mation of the models will be sent to the interaction manager to adapt the
behavior of an interaction system according to the detected user states. Will
look at such applications in Chapter 4. In all three sections of this chapter,
we performed binary classification with accuracy scores significantly above
the random baseline for nearly all classification conditions, but still far from
error-free user state detection. In the next two chapters, we will investi-
gate whether the achieved accuracy is high enough to provide a measurable
benefit for improving prediction of a computational cognitive model and for
improving user experience of an interaction system.



CHAPTER 3

Computational Cognitive
Modeling

In this chapter, we introduce the concept of computational cognitive
modeling for cognitive interaction systems. Cognitive models simulate
cognitive processes and predict performance as well as behavior of a
user. We investigate computational cognitive models for memory and
reinforcement learning. We analyze how these models can be combined
with empirical cognitive models to adapt the prediction to different work-
load levels and to detect user states which can only be modeled by the
interplay of both model types.

3.1 Introduction

In the previous chapter, we introduced empir-
) ical cognitive models to estimate internal user
states from sensor data. Still, there are limits
to the complexity of empirical models, mea-
sured in the number of classes which they can
discriminate. [KCVP07] showed experimental
results and gave theoretical reasons indicat-
ing that BCI-based empirical cognitive mod-
els cannot reliably discriminate more than 5-7

Adaptive Cognitive Interaction System
p
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classes. Causes for this limit are the noisy sig-

nals and the limited spatial resolution of non-
invasive methods to capture brain activity. This limited number of classes
restricts the potential of adaptive behavior for an interaction system which is
used for complex, dynamic tasks. Additionally, models based on surface EEG
or fNIRS can only measure cortical activity. This imposes fundamental limits
on the selection of cognitive processes which can be predicted using empirical
cognitive models. This is because activity in several relevant brain areas (e.g.
the amygdala, associated with memory, decision-making, and generation of
emotional responses) cannot be captured by those sensors. However, the user
states which are important for HCI are not limited to the user states which
can be captured by empirical cognitive models. For example, the state of
the user’s memory is relevant for the interaction system: The system should
account for the limitations of memory, as well as for association processes
and memory dynamics. However, most State-of-the-Art interaction systems
simply assume human memory to be an unlimited, static and unconnected
data storage.

In this chapter, we propose to complement empirical cognitive models with
computational cognitive models which are dedicated to a detailed, validated
representation of cognitive processes in a psychologically plausible manner.
One promising application of computational cognitive models in HCI is the
representation of the user’s memory. This is especially relevant for interac-
tions in which the system conveys a lot of information from large domains.
Examples for such interaction scenarios are virtual in-car tourguides, personal
technical companions or humanoid robots. A computational memory model
represents the associations between different pieces of information which are
triggered in the user’s mind by the system and external stimuli. The com-
putational model may also model dynamics of memory, i.e. increasing and
decreasing activation of memory content.

There are two potential ways to employ a computational cognitive model in
the context of interaction systems: First, a computational cognitive model
can be used to simulate a user who interacts with a system, for purpose
of automated evaluation and training. Second, a computational cognitive
model can be used during an HCI session to provide a real-time prediction
of the user’s cognitive state. While the first way (user simulation) has al-
ready been established in the research community, the second way (real-time
prediction) has been investigated very little. For the application of a com-
putational model for real-time prediction in realistic interaction systems, we
identified three major challenges: (1) the need for real-time model tracing
(i.e. the ability to dynamically model the changing cognitive state of a human
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during the execution of a task) and the integration of large-scale databases
of knowledge; (2) the accommodation of multiple workload levels to improve
the prediction of performance under different user states; (3) the combina-
tion of empirical and computational cognitive modeling. This chapter will
provide contributions to these three challenges.

The chapter contains five main sections: Section 3.2 introduces the relevant
fundamentals of computational cognitive modeling, with a focus on ACT-R
and its declarative memory module. This section also gives an overview of
the related research regarding cognitive user simulation and adaptive compu-
tational modeling. Section 3.3 describes a memory modeling component for
use to dynamically model memory activation during interaction. Section 3.4
investigates the adaptation of the memory model to different workload levels
by explicitly modifying model parameters and present a detailed evaluation.
Section 3.5 shows an alternative implicit approach for workload adaptation
using dummy models. Finally, Section 3.6 presents how empirical and com-
putational cognitive models predict the presence of learning situations in an
associative learning task.

3.2 Related Work

This section discusses the relevant State-of-the-Art in computational cogni-
tive modeling. It starts with a short introduction to computational cognitive
modeling and cognitive architectures in general. The next two subsections
present related work on the two application areas of computational models,
cognitive user simulation and real-time prediction of cognitive states. After-
wards, we turn our attention to the ACT-R architecture and introduce the
relevant modeling concepts: Reinforcement Learning, Threaded Cognition,
knowledge representation, and memory modeling. As the latter is of high im-
portance for our own contributions, we also discuss limitations of the ACT-R
memory model and the alternative approach to (associative) memory in the
LTMC approach. As a computational model in an HCI context needs to con-
nect to other components, we also discuss approaches to interface ACT-R.
Finally, we look at the State-of-the-Art regarding adaptive computational
modeling.
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3.2.1 Computational Cognitive Modeling & Cogni-
tive Architectures

Modeling processes of human cognition by computational cognitive models is
one of the main methods in cognitive science. This research area has emerged
in the 1950s [Mil03], pioneered by researchers like Alan Newell [NSS59], Alan
Turing [Tur50], Marvin Minsky [Min61], Noam Chomsky [Cho59] and many
others as a new approach to understand human behavior and performance.
Cognitive science provided an alternative to Behaviorism which was the dom-
inant research agenda since the beginning of the 20%" century. Behaviorism
focused on identifying mappings from stimuli to observable behavior and
how those mappings emerged by conditioning. In contrast, cognitive sci-
ence strives for an understanding of the internal information processing and
the corresponding internal representations which ultimately lead from input
stimuli to such behavior. Ever since, cognitive science has developed into a
mature multidisciplinary endeavor, influenced by psychology, neuroscience,
computer science and other areas.

While the initial research on computational modeling focused on specialized
models for specific aspects of cognition, Newell’s call for a “unified theory
of cognition” [New94] stipulated the development of comprehensive cogni-
tive architectures. A cognitive architecture defines the fundamental, irre-
ducible primitives of cognition and perception which can then be used to
specify models for concrete tasks. Over the years, many ambitious and
successful architectures have been proposed. While each architecture by
definition aims at a comprehensive modeling of human cognition, each ar-
chitecture has its strengths and weaknesses. For example, the SOAR ar-
chitecture [LNR87] concentrates on planning and problem solving. The
PSI architecture [Dor01] concentrates on motivation and emotion, and CO-
JACK [ERB"08] on modulation of cognition through various influences. The
ACT-R architecture [ABBT04] focuses on memory, perceptual-motor capa-
bilities and the accurate prediction of execution time and accuracy of the
modeled cognitive tasks.

3.2.2  Cognitive User Simulation

Cognitive user simulation [RYO01] is one of the major use cases of computa-
tional cognitive modeling in the HCI context. It is a way of simulating user
behavior in a cognitively plausible way. By replacing a real human user with
a corresponding simulation, it is possible to evaluate an interaction system



3.2 Related Work 87

cheaply by generating a potentially unlimited number of user-system inter-
actions. This allows to test early prototypes for which evaluation with real
users would be expensive and time-consuming. As a sound cognitive user
simulation behaves similarly to the average user (also in regards of its lim-
its of cognition), those simulated interactions can be used to identify design
flaws and bottlenecks in these prototypes. A cognitive user simulation con-
sists of a computational cognitive model of the interaction task, a model of
the task itself and of facilities for accessing the real or simulated interface,
i.e. for sending system input and retrieving system output. User behavior is
then simulated by running the model.

One of the first practical implementations of a cognitive user simulation was
presented in [AHRO7]. The authors used a cognitive user model to simulate
expert operation of a cell phone menu in ACT-R and compared it to a model
based on Fitts’s law [Fit54] (a successful rule of thumb for estimating time to
select a target (i.e. a menu item) from spatial distance to the target and target
size) for predicting response time. For interaction with the environment, the
authors connect the user model with a simulator of the cell phone to send vi-
sual input to the model and to receive the key strokes from the motor module.
The authors showed that the computational cognitive model outperformed
the traditional non-cognitive model in prediction accuracy. [CP10] used a
similar methodology to evaluate interfaces for smart homes for users with
cognitive disabilities. The authors showed that for their use case of a contex-
tual assistant, the ACT-R model yielded the most accurate prediction of user
behavior, compared to a GOMS model (another, simpler cognitive architec-
ture) and one based on Fitts’s law. The DISTRACT-R model [SZBMO05] used
the ACT-R mechanism of threaded cognition to combine a complex model of
car driving [Sal06] with adjustable models of interfaces for in-car systems like
radio, and phone. The software is able to model the impact of system op-
eration on driving performance for different interface configurations. It can
therefore be used for rapid prototype evaluation. DISTRACT-R provides a
graphical interface to select model parameters and evaluate the simulation
results.

Apart from employing computational models for the simulation of user be-
havior, computational cognitive models also have been used in the design
of interaction systems to create plausible intelligent virtual agents (IVAs).
Those agents are designed to emulate human behavior to represent a system
with which a user can naturally interact and converse. [BLK10] developed an
IVA for large-scale computer games with an episodic memory. Episodes are
represented in memory as nodes in a tree structure. The episodic memory
supported a forgetting mechanism which removed “unimportant” episodes.
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Importance of an episode is determined by its age and emotional salience.
In a similar fashion, [LAHT09] implements a memory model based on the
LTMC extension of the ACT-R memory model to personalize interaction.
For this purpose, information about the user which the agent learns during
one interaction is stored in memory and retrieved again during subsequent
interactions.

3.2.3 Computational Cognitive Modeling in Interac-
tion Systems

Simulation of cognitive processes is also relevant for an interaction system
at runtime. There are a number of systems and studies which acknowledge
that the user’s memory is relevant for the design of interaction systems.
For example, it is accepted that the design of a system has to account for
the limitations of working memory. [KAOQ7| dealed with cognitive tutoring
systems which employed strategies for reducing memory load by removing
irrelevant information or by visualizing the discourse structure. [WGM™09]
investigated the influence of different strategies for information presentation
on working memory and compared the trade-off between shorter utterances
at the cost of more complex discourse structures. [JSWT99] modeled in a
Bayesian network several factors of human cognition which have an impact
on dialog system performance, including memory capacity limitations.

One type of interaction systems for which user’s memory processes are very
important is spoken dialog systems, as those deal with information exchange
and grounding processes for large domains. Most State-of-the-Art spoken di-
alog systems acknowledge the difference between the discourse model of the
system and the set of beliefs of the user. For example, many systems have a
notation of grounding to model presence or absence of a common ground and
can thus model potential discrepancies between the system’s perspective and
the state of the user’s mind [PH00]. However, once information is assumed
to be correctly processed, most systems cannot handle the user’s dynamic
memory processes, i.e. they do not cover the activation of new concepts by
association or their removal by forgetting or concept drift. Lieberman et
al. [LFDEOQ5] used a large associative database as an additional information
source for an automatic speech recognizer and showed how incorporating
knowledge of human associations can improve the results of statistical mod-
els. However, this approach does not explicitly model cognitive processes.
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3.2.4  The cognitive architecture ACT-R

This section will give on overview of the cognitive architecture ACT-R. ACT-
R (which stands for Adaptive Control of Thought - Rational [ABB*04]) con-
centrates on memory, perceptual-motor capabilities (inherited from EPIC [KM97])
and the accurate prediction of execution time and accuracy modeled at a
fine-grain level. Those strengths make it well-suited for the analysis of cog-
nitive tasks which emerge during HCI. ACT-R is a hybrid architecture that
uses both symbolic and sub-symbolic computation to model cognitive pro-
cesses. While the symbolic parts of the architecture (e.g. production rules)
represent aspects of higher-level cognition, its subsymbolic aspects mainly
represent automated, low-level aspects of cognition. This hybrid approach
relates the concept of two distinct systems of cognition [S1096], system one
for low-level cognition of similarity and temporal relations and system two
for logical high-level cognition formulated in rules.

ACT-R is a modular architecture which is composed of several building blocks
which represent functionally encapsulated aspects of human cognition (see
Figure 3.1). Among others, there exist modules for (declarative and proce-
dural) memory, for perception and motor execution. Each module has one
or more buffers which are used to exchange information between modules, to
send requests to modules and to receive output from modules. There exists
evidence for a high-level mapping of ACT-R modules to certain specialized
brain regions [And07]. ACT-R is implemented in the programming language
LISP and is currently freely available in version 6.

The Pattern Matching component is the central execution unit of ACT-R. It
retrieves production rules from the Procedural Memory and selects exactly
one for execution (this restriction to one rule is called the “serial bottle-
neck” [ABB*04]). A production rule consists of preconditions and bindings.
The preconditions determine whether a rule is eligible for execution. Pre-
conditions refer to the content of buffers or the status of modules (busy or
free). To chose between multiple eligible rules, ACT-R evaluates the utility
of each rule and performs a probabilistic selection preferring rules with high
utility. The higher the utility of a rule, the higher the estimated probability
of achieving the corresponding goal. Using the Pattern Matcher, a single
production rule is retrieved and executed whenever the state of the model is
updated. Execution of a production rule takes exactly 50 ms.

Utility, which is one of the sub-symbolic aspects of the architecture, is not
assigned manually but learned from experience by the model. For this pur-

Thttp://http://act-r.psy.cmu.edu/



90 Computational Cognitive Modeling

Visual : Motor
Module & |Envircnmert—®= |jodule

I ACT-R Buffers -
-——————————
Procedural L Declarative]
Memory Iﬁgtté%ri” . Memory

Production
execution

Figure 3.1 — Overall architecture of ACT-R with all core modules (from the
official ACT-R website, http://act-r.psy.cmu.edu/about) and the associated
brain areas (in parentheses).

pose, ACT-R implements an approach based on Reinforcement Learning

(RL) [FA0S].

3.2.5 Reinforcement Learning

RL is a paradigm of learning from observation and experience. RL has been
shown to allow both, the prediction of human behavior in repeated learning
from experience [FA06, SG12] as well as the learning of complex behavior
by artificial systems like robots [KP12]. The fundamental task of RL can
be modeled as a Markov Decision Process (MDP) which is observed by the
learning agent. The agent reacts to the observed state of its environment by
taking actions which lead to a state transition of the MDP and the return of
a reward. The goal of the agent is to learn a strategy which maximizes the
cumulative reward over time. More formally, an MDP for RL is defined as a
tuple M = (S, s, A, t,r), which consists of a set of states S, an initial state s,
a set of actions A, a transition function ¢ : S x A — S, and a reward function
r:S x A— R. The goal of the agent is to learn a strategy 7 : S — A that
maximizes the discounted cumulative reward > y'r(s;, 7(s;)) for a state-
action sequence sg = s, S;+1 = t(s;,m(s;)) generated by iteratively applying
7 to select actions. < is the discounting factor, which models the importance
of initial rewards over future rewards.
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There are several fundamental paradigms to implement RL algorithms, from
dynamic programming to Monte Carlo approaches [SB98]. In this thesis, we
concentrated on Temporal Difference Learning (TD) methods, which are also
the paradigm underlying the ACT-R utility learning. The basic principle of
TD is that the agent explores the state-action space to learn an optimal
strategy by observing state transitions and rewards. One of the central al-
gorithms of TD is Q-Learning [Wat89]. It uses the exploration to learn an
approximation Q(s,a) of Q(s,a), which is the expected discounted cumu-
lative reward when taking action a in state s. Q(s,a) can be recursively
defined as Q(s,a) = r(s,a) +ymaxy Q(7(s),a’). After each step taking ac-
tion a in state s, the evaluation of that state-action pair Q(s, a) is updated
based on the observed reward r(s,a) and the (tentative) evaluation of the
following state ¢(s,a). At the beginning of exploration, Q(s,a) is randomly
initialized with small positive values. This process is repeated until Q(s, a)
converges for all state-action-pairs. Once the agent has learned Q(s, a), the
exploration stops. The final strategy is to take action a which maximizes
Q(s,a) for a given state s. [SB98] calls this approach “bootstrapping”, as
tentative (and initially unreliable) estimates of the evaluation function are
used to update other estimates. One major advantage of TD methods is that
they are model-free, i.e. they do not require a-priori knowledge of r and t.

3.2.6 Threaded Cognition

Threaded cognition is an approach to model multi-tasking in ACT-R [ST08§].
While the serial bottleneck of ACT-R (see Section 3.2.4) enforces the exe-
cution of exactly one production rule at a time, threaded cognition allows
quasi-parallel execution of tasks by maintaining parallel goals, one for each
task. A scheduling mechanism selects one production rule from the union of
all rule sets in the shared procedural module. The tasks compete for exclusive
cognitive resources (i.e. modules) which are not available when another task
requires this resource to be processed. Tasks which require otherwise busy
resources have to be delayed. Threaded cognition has been validated with a
number of dual-tasking paradigms. One famous example is the Schumacher
dual task [SSGT01]. For this dual task, humans are able to achieve perfect
time sharing between a visual-manual task and a auditory-verbal task. This
is possible because the demand for the cognitive resource shared by both
tasks (declarative memory) was drastically reduced by learning during train-
ing. [STO8] could show that an ACT-R model of the Schumacher task with
threaded cognition is able to reproduce this behavior.
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Originally, threaded cognition was provided as an extension to ACT-R and
is now integrated in the ACT-R version 6.

3.2.7 Knowledge Representation & Memory

In this section, we will briefly describe how declarative knowledge (i.e. con-
scious, factual information) can be represented and how declarative memory
can be modeled.

Declarative knowledge is represented in ACT-R in the form of chunks. A
chunk, similar to the frame as defined by [Min74], consists of a name, a
type, and attributes. Attributes are either atomic (e.g. an integer) or a
reference to other chunks. Chunk types are organized in an ontology to rep-
resent type generalization and specialization. Chunks are the basic unit for
communication between modules in ACT-R as they are transferred between
buffers. Preconditions and bindings of production rules usually refer to and
manipulate chunks. Chunks also form the content of the declarative memory
module.

Memory is one of the most important aspects of cognition, as it is involved
in nearly any non-trivial cognitive task. For example, working memory is
strongly correlated [CKEO03] to the concept of general intelligence [Spe27].
For this reason, memory modeling has a long tradition in cognitive psychol-
ogy and a variety of models are available. For many theories of memory,
models are implemented in cognitive architectures like ACT-R [ABB104].
However, there exists no common ground among modeling experts on how
memory processes should be represented formally to account for all known
memory phenomena and for findings from neuroscience. For example, there
is ongoing debate on whether there is a fundamental separation between
short-time and long-time storage [AS68] or not [Cow93], on whether forget-
ting is based on interference [OKO06] or decay [Cow93], and whether memory
is composed of specialized sub-systems (e.g. for information from certain per-
ceptual modalities [Bad92]) or not. [MS99| presents a large variety of very
different models of working memory.

In ACT-R, memory is divided into the declarative module and the procedural
module. The declarative module represents semantic and episodic memory.
As this comprises the content of interactions between user and system, we
concentrate on declarative module in this work. We chose this model as the
basis for our computational cognitive memory model as it is validated in nu-
merous studies which show that it accounts for a large number of important
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memory phenomena [ABLM98, AR99, LDR00]. It also provides a concrete
mathematical formalism which is suited for implementation within a com-
ponent for memory modeling in interaction systems. Declarative memory is
presented as a unitary construct with no explicit distinction between long
and short-time memory. Forgetting is mainly implemented as decay of acti-
vation. However a limitation in activation spreading may also be interpreted
as a displacement mechanism [ARL96]. Requests to the declarative module
are formulated in form of partially filled chunks which are matched against
the stored chunks. The module associates an activation value to each chunk
in order to define “active” information units. Activation is calculated from
base level activation, spreading activation and noise. It determines retrieval
probability and retrieval latency. In Section 3.2.8, we will continue with a
more in-depth discussion of the relevant aspects of the memory model in

ACT-R.

3.2.8 Memory Modeling in ACT-R

In this section, we look at the details of the ACT-R model of declarative
memory. The ACT-R declarative module maintains a set of chunks that
represent the current declarative knowledge. Chunks are inserted into the
declarative module, when new information is learned, and they are retrieved
from it, when information is requested from memory. Probability of retrieval
and retrieval time depend on the activation value of the chunk. Activa-
tion increases if a chunk (or a related chunk, see below) is stimulated (or
“encoded”). This stimulation can happen externally, for example when the
concept represented by this chunk is mentioned by the system during inter-
action, or internally, for example as the result of an internal thought process.
Activation of a chunk decays over time if it is not stimulated.

Activation A; of a chunk 7 in ACT-R is calculated as the sum of three com-
ponents: base level activation B;, spreading activation C; and noise N;, see
Equation 3.1. Base level activation models the influence of recency and fre-
quency of stimulations on activation. Equation 3.2 shows the formula to
calculate base level activation B; of a chunk 7 that was stimulated n times.
Activation depends on the current time . and the time ¢, of the all stimu-
lations 1...k. The decay parameter d describes the rate of decay over time
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Base Level Activation as Function of Time
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Figure 3.2 — Base level activation over time for different decay factors d.

(which simulates forgetting). The default value for d in ACT-R is 0.5.

Bi=In()_ (t.—tx) ™) (32)
k=1
Figure 3.2 illustrates the base level activation over time of a chunk that has
been encoded at t = 0, using three different values for the decay parameter.
As it can be seen in the figure, a higher value of d causes a faster drop of
base level activation and is therefore associated with faster forgetting.

Another source of activation is the spreading activation, which is computed
as in Equation 3.3, where W, reflects the attentional weight of chunk j at
the current point in time and Sj; represents the association strength between
chunk ¢ and element ;.

Ci =Y W;S; (3.3)
J

W; is usually set to 1/z with x being the number of activation sources. Sj;
is usually set to S — In(fan;) with fan; being the number of facts that are
associated to element j. The parameter S is often set to a value of 2 which
has emerged as reasonable value.

The third source of activation is the noise activation N;. It is modeled as

a random variable following a logistic distribution with mean value 0 and

variance o2.
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Probability of Retrieval as Function of Activation
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Figure 3.3 — Probability of retrieval as function of activation. The probability
of retrieval is illustrated for three different values of 7. The parameter s is
alway set to 0.4 in this example.

Chunks are retrieved with a probability which depends on their activation.
Equation 3.4 shows how the probability of retrieval is computed?:

1

b=1reaon (34)

Chunks can only be retrieved successfully if their activation value is greater
than a specific threshold value 7. The parameter s controls the sensitivity of
the retrieval probability against varying activation values and is by default
set to 0.4. It also influences the variance o2 of the noise activation. Figure
3.3 illustrates equation 3.4 for three different values of 7 and with s = 0.4.

If a chunk is retrieved successfully, the ACT-R declarative module provides
the latency of retrieval which describes the duration of the retrieval process
(i.e. the time between request and retrieval). It is computed by using equation
3.5 where A; is the activation value of chunk 7 and F' is a latency factor.

Ty=F e (3.5)

2Note that some variables in this section (A, s) are also used in the context of RL in
Section 3.2.5. We decided to retain this double usage as the variable identifiers are firmly
established in the literature. The semantic of a variable will always be clear from the
context.
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Equation 3.5 is only applied if a chunk is retrieved successfully. In case no
chunk is retrieved, the failure latency is returned, which is the time it takes
to detect the failure. According to the ACT-R Tutorial®, it can be computed
by using equation 3.6:

T,=F-e" (3.6)

If encoding and responding are involved (e.g. when reading a word, then
trying to remember this word and finally pushing a button to indicate that
the word is known), the overall recognition time (measured as delay between
beginning of the perception and the actual response) can be computed by
adding an additional parameter I to the retrieval latency as defined in equa-
tion 3.5 and to the failure latency as defined in Equation 3.6, respectively.
This parameter [ is the intercept time and reflects the time needed to en-
code the item and to perform a response. The recognition time can then be
computed as in Equation 3.7.

recognition time = I + T; (3.7)

3.2.9 Limitations of the ACT-R Memory Model

Though it has been used in many different applications, the ACT-R mem-
ory model is not without problems. A very important limitation is that in
order to make use of the declarative knowledge, one has to know the ex-
act structure of the knowledge defined in the chunk types [SBB06]. Without
knowledge of the semantic of its attributes, the information stored in a chunk
is meaningless. This makes it difficult to use the chunk system with very large
knowledge bases since one would need to define and keep track of a lot of
different chunk types. Another problem is the lack of generalization in the
procedural knowledge. The ability to follow associations in ACT-R would
need to be modeled with a set of production rules. However, since production
rules are specific to their corresponding chunk types, they can not be used
on a knowledge base that uses different chunk types. This makes it neces-
sary to re-implement a different set of production rules corresponding to each
knowledge base. These limitations of the ACT-R declarative memory model
also hinder its application for interaction systems. It would be required to
enter all available knowledge — which can be very diverse for a real-world

Shttp://act-r.psy.cmu.edu/actr6 /reference-manual.pdf
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application — as chunks in the declarative module, which also requires the
definition of the associated chunk types and the corresponding ontology. The
limitation on association processes and partial matching make it difficult to
use the ACT-R memory model to represent human memory during tasks of
handling.

When we pursue the goal to employ a memory model for a conversational
general-purpose interaction system, it is important to provide a large num-
ber of common-knowledge chunks to the model to cover all potentially rel-
evant concepts. Both formally (requiring the modeler to manually provide
a lot of structural information) and by its software design (which does not
provide efficient data structures), the ACT-R declarative module is not pre-
pared to handle large data sets. There exist few publications on the integra-
tion of a larger knowledge base to the ACT-R declarative module. WN-
Lexical [Emo06] is an example for a replacement of the original ACT-R
declarative memory using WordNet, a large lexical database. [DM10] exter-
nalizes the declarative module of ACT-R by employing a relational database.
This technically enables the system to handle much larger number of chunks
compared to the original implementation. Methodologically, it replaces the
original implicitly defined association network of chunks by a large semantic
network. [DLS10] uses this approach for the cognitive architecture SOAR
and demonstrates performance improvements by two orders of magnitude.

3.2.10 LTMC¢

LTM® was developed to address the issues of the ACT-R memory system.
LTM stands for “Long Term Memory”, the C represents Casimir, a cognitive
architecture which concentrates on spatial cognition [Bar09]. LTMY can
be used as an extension or a replacement to the ACT-R declarative memory
module. While its name explicitly refers to long-term memory, “LTM-Buffers
approach follows the view that working memory is not a separate memory
store, but rather that it is highly-activated portions of LTM” [SL07].

In LTMY, the memory is stored as nodes and directed connections between
them, forming a network. Every node has a name that identifies which
entity it represents. The edges between nodes do not have types assigned.
This means that the edges themselves do not stand for relations. Instead,
the relations are represented by nodes, too. The only exception to this is the
“IsA” relation (also called subsumption) - it is directly represented by edges
between concepts and used to build an ontology that includes the relation
nodes: Every specific relation is subsumed under a node for its relation
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type (this architecture is the reason why the subsumption relation cannot
be represented by nodes - it would lead to infinite regress). For an example,
see Figure 3.5 in Section 3.3.1. LTMY offers a great deal of flexibility in
knowledge modeling: The are no predefined types, new relation types can be
added at any time and relation nodes can even have relations themselves.

The spreading activation in LTM® works essentially the same as in ACT-R.
Nodes get activated when a retrieval request is made and they spread part
of their activation along their links. The spreading process is stopped when
the activation falls under a threshold. Because of the graph model of LTM,
spreading corresponds to a simple graph traversal, starting at the activated
nodes. After spreading has stopped, another process takes place to choose
the set of nodes to be retrieved. Only nodes with an activation higher than
the average activation of nodes in the network are considered. Out of these
nodes, the connected subnet with the highest total activation is selected to be
retrieved. Finally, in order to be usable by the rest of the ACT-R modules,
this subnet has to be converted into a chunk. This is achieved by using a
mapping that has to be defined with the chunk types of ACT-R to specify
how the nodes in LTMY relate to the slots of the chunk type [SLO7].

3.2.11 Interfacing ACT-R

ACT-R provides an Application Programming Interface (API) which can be
accessed by programs written in LISP to model a specific task. For this pur-
pose, one has to provide a full set of production rules encoding the processing
strategy, a definition of chunk types and chunks, a model of the task, and
the relevant aspects of the environment in form of a LISP program. While
this means that ACT-R models and extensions can use the full potential of
a comprehensive functional programming language, it also means that the
implementation of ACT-R models is a cumbersome task. It requires to con-
nect all dependent components (i.e. an interaction manager) to the ACT-R
environment. Additionally, developers need to provide a full model even if
they are only interested in a subset of functions of the architecture. Sev-
eral approaches to remedy this problem have been explored: ACT-R can be
extended with interfaces to programs written in more modern programming
languages ([MS99] and see also Section 3.5). However, this still leads to large
overhead in software design and process communication. There exist alter-
native implementations of ACT-R in Java* and Python®. However, those

4http://cog.cs.drexel.edu/act-r
Shttps://sites.google.com /site/pythonactr
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are naturally lacking the improvements of the latest official release and are
less well supported with extensions and models. Finally, there are software
toolkits available [AHR07], which automatically create ACT-R models from
a more abstract representation, for example in the form of GOMS (Goals,
Operators, Methods, and Selection rules) models. The downside of such
toolkits is that they are usually limited to a very restricted domain and do
not provide help for general modeling tasks. For those reasons extract and
encapsulate certain aspects of the architecture and create re-usable building
blocks which can be directly applied in interaction systems. This approach
was for example used in [LDGI12]. In this publication, the authors show an
example of successfully extracting certain mechanisms of ACT-R and using
them within another model or application. In their case, they develop the
Instance Based Learning Theory (IBLT) of dynamic decision making, which
models learning from experience in repeated choice tasks. Each observation
is stored as an instance in memory and at decision time, instances similar to
the current one are retrieved from memory using the base level activation.
Extracting the memory model from ACT-R provides a validated model to
ACT-R to IBLT and reduces modeling effort, necessary technical knowledge
and increases generalizability compared to employing the complete ACT-R
architecture.

3.2.12 Adaptive Cognitive Modeling

The ACT-R memory model accounts for the retrieval probability and la-
tency for a memorized item given how often and how recent it was presented
to the agent. However, this memory model was designed to model aver-
age human performance with no distracting tasks and a low workload level.
This implicit assumption holds for the whole ACT-R theory. There are few
publications available which deal with cognitive modeling of non-standard
conditions. In [CLCO6], the authors model the impact of arousal on memory
performance. This is done by introducing additional parameters to the for-
mulas for calculating activation of a memory item: The decay parameter d is
scaled depending on the arousal level to represent an inverted u-shaped curve.
[RRS06] discuss several theories of modeling stress in a cognitive architec-
ture. The authors propose the technique of overlays which modify the basic
mechanisms of the architecture to model the effect of certain cognitive con-
ditions. The authors propose several variants of such overlays, ranging from
simple parameter adjustments to the addition of a “worry” task to consume
cognitive resources. They suggest different effects of stress: perceptual tun-
neling, cognitive tunneling, and decreased attention overlays. The authors
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do not provide a detailed evaluation of their proposed approaches. [GRG'11]
proposes a generalized mechanism to develop models which predict perfor-
mance under sleep deprivation. A modification of utility calculation results
in higher probability of executing no rule, reflecting the effect of microlapses
which are typical for this user state.

Other cognitive architectures besides ACT-R implement the overlay mech-
anism already in their core design. The CO-JACK architecture [ERBT08]
in its core concepts incorporates modulation of cognitive processes to model
variability due to physiological factors and affect. The PST architecture [DSS99,
Bac09] is a neural network based architecture, specialized on modeling fac-
tors which influence decision making and planning of a virtual agent. For
example, PSI has a notion of motivation and emotion, which both directly
and indirectly influence cognitive processes and the resulting behavior. Both
are not represented as isolated modules, but as an intrinsic aspect of cogni-
tion. One central mechanism is the concept of modulators. The cognitive
state of the agent is determined by the agent’s urges, which are grouped in
three categories: physiological, cognitive, and social. Those urges on the one
hand determine the motives towards which the agent plans its actions. On
the other hand, they influence parameters of the central planning algorithms.
For example, the selection threshold determines the readiness of the agent to
switch its current planning goal. It depends on the urgency of the current
planning goal and the agent’s competence for the current task. From this
internal state, emotions emerge which the agent potentially can communi-
cate to other agents. Closer to the original ACT-R theory is ACT-R®. This
hybrid architecture combines ACT-R with the HumMod model of physiol-
ogy and affect [Dan13]. Modeled affective states and physiological conditions
influence the simulated cognition by modifying utility values of production
rules. The authors demonstrate their approach by modeling the impact of
thirst on decision making in an ultimatum game.

Conclusion

Literature review has shown that computational cognitive modeling is a fea-
sible technique for prediction of user behavior and performance in the HCI
context. Most cited work in this area is on offline user simulation for the
evaluation of interfaces. However, there are a few limitations of computa-
tional cognitive models which hamper their application in adaptive cognitive
interaction systems. The ACT-R memory model is not designed to flexi-
bly handle associations in large information networks. The LTM® extension
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provides a promising alternative but needs to be extended to account for
memory dynamics and to import large-scale databases. To support real-time
model tracing, computational models which adapt to user states like work-
load are necessary. While there exist some studies which demonstrate the
general feasibility of modulating simulated cognition, only a small number of
user states has been covered and the proposed models often lack evaluation.
Finally, we saw that there is little work on the combination of empirical and
computational models.

3.3 Dynamic Large-Scale Memory Model

Interaction systems have matured to a point where they are routinely em-
ployed in static and controllable scenarios, such as virtual call-center agents.
However, they still lack flexibility and robustness in dynamic scenarios involv-
ing spoken interaction between system and user. Examples for such scenarios
which require a large flexibility are human-robot interaction, in-car systems
or portable companion technology. In such scenarios, a major challenge is the
fact that it is hard to estimate “what is on the user’s mind”: The discourse
of the interaction between system and user may shift between topics due
to evoked associations in the user’s mind; external stimuli may cause sud-
den changes of attentional focus, while other discourse items may fade out
and eventually be forgotten by the user. These effects become particularly
important when the interaction becomes less task-driven and more conver-
sational, as envisioned for natural interaction systems. Another challenge
in verbal human-computer interaction is the ambiguity of natural language.
While humans are able to resolve it by referring to a shared context, com-
puter systems mostly lack this ability. Providing knowledge about human
association mechanisms is one step towards enabling systems to understand
the underlying semantic context of an interaction.

In most State-of-the-Art interaction systems, such a model of human mem-
ory is usually implemented implicitly in the form of a discourse model or
dialog state. However, human memory is imperfect, context-dependent, non-
deterministic and limited in capacity. Ignoring these properties will lead to
imprecise prediction of human behavior in relevant cognitive tasks and in
interaction situations. One example of behavior resulting from those prop-
erties of human memory is the “Moses Illusion” [EM81]: Participants of a
study were asked questions like “How many animals of each kind did Moses
take onto the Ark?”. Even though most Christians know that it was Noah
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and not Moses who built the ark, many give the answer “two”, which is
wrong in terms of deductive reasoning but plausible in terms of association.
While this example was constructed specifically to study such “fuzzy associa-
tions” [EM81], similar situations can occur in the HCI context (for example,
a user of a virtual tourguide asking for information on the Neuschwanstein
Castle in Munich). Observations like this underline the importance of using
a cognitively sound and validated model of memory.

Besides accurate modeling of human memory and associations, another im-
portant aspect of a computational cognitive model for interaction systems is
its interface to the other components of the interaction system. A mature
cognitive architecture like ACT-R provides a powerful model of human cogni-
tion, but is also cumbersome to integrate into an existing interaction system.
Therefore, we follow the philosophy of [LDG12]: We extract the mechanisms
of declarative modeling and encapsulate them in a re-usable memory model
that can be plugged into interaction systems as part of the user model or
user simulation.

The main contribution to the scientific community of this section is three-fold:
First, the development of a flexible, stand-alone memory model which sup-
ports flexible modeling of associations. Second, the addition of the capability
to access large knowledge-bases to populate the memory model. Third, the
implementation of memory dynamics which support phenomena like concept
drift, which occur frequently in interaction situations.

3.3.1 Flexible, Stand-alone Memory Model

In this section, we introduce the Dynamic Memory Module (DMM), a stand-
alone associative memory framework, which provides a way to model dynamic
association processes of the user’s memory®. DMM is able to determine
the most likely associations of a human for a given memory configuration
and a set of new stimuli. It can provide this information to an interaction
system or to speech processing components so that these systems can resolve
ambiguities or determine the user concerns. Since content and context of an
interaction change over time, modeling dynamics is a crucial part of DMM:
Different associations are activated as new items come into focus, integrated
with previously active items while items which are not active gradually fade
out. As a user modeling component in an interaction system, DMM can

6This section is based in parts on the study theses of Robert Propper and Florian
Krupicka which were supervised by the author of this thesis.
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identify topics which are most relevant to the user in the current context
without an explicit request. Another very important area of application of
the DMM is user simulation to automatically create training and evaluation
scenarios for dialog systems: Here, the model can be used in a generative
fashion to simulate plausible associations for a situation and derive consistent
speech acts and utterances of a user. Other possible applications for DMM
are the enhancement of speech processing systems and translation systems
by helping to resolve ambiguities - a result obtained with purely statistical
methods is more likely to be correct if it is also part of the associative context
in DMM. Our DMM is based on the LTM¢ extension of the ACT-R memory
model as described in Section 3.2.8. LTMY is an improvement over the ACT-
R declarative memory model in terms of flexibility and association modeling.
However, it is not explicitly designed to reflect memory dynamics resulting
from a sequence of memory stimulations over time, for example caused by
concept drift during an interaction. We extend the model for the use in
interaction systems such that it represents memory dynamics and enables
the import of large-scale common knowledge databases.

Knowledge Structure

To describe the structure of the knowledge representation, we will use the
terms concept and association. A concept is an object of common sense know-
ledge. It can be a physical object, an attribute, an activity or an abstract
idea. Associations are links between concepts. An example for an associa-
tion is the statement “The KIT is located in Karlsruhe”, where “KIT” and
“Karlsruhe” are concepts and “is located in” is the association between them.
Both concepts and associations are represented as equivalent memory items
in the DMM.

For knowledge representation, we have adopted the graph-based of LTMC®
described in [SBB06]. There are two basic types of nodes in the knowledge
graph: concept nodes and association nodes. Edges between nodes gener-
ally have no other meaning than describing a general relationship between
two nodes. The statement “The KIT is located in Karlsruhe” would be en-
coded in three nodes as shown in figure 3.4. The advantage of modeling
associations as nodes and not as edges in the graph is twofold: First, this
approach allows associations between more than two concepts without intro-
ducing multi-edges to the network structure. Second, treating associations
as nodes allows to also stimulate and query them with the same methods
which are used for concepts.
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is located in

Figure 3.4 — Example of an association in DMM. Two concepts and an as-
sociations of the type “is located in”

DMM is able to import data from different large-scale knowledge sources to
populate its network with nodes and edges. This enables the system to repre-
sent common knowledge to cover many of the concepts which are relevant in
general purpose interaction systems that deal with a large variety of domains.
Currently, DMM supports the import of the ConceptNet [SH13| database and
of OpenCyc [MCWDO06]. ConceptNet is a large semantic graph accumulated
from different knowledge sources, including ontologies handcrafted by lan-
guage experts as well as crowdsourced data from serious games. OpenCyc
was manually designed as a common knowledge database for natural lan-
guage understanding applications. In most cases, the ConceptNet data fits
better with the associative scenario in DMM. This is not surprising since
in the original method of data collection for ConceptNet, users were asked
about associations between concepts (see [LS04]). In contrast, OpenCyc is
mainly an ontology — there are few associations that are not of the type
“is a”. Many associations in OpenCyc represent internal metadata (e.g.
“Wn_20_synset_Germany noun_1") which cannot be easily mapped to a con-
cept or association. However, there are areas of knowledge (e.g. specific
people) which are not covered by ConceptNet and for which OpenCyec is a
better choice.

Figure 3.5 illustrates some of the differences between OpenCyc and Concept-
Net. It shows a small but representative subset from the neighborhood of
the node “Germany” in both OpenCyc and ConceptNet (the full neighbor-
hoods contain 150 and 70 nodes, respectively). The concepts and associations
in OpenCyc are very formal, many of them describing generalizations and
specializations of concepts (“broaderTerm”, ”instanceOf”). Some associa-
tions are very specific and specialized (“CertainDistantCountriesWithInter-
ests...”). In comparison, the associations of ConceptNet are more collo-
quial (“good beer”), of greater variety in the types of association (“PartOf”,
“hasA”, etc.) and more general (“person AtLocation Germany”). Some basic
information (“europe” vs. “EuropeanUnion”, “country” vs. “WesternEuro-
peanCountry”) is contained in both graphs.
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Figure 3.5 — The node “Germany” and some of its neighbors in OpenCyc
(top) and ConceptNet (bottom). The names of nodes are shown as they appear

in their respective database [Proll].
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Memory Dynamics

Each node in DMM has an activation value. This value determines the like-
lihood of a node to be retrieved if requested. It also serves as an indicator
for the amount of time it takes for the node to be retrieved from memory.
Activation of a node can increase in two ways: By an external stimulus or
through spreading activation, i.e. the propagation of activation from acti-
vated nodes to associated nodes. A typical example for an external stimulus
is the system mentioning an item during an interaction. However, a stim-
ulus does not always have to be verbal. An object coming into view could
provide a stimulus (to include such stimulus in the model, the occurrence of
the stimulus needs to be detected by the model, for example by proximity
estimatiob from GPS). Also, previous knowledge or events can influence node
activation.

The model behind DMM is building on the approach of [SBB06] for the
extension of the ACT-R declarative memory model. Calculation of base
level activation and noise is identical to the ACT-R theory presented in
Section 3.2.8. Spreading activation is the main mechanism used in DMM to
trigger associations. It is implemented as a depth first traversal of the graph,
starting with the set of externally stimulated nodes: each node n spreads
part of its activation to every node linked to n, which in turn spread part of
their received activation. The total amount of spreading activation ta(n) a
node n receives from its predecessors P(n) is calculated by adding the partial
spreading activation 7(n, npeq) received from each predecessor npreq:

ta(npred> * fdamp
N (nprea)

I'(Tl, npred) =

ta(n) = Y 1(n, Nprea) (3.9)

Npred EP(H)

N(nprea) in Equation 3.8 denotes the number of neighbors of node npyeq.
Spreading stops once the amount of activation to be spread from a node falls
below a threshold 7Tgpreqq. This is necessary to keep the model computable,
but it also follows the all-or-nothing principle in the human nervous system:
neurons only transmit a signal if their received signal strength is above a
certain threshold.

The free parameter fqamp can be used to restrain the activation spreading. It
can be thought of as a measure of creativity in free association - higher values
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result in more associations with less direct links to the stimulated input. The
amount of activation which a node spreads is reciprocal to the number of its
neighbors. This models the fan effect [AR99], which describes the strength
of associations.

The original LTM® model has no notion of temporal dynamics regarding
spreading activation. This is a serious limitation when modeling human
memory during HCI. Over the course of one interaction, new items will be
stimulated while the activation of old items will fade. In order to keep activa-
tion values realistic over time, we introduce a decay mechanism for spreading
activation. We use the entire activation history of a node (resulting from
stimulation and spreading) to calculate its activation at a given time. The
total dynamic spreading activation A, (¢current) Of @ node n at the time teyrrent
is given by the equation:

An(tcurrent) = ZteHn (Z(tcurrent - t) * AHn(t)) + ta(n) (310)

H, is a set of timestamps at which the node n was active (i.e. is part of
the connected component of the graph with the highest overall activation).
AH, (t) (“activation history”) returns the total spreading activation value of
the node n at the time ¢. This equation is not recursive — the activation
history contains only total spreading activation values (ta(n)) from different
points in time, not the dynamic spreading activation. z(x) is defined as:

forz <0

L,
2(x) = 5, forz>0 (3.11)

z(x) decreases almost linearly for small values of = (i.e. t is close t0 teurrent)
and asymptotically approaches 0 for large values of x. Because it is multiplied
with the activation history, this means that the total activation of items which
are not recently stimulated will drop fast, ensuring that newly stimulated
items have a higher activation. Items that have not been stimulated for a
while will have a very small activation but are still distinguishable from items
that have never been active. Figure 3.6 shows an example of how activation
evolves over three spreading iterations.

Retrieval probability (which predicts the likelihood that an item can be re-
trieved successfully) and retrieval latency (the response time to a memory
request) of an item are calculated using the original formula from ACT-R,
see Section 3.2.8.



108 Computational Cognitive Modeling

Author
0.08

Writer
0.08

Philosopher
0.104

BertrandRussell
0.333

Author
0.509

ThomasHobbes
0.253

DavidHume
0.25

(¢) New stimulus “JaneAusten”

Figure 3.6 — Results of three consecutive stimulations. The numbers indicate
the resulting spreading activation value. This could be part of a conversation
about English authors. At first, four specific people were stimulated (colored
gray). Next, three categories were stimulated, one of which (“FemaleHuman”)
did not fit for any of the previous stimuli. The final stimulus is another
specific person that is part of the new category. The effects of introducing new
activation through stimulation is counteracted by the decay of the activation
history. In this example, OpenCyc was used. All associations are of the type
“IsA” [Proll].
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3.3.2 Implementation

DMM is implemented as a Java library, so it can be used by Java applications
and as a standalone server accessible remotely by any application, e.g. speech
processing systems or a dialog managers. It is designed to accommodate a
variety of different implementations for its internal network representation.
The central interfaces are Network and Session.

A Network object represents the knowledge graph. There are currently im-
porters for OpenCyc and ConceptNet, but a Network can also be manip-
ulated directly through the API, e.g. to create a customized, application-
specific graph. Two different implementations of Network can be used:
P0JONetwork provides a fast implementation where all data is stored as Java
objects in memory for platforms with sufficient main memory (around 1
Gigabyte for OpenCyc or ConceptNet). With HGDBNetwork, a slower im-
plementation with a much smaller memory footprint based on the Hyper-
graphDB [Ior10] database is available.

The Session interface provides a mutable view on a Network. It mainly
contains activation histories for all nodes. Multiple Session objects can
operate on the same Network object simultaneously, e.g. to maintain differ-
ent hypotheses of the memory state. An implementation of the Session
interface contains the dynamic processes that operate on the knowledge
stored in the knowledge graph. For example, the algorithm we have de-
scribed in section 3.3.1 is contained in an implementation of Session named
SessionSpread. Other Session implementations are also available.

3.3.3 DMM Evaluation

To evaluate the DMM for interaction applications, we look at two aspects
of its performance. First, we perform a quantitative evaluation of a user
study comparing human associations to the associations generated by DMM.
Second, we simulate a conversation of two instances of DMMs to qualitatively
evaluate their dynamic behavior over time.

Evaluation of Associations

DMM is supposed to work as a model of the human associative process. If
DMM performs optimally, it should provide associations identical to human
associations. Therefore, we compare in our evaluation the DMM results
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to human associations. For this purpose, we conducted a questionnaire on
associations to certain stimulus words and compared the answers to the result
of a single spreading process. The ConceptNet database was used in all
evaluations. The entire database was loaded”, leading to 320000 nodes and
480000 links. ConceptNet was chosen over OpenCyc because of its closer
relation to common human associations, which is what we are evaluating
here.

To compare the associations made by DMM using the ConceptNet database
to those of humans, we developed a questionnaire and asked 20 people to fill
it out. All participants were students or employees of the KIT between 20
and 30 years of age and all participated in the same week. None of them
was an English native speaker. The questionnaire included five sets of three
related stimuli and participants were asked to write down their first two
associations for each set. We then activated the same sets of stimulus words
as concepts in DMM in order to compare the results with the answers of the
participants. The presented stimuli were:

a) go restaurant, fork, diminish own hunger

b) tennis, soccer, volleyball

c) germany, france, spain

d) hamster, dog, cat

e) pen, work, desk

To evaluate if our spreading activation implementation using the ConceptNet
data returns plausible results, we checked if the most frequent answers by
humands were reflected by the nodes with the highest activation. The results
are listed in Table 3.1. It shows in the first column the different sets of stimuli
and in the second column all associations that were given by more than one
person, ordered by frequency. For each association, it also contains the num-
ber of participants which reported this association. Column three contains
its activation rank in the results of DMM (“-” indicates that the concept was
not activated at all or that its activation was negligible). If the DMM output
contained a different, but semantically very similar concept (e.g. “hungry”
vs. “hunger”) with a high rank, we also included it. We expected that the
ordering of human associations by number of people corresponded roughly
to the ordering of DMM associations by activation rank.

Overall, the results are very encouraging. Especially for the top entries of
each set, we see a large overlap between the result of DMM and the user
replies: Each association shared by at least a third of the participants was
also highly activated in DMM. In most cases, the first items on both ordered

"ConceptNet 5, downloaded from http://conceptnet5.media.mit.edu/downloads
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| Stimuli | Association (# people) | DMM Rank |
go restaurant eat (7) 1
fork food (6) 6 (eat food 2)
diminish own hunger plate (3) 4
hunger (2) - (hungry 10)
sport (9) 1
ball (5) 15 (ball sport 5)
tennis basketball (3) -
sol(:?; team (2) - (team sport 4)
volle rball television (2) _
' play (2) - (play volleyball 8)
europe (14) 2
germany country (8) 1
france italy (5) -
spain language (3) -
greece (2) _
holiday (2) _
hamster pet (12) 1
d animal (5) 4
o8 rabbit (2) -
- mouse (2) )
write (6) 1
office (5) 3
pen paper (5) 2
work university (4) -
desk computer (3) 6
school (2) 10
chaos (2) _
money (2) _

Table 3.1 — Comparison of human associations and DMM output. The
names of stimuli and associations are shown as they appear in the Concept-
Net database. The maximum total number of associations for each set of three

stimuli is 40 (2 associations for 20 participants).
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lists were the same. There are a few interesting observations: Some of the
associations of the participants did not fit with all of the stimuli — they seem
to be associated with only one or two of the stimuli items. This behavior
is also reflected by the DMM output (e.g. “team” / “team sport” does not
fit very well for “tennis”), which indicates that DMM also reproduced this
unexpected behavior. We also note that not all top associations by humans
are generalizations of the given stimuli (e.g. “writing” or “paper” for the last
set), which means that an ontology (i.e. a knowledge graph which only con-
sists of “isA” relations) is not enough to cover all relevant associations. As we
used the ConceptNet database (which in contrast to the OpenCyc database
contains many associations besides “isA’ relations) to populate DMM, this
effect could also be reproduced.

The vast majority of associations mentioned by participants consisted of
only one word, while DMM concepts sometimes include multiple words (this
is especially obvious with the sports stimuli). When presented a stimulus
consisting of multiple concepts of the same type, the participants often asso-
ciated another example of the type (like “basketball” for sports or “italy” for
countries) - these types of associations do not seem to be represented well in
DMM, as they require at least two spreading steps (e.g. from “germany” to
“europe” to “italy”, as no direct link exists).

There are some external factors that can influence a study like this. Among
the most important ones is language. Since we used the English version of
the ConceptNet database (there are versions in other languages available,
but they are much smaller), we conducted the study in English. However,
none of the participants were English native speakers. Depending on the
individual language proficiency of the participants, this could affect the re-
sults — especially if one has to translate the stimuli, associate in one’s native
language and then translate back the associations.

Another consideration is the order of the items. The order of the sets and
inside of the sets depicted in Table 3.1 is the same as in the questionnaire.
One participant had the association “food” for the pets stimuli, which could
be attributed to priming by the earlier eating related stimuli. The order in
which the three stimuli of each set were given could influence the resulting
associations as well. The order in all questionnaires was the same. The DMM
queries did not incorporate order considerations: Each set of stimuli was
given synchronous and without previous activation from other sets because
the dynamic aspects of SessionSpread have a much stronger impact on the
results than the more subtle effects described here.
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Overall, we can conclude that DMM provides a reasonable prediction of hu-
man associations using its network built from a large-scale semantic know-
ledge base. It should be noted that this evaluation of DMM associations
is not a realistic representation of associations in a complex HCI scenario,
which may contain a temporal ordering of stimuli, embedding of stimuli in a
conversational context or multiple intertwined categories of concepts. How-
ever, it still validates the general relation between human associations and
the DMM prediction thereof.

Evaluation of Conversations

In order to evaluate the dynamic behavior of DMM, we tested it in an evolving
context. We decided to simulate a “conversation” since this is a common
example for a possible usage of DMM for HCI applications. To test if the
course of the conversation remains realistic when all associations in a dialog
are generated by DMM, we used two instances of DMMs which communicated
with each other.

Initially, we stimulated both instances with the same concepts to create a
common ground. To initiate a conversation, we randomly chose one activated
concept that was not mentioned before. This represented the concept which
one instance wanted to add to the conversation. To ensure that no irrele-
vant items were selected, we only chose from the five items with the highest
activation. The probability of a concept to be selected was proportional to
its activation. The concept was selected from one instance and activated in
the other, where spreading was calculated. By iterating this process for both
DMM instances, a simple dialog on a concept level was generated. Examples
of such dialogs on a concept level are shown in Tables 3.2 and 3.3. These
conversations could have started with a discussion on fruits, leading to the
stimulation of the concepts “apple” and “orange”. The left column contains
the concepts that were selected from the first instance and stimulated in the
second, the right column shows the concepts that were selected from the sec-
ond instance. Table 3.2 shows a conversation going back and forth without
outside intervention. We see that each topic of the conversation is associ-
ated with concepts issued by both collocutors (e.g. “lemonade” associated
to “lime” from instance 1 and “drink” from instance 2). While the most
recent concepts have the strongest influence on topic selection, the more dis-
tant discourse is still relevant to the interaction (e.g. “drink” influenced by
the initial “juice”). In Table 3.3, we introduced new external stimuli, which
were activated in both DMM instances, halfway through the dialog. The
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new stimuli “tropic” and “island” could for example be caused by passing a
holiday advertisement during the conversation, leading to a topic shift. The
rest of the conversation is influenced by the newly introduced topic. Note
while the initial topics for both conversations were identical, the stochastic
nature of the selection process lead to different interactions already before
the introduction of the new external stimuli.

We can see that the majority of the concepts mentioned in the conversation
are related to the originally stimulated items, i.e. we maintain a coherent
conversation. Still, we see a gradual shift of topic. This is especially true for
the second example, where the new stimuli strongly influence the course of
the interaction. Note that the new items do not simply override the old ones.
The spreading process supports items which are associated to both the old
and the new concepts, e.g. “tropical fruit”. These examples indicate that the
DMM is indeed able to generate coherent interactions over a period of time,
including the handling of topic drift. It has to be noted that the quality
of the conversation depends on the quality and quantity of relevant nodes
in the knowledge base. For certain domain specific parts of an application,
it will be necessary to manually extend the existing entries, since generic
State-of-the-Art databases might not be rich enough.

3.3.4 Discussion

In this section, we described the design and implementation of the dynamic
memory model (DMM) for application in interaction systems. The DMM
is based on the validated theory of ACT-R and LTM¢ and extended by the
ability to handle memory dynamics and to populate the model from large
semantic databases. The evaluation showed that the model is able to predict
associations close to those produced by humans and showed that the model
also maintains plausible associations during a simulated interaction with po-
tential topic shifts. The presented model as well as the conducted validation
experiments from an HCI perspective are novel contributions to the research
community.

We note that the evaluation does not yet cover all aspects of associations dur-
ing HCI. For example, the simulated interactions take place on a semantic
level, which avoids challenges of automatic language understanding, which
is a large research area on its own [DMBHT'08], which provides tools to
extract meaning from text. Additionally, both instances of the simulated
interactions operated on the same semantic network. This design avoids
grounding challenges which occur situations in which two agents (humans
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Table 3.2 — DMM conversation

Table 3.3 — Topic switch

Instance 1

Instance 2

Instance 1

Instance 2

Initial stimuli: apple, orange

Initial stimuli: apple, orange

juice

lemon butter

sour

bitter

lime

lemonade

seed

pineapple

bergamot

pear

NN YN N YN N YN N Y

N

lemon

fruit

store

sugar

drink

refrigerator

citrus fruit

yellow

yellow fruit

sweet

juice

citrus fruit

like orange

peel orange

sweet

v N YN YN YN Y

v

tangerine

lime

eat orange

outside

bergamot

New stimuli: tropic, island

ficus

tropical fruit

peel first

yellow

salsa

p

NN

v N N Y

pineapple

person

banana

mango

fun
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or systems) operate on different knowledge bases, for example when user
and system have different levels of knowledge about the topic of a conversa-
tion. As the employed database of the DMM is not hard-wired but can be
exchanged flexibly, it would be possible to explore such situations.

3.4 Overlay-based Modeling of Workload

In the previous section, we introduced DMM, a dynamic, large-scale mem-
ory model. The ACT-R model which provided the theoretical foundation for
DMM was designed to match average performance of average humans who
fully concentrate on one given task. However, human memory performance
depends to a large extend on the current workload level: A higher work-
load level — for example induced when humans perform several tasks at the
same time — influences information retrieval, activation decay, etc. When
applying a standard computational cognitive model with default parameters
to predict performance in a cognitive task under high workload, the predic-
tion of memory performance will be overly optimistic. This is because such
a model does not account for the effects of workload on human cognition.
When using a standard model to predict human behavior during interaction,
this imprecision will lead to wrong assumptions about what past information
(e.g. from the system or the context) the user might be able to recall. In the
following two sections, we will present two approaches to model the impact
of workload on cognitive performance. For each approach, we present a user
study for validation.

In this section, we start with the approach of direct manipulation of the DMM
parameters to explicitly represent different workload levels®. In Section 3.5,
we present an alternative implicit approach using dummy models. To our
best knowledge, the systematic implementation and validation of different
approaches to represent the impact of workload on cognition in computa-
tional models is a substantial novel contribution to the research community.

8This section is based in parts on the Bachelor thesis of Lucas Bechberger which was
supervised by the author of this thesis.
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3.4.1 Approach: Explicit Representation of Workload
Levels as DMM parameters

In this subsection, we introduce our approach of explicit representation of
workload levels in the DMM. First, we introduce the general idea of workload-
dependent parameter sets. Second, we introduce the task for which we evalu-
ate the approach and specify the memory model internals. Third, we explain
how the memory model is populated with data from the Wordnet database.
Fourth, we describe how the workload-dependent parameter sets are opti-
mized by a genetic algorithm.

Workload-Dependent Parameter Sets

One approach to model the impact of high workload on cognition is its direct,
explicit representation in the DMM (as described in Section 3.3) by adding
new degrees of freedom to the memory model. Of the DMM described in
Section 3.3, we regard the following parameters: decay d, retrieval threshold
7, latency factor F', spreading potential Py eqq, spreading threshold 7gpreqd,
and retrieval sensitivity s. Since F depends on 7 [ABBT04], and 7gpreaa
depends on Pj,.eqq as well as B(i), five free parameters remain to model
performance differences between workload levels. For this purpose, we follow
the overlay idea of [RVRAS06] to represent cognitive modulators: To enable
the model to exhibit different memory performance under different workload
conditions, we extend the model to provide different parameter sets, one
for each workload level. Each workload-dependent parameter set comprises
the five parameters of the DMM listed above. When a certain workload
level is detected (e.g. by using an empirical workload model), the associated
parameter set is selected, which influences retrieval probability and latency
of the affected memory items.

While the implementation of this approach is straight-forward, determining
the parameter sets and evaluating their impact on performance is challeng-
ing: The memory model is complex and contains non-linear dependencies of
activation on previous stimulations of the target item and of associated items.
Additionally, the model predicts multiple dependent variables (e.g. retrieval
probability and retrieval latency) which may have to adapt differently to
changes in workload level. Therefore, we provide a detailed evaluation of the
impact of workload on memory items in different situations: This concerns
the recency and frequency of stimulation (i.e. how often and how long ago was
the item stimulated?) as well as the relevance of spreading (i.e. does the item
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appear in the context of semantically similar items?). For all those different
situations, we analyze and quantize to what extend it is possible to model
changes of memory performance using workload-dependent parameter sets.
We used optimization based a genetic algorithm to determine the optimal
parameter sets for each workload level. This is done by fitting the param-
eters for each set to behavioral human data from the respective workload
level.

The proposed approach makes little assumptions on the relation of work-
load level and memory performance. An alternative to a finite number of
parameter sets would have been to use a continuous workload parameter
w € [0, 1] to represent gradual shifts in workload level and a mapping from
w to the model parameters. However, prior to this study, there was no
knowledge available about which free parameters are influenced (linearly or
non-linearly) by different workload modes. Thus, the resulting model would
either by oversimplified or not falsifiable given a corpus with a limited num-
ber of discrete workload levels. Furthermore, sensitivity analysis of existing
workload measurements is usually performed using discrete task difficulty
levels [RDMPO04], i.e. it is unclear to what extend a continuous workload
scale could be measured reliably. For those reasons, we decided to follow the
described approach of distinct parameter sets.

Memory Model Specification

In this section, we introduce the task for which we evaluated the approach and
specify the memory model internals. We evaluated the explicit representation
of workload levels using a verbal recognition task, in which participants were
presented a list of words to remember (“encoding phase”). Afterwards, par-
ticipants saw a list of target and distractor words and had to indicate for each
word whether it was on the learning list (“recognition phase”). This task was
designed in analogy to the Hopkins Verbal Learning Test (HVLT) [Bra91l].
To induce different levels of workload, two different versions of the switching
task [Mon03] were used, an easy and a difficult one. To disentangle effects of
distraction during recognition from the impact of workload on the encoding,
the switching task was only activated during encoding.

For this task, we tried to predict different behavioral performance metrics by
employing the adaptive memory model as outlined in the previous subsection.
When new items were learned, they were stimulated in the memory model,
i.e. they received and spread activation. During recognition, this activation
was used to calculate the retrieval probability of the queried item. If above
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the retrieval threshold, the item was reported as known by the model (i.e.
the model predicted that the simulated participant would indicate the item
as a target word). Otherwise, it was reported as unknown (i.e. the model
predicted that the simulated participant would indicate the item as a dis-
tractor word). The memory model we used in this evaluation was identical
to the DMM introduced in Section 3.3. The ACT-R equation for base level
activation leaves the unit of time as a degree of freedom for the modeler.
For the DMM, we measured times t; and t. in minutes since the start of the
experiment. To provide all memory elements with a reasonable initial acti-
vation value, all elements were assumed to be encoded once at time ¢t = —60
min, i.e. at a time out of the scope of the experiment. This prevented the
activation value from becoming negative infinity when no stimulation was
presented, which is implausible in our scenario. Since base level activation
can be negative, but only positive values should be spread through the mem-
ory item network, a spreading potential Pip.cqq is added to the base level
activation and this sum is multiplied with the factor 10. If the resulting
value 10 - (B(7) + Pspreaa) s higher than 7,cqq, it will be spread amongst the
memory element network. To reduce the number of free parameters, like in
LTMY, the spreading threshold is set relatively to the initial activation to be
spread.

For calculating the base level activation B(i) of a memory item, the three
workload parameter sets interact: For each summand (¢, — t;)~¢ in Equa-
tion 3.2, the decay parameter d = dj, is taken from the workload parameter
set which corresponds to the workload level at encoding time ¢;. For ex-
ample, if a memory item was encoded at t; when the workload level was
Low, and at t; when the workload level was MEDIUM, then the base level
activation is computed as B(i) = In((t, — to) " %ow + (t, — t;) " Medivm) with
Arow and dpregium being the decay parameters of parameter sets LOw and
MEDIUM, respectively. This approach allows us to model variable workload
conditions during encoding of different stimulations. Spreading activation,
retrieval probability and response time are calculated independently of the
other parameter sets, as they do not have a temporal component. They are
still calculated depending on the current workload level.

Memory Model Population

This section describes how the memory content of the DMM was defined
to create an appropriate memory representation for the described task: The
Wordnet database [Mil95] was used to populate the memory model as de-
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scribed in Section 3.3. WordNet is a lexical database for the English lan-
guage which has been developed at Princeton University. WordNet contains
a large number of nouns, verbs, adjectives and adverbs, all grouped into sets
of synonyms called synsets. For the scope of this section, only nouns were
considered. Synsets are connected with other synsets via semantic pointers.
The relations between noun synsets include hypernymy/hyponymy (“is-a”
relation), meronymy /holonymy (“has-a” relation) and antonymy (“opposite-
of” relation). The words the model operated on are German nouns as we
conducted the experiment with German native speakers. Therefore, all terms
were translated and each term was associated to exactly one synset to avoid
ambiguities caused by translations from or to words with multiple meanings.

Genetic Optimization

In order to optimize the model parameters to fit the different workload levels,
we used a genetic algorithm. We maintained one population of size 100 of
possible parameter configurations for each workload mode. Each parame-
ter configuration consisted of values for decay d, intercept time I, retrieval
threshold 7, spreading potential Psp,cqq, and retrieval sensitivity s. The fit-
ness value, which is required to determine the surviving configurations in
each iteration, was obtained by performing a simulation with this parameter
configuration and by comparing the simulation results with the results of the
human participants. The final fitness value was then computed by adding up
the negative relative errors for the three dependent variables response time,
hit rate and false alarm rate. Response time is the time between the display
of a word in the recognition phase and the corresponding response by the
participant. Hit rate is the relative frequency of correct responses to target
words. False alarm rate is the relative frequency of incorrect responses to
distractor words.

To generate a new population from a given one during one iteration, the
genetic algorithm mated two randomly chosen parameter configurations and
mutated individual parameter configurations. Mating of two parameter con-
figurations was implemented by selecting a random subset of parameters from
one parent and combining them with the missing parameters taken from the
other one. The resulting configuration was then added to the population.
Mutation of a parameter configuration was implemented by selecting a ran-
dom subset of parameters from a parent and randomly varying the values
of the selected parameters. The resulting parameter configuration was then
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added to the population. The genetic algorithm terminated after a 1000
iterations.

3.4.2 Experiment Design

In this subsection, we describe the experiment which was conducted to vali-
date the proposed approach. The experiment consisted of a verbal learning
task which is modeled by the DMM and a secondary task to generate three
different workload levels. First, we describe the verbal learning task. Sec-
ond, we present the structure of one block of this task. Third, we introduce
the secondary task to induce different workload levels. Fourth, we describe
the overall structure of the conducted experiment and finally, we present
information on the collected data corpus.

Verbal Learning Task

In the following, we present details about the concrete implementation of
the verbal learning task. To validate the representation of workload level by
variable parameter sets, we conducted an experiment in which participants
were asked to perform the following verbal memory task: During a learning
phase, a list of five or eight nouns was presented one at a time on a com-
puter screen (1.5 seconds per word with a short break of 0.5 seconds between
words). The participants were asked to memorize these words. Immediately
after each learning phase, a suppression task was started: Participants were
asked to count down in threes from a random three-digit number presented
on the screen (e.g. starting from 328, participants had to count down: 328,
325, 322, 319, ...). This suppression task was adopted from [FM00] and had
the purpose of reducing recency effects during the subsequent recognition
phase. After 20 seconds of counting down, participants were alerted by an
audio signal, indicating the start of the recognition phase: A list of eight
nouns was presented on the screen one by one and the participants had to
decide for each word whether they had learned it before in one of the previous
learning phases. If they recognized the word, they had to press “Y”, other-
wise they had to press “N”. Participants were told to respond as fast and as
accurately as possible. After pressing “Y” or “N”, the next word appeared on
the screen. Both response time and response accuracy were recorded. Half
of the presented words were target words, which had been learned before,
the other half were distractor words. Participants were not told how many
target words there would be in a recognition phase. Each word (on both,
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the target and distractor lists) was queried only once during the experiment
to avoid unintended learning effects during the recognition phase. The three
phases (learning — suppression task — recognition) were repeated six times,
forming one block. A block was executed with a consistent workload level
which only switched between blocks. After each recognition phase within a
block, there was a break of ten seconds.

Block Structure

Each block used a word list which contained 54 words (24 target words, 24
distractor words and 6 filler words that were learned but never retrieved?).
The first four learning phases of a block consisted of eight words, the last
two learning phases of a block consisted of five words (note that some 24
unique target words were presented twice). Participants were informed that
no retrieval was required across blocks, i.e. words learned in block i were
not queried in block j (for i # j). However, retrievals were required across
different phases of the same block. All words used in this experiment were
German nouns with a mean length of 5.82 letters (SD: 2.99, range: 2-12)
and a mean number of syllables of 1.89 (SD: 0.48, range: 1-4). Half of the
24 words learned during a block were presented for learning only once, half
of the words were presented in two subsequent learning phases (this is the
“reinforcement” property of a word). Figure 3.7 shows the structure of the
described word recognition task.

TRAIN MEDIUM HIGH LOW 9 Blocks
. \ 8 Phases in a Block:
Learning 5 Recogn. Learning 5 Recogn. | 42 learning events
8 Words ! 8 Words b 5Words | 8 Words | (30 unique words),

48 recognition events

Learning List
(per block)
12 targets (learned once)

12 targets (learned twice)
6 filler words (learned once)

Recognition List
(per block)
24 targets
24 distractors

Figure 3.7 — Structure of the verbal learning task experiment.

9This prevented an elimination strategy to identify distractor words when all target
words were already queried.
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Half of the words learned during a block were presented in the recognition
phase right after they had been learned, half of the words were queried with
a delay of one recognition phase (“gap” property). Half of the 48 words
retrieved in each block were so called “cluster words”: There were four clus-
ters per block and each cluster consisted of six semantically related words
(e.g. cat, dog, cow, horse, lion, tiger; this is the “cluster” property). Half of
the words of each cluster were used as target words, half of them were used
as distractor words. The clusters and their words were taken from [BMG69).
Words which do not belong to a cluster are called singleton words. We call
each combination of “cluster”, “gap” and “reinforcement” property a cell.
The three properties “cluster” (cluster words vs. singleton words), “rein-
forcement” (word learned once or twice) and “gap” (immediate recognition
vs. delayed recognition) were counterbalanced, so that all cells (e.g. cluster
words that were reinforced twice and retrieved without a gap) were of equal
size.

Secondary Switching Task

To induce different workload levels, two secondary tasks based on the Switch-
ing task paradigm were used, similar to those mentioned in [Mon03]: In the
easy variant, a randomly chosen sound file, containing a digit, was played con-
currently with each word appearing on the screen during a learning phase.
Participants were asked to report verbally for each digit, whether it was
“large” or “small”. A digit was considered to be “large”, if it was greater
than or equal to 5, and “small” otherwise. Participants were asked to re-
port their answer as accurately as possible before the next word was pre-
sented on the screen and the next sound file was played. In the difficult
variant of the Switching task, again a randomly chosen sound file contain-
ing a digit was played concurrently with each word appearing on the screen
during a learning phase. Participants were asked to report verbally alter-
nating whether the digit was “large” or “small” and whether the digit was
“odd” or “even”, starting with the former. For example for the digit se-
quence “three”, “eight”, “nine”, “one”, the correct responses would have
been “small”, “even”, “large”, “odd”. Again, participants were asked to re-
port their answer as accurately as possible before the next word was presented
on the screen and the next sound file was played. Participants were told that
the verbal learning task and the Switching task were of equal importance.
Figure 3.8 illustrates how the difficult Switching task and the verbal learning
task were performed concurrently.
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Figure 3.8 — Concurrent execution of both the verbal learning task (words
to memorize presented on the screen) and the difficult Switching task (digits
to classify presented acoustically by playing sound files) [Becl2].

Both secondary tasks were designed to avoid modality conflicts with the
verbal learning task in perception and response: In the verbal learning task,
stimuli were presented visually and responses were made manually, whereas
in both Switching tasks, stimuli were presented acoustically and responses
were made verbally. Since the verbal learning task operated on words, both
secondary tasks were designed to operate mainly on digits to avoid conflicts
in verbal memory. However, since both verbal learning task and secondary
tasks require cognitive resources, cognitive workload should rise when the
secondary task was executed. An audio recording was made in order to
analyze the verbal responses in the secondary task post-experimentally.

In this experiment, three workload levels were distinguished:

e In workload level Low, participants performed solely the verbal learn-
ing task.
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e In workload level MEDIUM, participants performed the verbal learning
task and the easy Switching task concurrently with equal importance
assigned to both tasks.

e In workload level HIGH, participants performed the verbal learning task
and the difficult Switching task concurrently with equal importance
assigned to both tasks.

Ordering of Blocks

There were nine blocks in total: three training blocks at the beginning (one of
each workload level) and six test blocks (two of each workload level). Train-
ing blocks consisted of four learning and recognition phases. Three of the
learning phases consisted of five words and the last one consisted of three
words. Only data from the test blocks was analyzed. Between two subse-
quent test blocks there was a break of 90 seconds. For the both, training and
test blocks, the order of underlying word lists and order of workload levels
was counterbalanced across participants. The order of workload levels was
randomized but constrained by the following two restrictions: Two subse-
quent blocks had to be of different workload levels and both the first three
and the last three of the test blocks each had to cover all three workload
levels.

Collected Data Corpus

The experiment took about 65 minutes and was conducted with 24 partic-
ipants (mean age: 20.75 years, SD: 3.37, range: 15 — 29). 17 of them were
male (mean age: 20.24 years, SD: 2.88, range: 15 — 28), 7 participants were
female (mean age: 22.0, SD: 4.32, range: 16 — 29). The majority of 17 partic-
ipants were students, 4 of them were trainees and 3 were young professionals.
Per participant, for each cell (e.g. cluster words that were reinforced twice
and retrieved without a gap) and workload level, a total number of 6 data
points was recorded per participant. The experiment was run on a Mac-
Book Pro 13”7 (Intel Core 2 Duo 2.26 GHz, 2 GB RAM) using the PsychoPy
framework [Pei07].
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3.4.3 Evaluation Results

In this subsection, we present, analyze and interpret the results of the ge-
netic optimization to determine the workload-dependent parameter sets on
the collected experimental data. The number of free parameters of the full
DMM is large compared to the size of the available data (while we recorded
six blocks per participants with 54 words each, words are distributed across
eight cells and three workload levels). Therefore, we did not optimize all pa-
rameters in one monolithic optimization run, but rather by using a two-step
approach: First, we optimize the model without the spreading mechanism.
Second, we fix the parameters from step one and add the spreading mecha-
nism. This approach ensures the interpretability of the resulting parameter
configurations since only few parameters change during each evaluation step.

We start with basic properties of the DMM derived only from base level
activation and than extend this initial model to the full model with all pa-
rameters, including spreading activation: In the first step, response time and
hit rate are evaluated in dependency of the properties reinforcement and
gap, considering only singleton target words. We investigate whether the
obtained parameter configurations are able to reproduce the differences in
human performance induced by workload. Second, the cluster property will
be evaluated by introducing the spreading mechanism (and the corresponding
model parameters) and by considering the false alarm rate as performance
metric.

Another consequence of the data sparseness is that we train person-independent
parameter sets. This is desirable for three reasons: First, the ratio between
trial count and parameter count is higher than for person-dependent param-
eter sets. Second, person-independent parameters can — if we can prove their
feasibility — be transferred to unseen participants for which no calibration
data is available. Third, a stable parameter set allows a more profound anal-
ysis of model plausibility. A disadvantage of this design choice is that for the
estimation of individual performance in combination with an empirical work-
load model, predictions of the person-independent memory model will be less
accurate than predictions of a person-dependent model. In Section 3.5, we
will look at the alternative of using models which use individualized param-
eters.
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Evaluation of Reinforcement and Gap Property

In this first evaluation step, the model was optimized for reproducing the
effects of the reinforcement property and the gap property on task perfor-
mance for different workload levels. In this part of the evaluation, spreading
was deactivated and we only considered singleton target words, to reduce
the number of parameters for optimization. The optimization algorithm was
run for minimizing the distance of predicted and empirically measured given
response time (time between presentation of recognition query and response)
and hit rate (relative frequency of correct answers for target words) values.
False alarm rate (relative frequency of wrong answers for distractor words)
was ignored for this evaluation step because only target words were used.
Both, response time and hit rate, were assigned equal priority.

The intercept time I was set to 0.680 s which has emerged as reasonable value
in several preliminary tests to represent the average human time for percep-
tion and manual response. Intercept time was kept constant across workload
levels since it is interpreted as time needed for perception and motor reaction
and should therefore not be influenced by cognitive workload. Furthermore,
the spreading potential Ps,.cqq Was not optimized since spreading was dis-
abled. Hence, only the decay d, retrieval threshold 7 and retrieval sensitivity
s were left for optimization. Table 3.4 shows the resulting values after opti-
mization as well as the corresponding fitness values of these parameter sets.
The fitness value represents the negated sum of relative errors (response time,
hit rate and false alarm rate, see 3.4.1), i.e. the fitness value measures the
goodness of fit of the DMM (with the parameters which were determined
during optimization) to the experimental data. The precision of the predic-
tion can therefore be quantified be assessing the fitness values: As denoted in
Table 3.4, the three parameter sets have a fitness value of -0.068, -0.081 and
-0.109, respectively, when evaluated against empirical data from their corre-
sponding workload mode. This means that the average relative prediction
error is around three to six percent (relative to human performance) which
can be considered a good fit against the experimental data.

By taking a closer look to the plausibility of the parameters, we made the
following observations:

e The decay parameter d increases from 0.500 for Low, over 0.505 for
MEDIUM up to 0.798 for HIGH. This seems plausible, because a higher
value of d results in faster forgetting. Since the hit rate declines under
higher workload, faster forgetting under higher workload seems to be a
reasonable explanation.
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Parameter Configurations
For Reinforcement-Gap-Optimization
Workload Level \ d \ T \ s \ Fitness Value
Low 0.500" | -0.337 | 0.352 -0.068
MEDIUM 0.505 | 0.031 | 0.749 -0.081
HicH 0.798 | 0.218 | 0.965 -0.109

Table 3.4 — Parameter configurations for the three workload levels as yielded
by the optimization algorithm, and their corresponding fitness values. TNote
that the decay parameter d was set to 0.5 for workload level Low a priori
(since this is the standard value of the ACT-R implementation), and was not
optimized.

e The retrieval threshold 7 also increases: from —0.337 for Low, over

0.031 for MEDIUM to 0.218 for HIGH. This also seems reasonable: 7
determines a threshold value for the activation of a memory item. If
activation of a memory item is exactly 7, retrieval probability equals
0.5. Therefore, a higher threshold 7 means that items need a higher
activation for being retrieved. This appears to be another plausible
explanation for the decreasing performance under higher workload.

The retrieval sensitivity s does also increase: from 0.352 for Low, over
0.749 for MEDIUM to 0.965 for HIGH. This is in line with the previous
findings: Since s influences the sensitivity of the retrieval probability
function, a value of s that is close to zero will cause the retrieval prob-
ability to form a smooth transition between low and high probabilities,
whereas a value of s that is close to one will result in a rather sharp tran-
sition. When interpreted this way, the parameter values listed above
indicate that for higher workload, an increasing activation does not sub-
stantially increase retrieval probability until activation approaches 7.
The value of 0.352 for workload level LOW seems to be plausible since
values around 0.4 have emerged as reasonable values for this parameter
in the ACT-R community.

Figures 3.9 and 3.10 compare the results obtained in the experiment with the
predictions made by the non-adaptive as well as the adaptive model. The
analysis differentiate the words regarding the reinforcement and gap prop-
erties to study whether the effect of both properties is modeled accurately.
The non-adaptive model in this analysis uses the optimized parameters for
the workload level Low. In contrast, the adaptive model uses workload-
dependent parameter sets. When concentrating on the workload level Low,
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Figure 3.9 — Average response time for different workload levels and word
properties: 1 or 2 presentations (“reinf=1" / “reinf=2"), query within the
same block as the presentation (“gap=0") or with a gap of at least one block
(“gap=1"). Besides the empirical data, we present the predictions of a model
with fixed parameter set (optimized for Low) and of the adaptive model which
uses workload-dependent parameter sets.



130 Computational Cognitive Modeling

0.95

9
0.85
0.65

0.5

reinf=1, gap=0 reinf=1, gap=1 reinf=2, gap=0 reinf=2, gap=1

Response Accuracy [%]
o
o J o [=}
~ w 00

o
o

m Experimental Data  m Fixed Parameter Set ~ m Workload-adaptive Parameter Set

(a) Workload Level Low

reinf=1, gap=0 reinf=1, gap=1 reinf=2, gap=0 reinf=2, gap=1

Response Accuracy [%]
N o o © o o
= v a ~N <] [(=] =

o
w

M Experimental Data M Fixed Parameter Set W Workload-adaptive Parameter Set

(b) Workload Level MEDIUM

0.9

0.8

0.7

0.

0.

| l
L] ]

reinf=1, gap=0 reinf=1, gap=1 reinf=2, gap=0 reinf=2, gap=1

o

Response Accuracy [%]
wv

>

M Experimental Data M Fixed Parameter Set M Workload-adaptive Parameter Set

(c) Workload Level HiGH

Figure 3.10 — Average hit rate for different workload levels and stimulus
properties: 1 or 2 presentations (“reinf=1" / “reinf=2"), query within the
same block as the presentation (“gap=0") or with a gap of at least one block
(“gap=1"). Besides the empirical data, we present the predictions of a model

with fixed parameter set (optimized for Low) and of the adaptive model which
uses workload-dependent parameter sets.
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the models predict well the effects of both properties'’: Response time of

words retrieved with a gap is predicted to be higher and their hit rate is pre-
dicted to be lower than of words retrieved without a gap. Response time of
words reinforced twice is predicted to be lower and their hit rate is predicted
to be higher than of words reinforced only once. While the non-adaptive
model predicts the human performance well for the workload level Low, it
is overly optimistic for the workload levels MEDIUM and HIGH. The model
with workload-dependent parameter sets on the other hand reliably predicts
the detrimental of rising workload on task performance. This is also reflected
by the achieved fitness values, which correspond to the relative errors of the
model, see again Table 3.4. If we use the parameter set for workload level
Low (i.e. the model that was optimized to data without secondary task), the
fitness value when applied to the workload modes MEDIUM and HIGH was
computed as -0.491 for workload level MEDIUM and as -0.868 for workload
level HIGH, respectively. The relatively small average relative error of the
workload-dependent parameter sets in contrast to the comparatively large
relative error of the LOwW parameter set when transferred to the workload
modes MEDIUM and HIGH indicates that the design decision of modeling
different workload modes as independent parameter sets was reasonable.

Evaluation of Cluster Property

In the previous part of the evaluation, two important aspects of the model
were not regarded: False alarm rate and the difference between singleton and
cluster words. Due to the spreading mechanism, we expect to see a difference
between singleton words and cluster words, especially in false alarm rate. As
a first naive attempt of predicting human performance for words with and
without the cluster property, the parameter sets obtained in the first step of
the evaluation (i.e. from Table 3.4) were used on data with both cluster and
singleton words. Spreading was still deactivated. As expected, the prediction
performance was relatively poor (with fitness values of -0.743 for Low, -0.448
for MEDIUM and -0.360 for HIGH), as spreading is the designated mechanism
to model the differences between those two categories of words.

To achieve a better fit, the model was then optimized again with activated
spreading. Doing so introduced a new parameter, the spreading potential
Pypreqq. The parameters d, 7, and s determined in previous evaluation step
were kept fixed and only P;,,cqq Was optimized. Resulting parameter configu-

0Performance for adaptive and non-adaptive model are identical at workload level Low,
as the non-adaptive model uses parameters optimized for this workload level
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Figure 3.11 — Average false alarm rate for different workload levels and the
“cluster” property: (“Singleton” / “Cluster”). We compare the experimental
data to predictions of the adaptive model without spreading as well as to the
adaptive model with spreading.
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Parameter Configurations of Cluster-Optimization
Workload Level \ df \ bl \ st \ P opread \ Fitness Value
Low 0.500 | -0.337 | 0.352 | 2.012 -0.219
MEDIUM 0.505 | 0.031 | 0.749 | 2.550 -0.171
HicH 0.798 | 0.218 | 0.965 | 2.983 -0.156

Table 3.5 — Parameter configurations for the three workload modes as yielded
by the optimization algorithm when optimizing for singleton and cluster words,
and their corresponding fitness values. TParameter values d, 7 and s were taken
from the previous evaluation step, and were therefore kept fixed.

rations are given in Table 3.5. Figure 3.11 compares the human performance
(measured by false alarm rate) with the predicted performance of the adap-
tive model with and without activated spreading (we already know from
the first step of the evaluation that the non-adaptive model will not predict
the empirical data accurately). The human experimental data shows that
there is a remarkable difference between singleton and cluster words in false
alarm rate. Furthermore, we see that only the model with activated spread-
ing was capable of predicting this effect of the cluster property. Resulting
fitness values for the model with spreading were -0.219 for Low, -0.171 for
MEDIUM and -0.156 for HIGH. This is a substantial improvement compared
to the fitness values of the model without spreading, which cannot predict
the difference between singleton and cluster words. When analyzing the pa-
rameter configurations given in Table 3.5, an interesting tendency regarding
the spreading potential P, ¢qq can be observed: It rises from 2.012 for Low,
over 2.550 for MEDIUM to 2.983 for HIGH. This effect can be interpreted
as spreading becoming more important under higher workload, a hypothesis
which — given the good fit of the model — is also supported by the behavioral
data from the participants.

We also analyzed the predictions made for the performance metric hit rate in
dependency of the cluster property. The results of this analysis are presented
in Figure 3.12. In the experimental data, we observed a slightly increased hit
rate for cluster words compared to singleton words. This effect is predicted
reasonably well by the model with activated spreading, as indicated by the
fitness values. This indicates that the model is generally capable of predicting
cluster effects on hit rate.
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Figure 3.12 — Average hit rate for different workload levels and the “cluster”
property: (“Singleton” / “Cluster”). We compare the experimental data to
predictions of the adaptive model without spreading as well as to the adaptive
model with spreading.
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3.4.4 Discussion

By using a genetic optimization algorithm in step-by-step approach, we op-
timized and evaluated the DMM with workload-dependent parameter sets.
In summary, our central findings are:

e Modeling different workload modes by using different parameter sets
yields good results. The workload-dependent model outperforms the
one-fits-all model for workload levels other than Low.

e The effects of reinforcement and gap can be reproduced in all workload
levels.

e The effects of the cluster condition can be reproduced by using the
workload-adaptive model with activated spreading mechanism.

Given those results, we can conclude that it is possible to adapt a memory
model to different workload settings. The experimentally found parameter
modifications to adapt the model to these different workload settings are
plausible for all parameters: The decay parameter d rises with increasing
workload, which leads to a faster decline in base level activation and there-
fore to faster forgetting. Also the retrieval threshold 7 rises with increasing
workload. This means that memory elements need a higher activation value
to be retrieved from memory. The retrieval sensitivity s, which controls the
slope of the retrieval probability curve, also grows with increasing workload.
This can be interpreted as decision making becoming more binary under high
workload. Also the spreading potential P;,qq rises with increasing workload,
which suggests that spreading and therefore learning words as clusters be-
come more important under high workload.

For the first time, this work has shown that the DMM (which is based on the
established ACT-R memory model) can be extended by workload-dependent
parameter sets to reflect the changes in human memory performance caused
by changing workload levels. This approach was validated for different cate-
gories of memory items (gap, reinforcement and cluster property) and perfor-
mance metrics (hit rate, response time, false alarm rate). This implies that
the extended model can be used to accurately predict memory performance
not only during uninterrupted, distraction-free task execution, but also in
high workload situations. The necessary prediction of workload level can be
provided by an empirical cognitive model as described in Section 2.3.
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3.5 Dummy Model based Workload Model-
ing

In the previous section, we have shown that we can manipulate the param-
eters in a computational cognitive model explicitly to express the effect of
different workload levels during the execution of a cognitive task. The down-
side of this approach is that manipulation of parameters only models those
effects which were explicitly taken care of (e.g. the model in Section 3.4 only
models the impact of workload on memory, not on manual execution) and
that the manipulation of core model parameters bears the risk of compromis-
ing model validity (e.g. most validation studies of the ACT-R memory model
used the proposed default value for the decay parameter d = 0.5, while the
adaptive model presented in Section 3.4 used different values for d). In this
section, we propose an alternative approach which does not explicitly reflect
the impact of workload on specific modeling components. Instead, the im-
plicit approach represents the effect of high workload implicitly by adding a
dummy task which consumes cognitive resources'®.

An additional limitation of the previous approach which we also address in
this section is the fact that in Section 3.4, we assumed perfect information on
workload level to be present, which an empirical workload model cannot pro-
vide from noisy sensor data. In this section, we therefore analyze the impact
of classification error of an empirical cognitive model on the performance of
the computational cognitive model. Finally, we acknowledge the fact that
individual differences between different humans play a large role when mod-
eling the impact of internal states on cognitive processes. Therefore, we
investigate how individualized models (which were tuned to a low-workload
condition) are capable of adjusting to different workload levels.

In the following, we will describe the integration of an EEG-based empir-
ical workload model into a cognitive ACT-R model to predict the impact
of different workload levels on human behavior and task performance. The
workload level during execution of a main task is manipulated using two
different secondary tasks. The changing workload levels are recognized from
the recorded signals by an empirical cognitive model and used to activate or
deactivate dummy models to run in parallel to the main task model. This
influences the predicted performance to better match human behavior.

"This section is based in parts on the diploma thesis of Robert Propper which was
supervised by the author of this thesis.
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Our proposed architecture consists of four components: an empirical work-
load model, a main task model, a dummy model and a switching strategy.
The interaction between those components is displayed in Figure 3.13: Dur-
ing the execution of an experiment, the empirical workload model continu-
ously evaluates features extracted from the recorded EEG signal. It yields a
workload estimate on a scale from 0 to 1 which is propagated to the ACT-R
model. The ACT-R model then decides based on the workload estimate to ei-
ther activate or deactivate a dummy module. This dummy module represents
a separate task thread in ACT-R (using the Threaded Cognition mechanism,
see Section 3.2.6) which is an abstract model of cognitive activity caused by
a secondary task. Executing the dummy model in parallel to the main task
model will cause cognitive resources to be occupied for the actual task model,
potentially resulting in reduced task accuracy or increased response time.

Empirical
EEG ——>»| Workload
Model

ACT-R l

Switching
Strategy
Main Task l

Model
(= PA Model)

Dummy
Model

v

Task GUI

Figure 3.13 — System setup for workload adaptation of ACT-R based on a
dummy model.

In the following sections, we will explain the details of the dummy-model
approach and validate the approach using data from two user studies. To our
best knowledge, this is the first implementation and systematic evaluation of
an ACT-R model which is able to predict behavior and performance under
variable workload levels.
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3.5.1 Computational and Empirical Models

This subsection describes the components required for the dummy model
approach to represent the effect of workload on behavior and performance:
Main Task Model, Empirical Workload Model, Dummy Model & Switching
Strategy.

Main Task Model

The employed main task model is a regular ACT-R model of the main task.
In this section, our example main task is the Paired Associate (PA) task. The
PA is a task of learning and recalling the pairing of two items — a stimulus
and a response. First, a list of such pairings is learned by a participant.
Then, a sequence of stimuli is presented and the participant is asked to
give the associated response. Associative learning is an important aspect of
intelligence and required by many cognitive tasks in an HCI context (e.g.
learning the correct input command in response to certain system outputs).
Additionally, our implementation of the PA represents the operation of a GUI
(visual stimuli on a screen and manual responses on a keyboard). For those
two reasons, the PA task is a representative abstraction of many relevant
tasks in real life.

For the ACT-R model, we used a slightly modified version of the PA model
provided as part of the ACT-R distribution. As the only modification to
the original model, we included one additional request to the declarative
module to represent the learned non-trivial mapping of numbers to keys on
a numerical keypad (i.e. the participants had to remember which keys were
associated with which responses in the task). Input and output to the model
were directly provided from and to the GUI which participants used during
the experiments.

The goal of this section is the prediction of cognitive performance and be-
havior under different workload levels for individual sessions. This use case
implies that we need to individualize modeling parameters for each partic-
ipant, as we are predicting performance in one concrete situation, not on
average. Therefore, we determined optimal model parameters for each par-
ticipant. To avoid overfitting of the models to limited training data, we
restricted our optimization to sequential adjustment of only two parameters
of the declarative model. We do this by adjusting first the 7 parameter (the
retrieval threshold) to optimally match the retrieval accuracy of a partici-
pant and then adjust the parameter F' (which determines retrieval latency)
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to optimally match the response time. 7 was optimized in the range of
[1.0,2.0] and F' was optimized in the range of [0.2,0.8]. We chose those two
parameters because 7 and F' are sufficient to manipulate the prediction of
response accuracy and response time, respectively. The necessary statistics
for optimization of those parameters were estimated on data without sec-
ondary task for each individual participant. We performed optimization as
an exhaustive search on data which was not used for the subsequent eval-
uation in Section 3.5.4. The LOW bars of Figures 3.16, 3.17, 3.18, and 3.19
show a breakdown of PA response accuracy and response time by individ-
ual participant for two different data sets. In these figures, we see that the
inter-participant performance variance was large. As the model parameter
determine the predicted performance, only individual parameter sets will be
able to adequately model these different performance levels.

To have the ACT-R model interact with the task GUI, which was imple-
mented in Python, we implemented the Hello Python module. Similarly
to the existing Hello Java module [Biit10], this component allows interfac-
ing Python applications with ACT-R models. Hello Python consists of two
components, an ACT-R extension and a Python module. Both components
communicate via TCP/IP to control Python applications from ACT-R.

3.5.2  Empirical Workload Model

To provide an empirical workload model, we employed the model of Sec-
tion 2.3 in a person-dependent variant, using frequency features calculated
on windows of 2s length with an overlap of 1.5s. For data acquisition, we
applied an active EEG-cap (BrainProducts actiCap) to measure the par-
ticipants’ brain activity using 16 electrodes placed at positions FP1, FP2,
F3, Fz, F4, F7, F8, T3, T4, C3, Cz, C4, P3, P4, Pz, and Oz according
to the international 10-20 system [Jasb8] with reference to the left mastoid.
The impedance of each electrode was kept below 20 k€2 during all sessions.
Amplification and A/D-conversion was performed on a 16 channel Vario-
Port biosignals recording system by Becker Meditec using a sampling rate of
256 Hz.

Dummy Model & Switching Strategy

The dummy model is an ACT-R model which runs in parallel to the main
task model (using the Threaded Cognition mechanism). It abstractly mod-
els the cognitive processes involved in the secondary task. In contrast to
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the main task model, the dummy model is not a detailed model of a valid
human solution strategy of the secondary task. Instead, it contains a se-
quence of requests to ACT-R modules associated to the task, for example
the declarative module or the visual module. This sequence is repeated while
the model is running. It is possible to activate and deactivate the model at
runtime. In deactivated mode, the model does not perform any module re-
quests. In activated mode, the repeated module requests cause exclusive
or limited cognitive resources to be temporarily blocked for the main task
model, potentially resulting in longer response times or even task failures.
The activation of the dummy model is performed on the basis of the empiri-
cal model, i.e. when high workload is detected. This reflects the degradation
of human performance caused by multi-tasking which we already observed
in Sections 2.3 and 3.4.

As different secondary tasks may have different characteristics of resource
usage, we implemented different dummy models corresponding to different
types of secondary tasks. For this work, we chose two different paradigms of
secondary tasks to explore the possibilities of the presented approach: The
Sternberg memory task [ST66] and the Lane Change Task (LCT) [Mat03].
The Sternberg task generates heavy memory load and is therefore expected
to interfere with the memory demands of the Paired Associate main task.
We employed a purely acoustical version of the task where the stimuli were
read to the participant and responses were given verbally. Therefore, we did
not expect interference with the visual input and motor output of the PA
task. The corresponding dummy module Sternberg-Dummy performs peri-
odic requests to the aural, the verbal and the declarative module. The LCT
on the other hand is a driving task executed in a driving simulator (see Sec-
tion 2.3.1). It requires the participant to change lanes on a three-lane highway
as indicated by road signs. The memory load of this task is low, however
input and output modalities interfere with the PA task. The corresponding
dummy module LCT-Dummy performs periodic requests to the visual and the
motor module. Figure 3.14 shows flow charts which describe the sequence of
operations performed by the two dummy models. Each block corresponds to
one production rule occupying a corresponding ACT-R module (e.g. “steer”
occupies the manual module). Note that corresponding real ACT-R mod-
els would be much more complex, especially for the LCT: Considering how
complex even a model of lane and distance keeping is [Sal06], we save much
modeling effort by introducing the dummy model. We achieve this reduction
in effort because the dummy model concentrates on its main goal which is
to give an abstract representation of the cognitive resources required for the
execution of the secondary task.
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Figure 3.14 — Flowcharts of two ACT-R dummy models LCT-Dummy (left)
and Sternberg-Dummy (right). Each box corresponds to one ACT-R rule. In
parentheses we give the ACT-R modules which are involved in the execution
of the corresponding rule.

Note that cognitive resources are not permanently occupied by the secondary
tasks, as those also contain pause segments. For this reason, the dummy
model is not processed all the time during high workload phases. Instead, the
model is randomly activated during those phases with a certain probability.
This probability is 50% for the Sternberg-Dummy and 25% for the LCT-Dummy.
Those numbers correspond to the ratio of task processing to pause segments
for those two secondary tasks.
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3.5.3 Experimental Setup

For evaluation of the dummy-model approach, we recorded two data sets
with the same main task (PA) and different secondary tasks (Sternberg,
LCT). In both data sets, participants performed the PA task multiple times
with and without secondary task. Fach condition (e.g. with and without
secondary task) was repeated twice for the LCT data set and four times for
the Sternberg data set. Additionally, there was a training session for each
condition which was not recorded.

The LCT data set was recorded in the driving simulator. For the Paired
Associate task, we showed sequences of words for learning and query on a
7¢ computer screen in the driver’s cockpit. All presented words were in
German language with four letters and associated with numbers from 1 to 9.
A learning phase consisted of 16 words. During the query phase, each word
was queried three times in randomized order during the query phase. The
response window was 4s, correct answers were always shown afterwards for
2s. Subjects gave their response using a numeric keypad strapped to their
right leg.

The LCT task was performed using a force-feedback steering wheel and a
gas and brake pedal for controlling a virtual car on a large projection screen.
Participants were instructed to drive at a constant speed of 180km/s and
had the task to follow lane changing instructions given visually on road signs
which appeared at fixed intervals. One run of the LCT task this setup lasted
for five minutes.

For the Sternberg data set, recording was performed on a standard desk-
top computer and screen, on which the PA task was performed. For the
Sternberg task, sequences of five short phonetic strings (e.g. ”omo”) without
semantic meaning were read to the participant during a learning phase. In
a subsequent query phase, target strings from the learning phase had to be
discriminated from distractors. Responses were given verbally by the par-
ticipant in a subsequent response window of 3s. In total, one query phase
contained 20 phonetic strings. One run of the Sternberg task consisted of
four pairs of training and query phases and lasted five minutes.

Using this setup, we recorded a total of nine sessions in the Sternberg data
set and nine sessions in the LCT data set (one session per subject). All
18 participants were university students with a mean age of 23 (o0 = 2.6).
Overall, 6 of the participants were female, 12 were male. All participants
gave their written consent to their participation in the study.
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3.5.4  Evaluation of the Dummy Model Approach

The evaluation of the dummy model approach consists of six parts: First,
we investigate whether the PA runs with and without secondary task result
in different performance for the PA task and whether they were subjectively
perceived as different in workload. Second, we compare the two secondary
tasks regarding their impact on the participants’ performance in the PA
task. Third, we evaluate the individualized non-adapted model (i.e. without
dummy model) for its ability to predict human performance for the PA runs
with and without secondary task. Fourth, we repeat this analysis with an
oracle-adapted model (i.e. with dummy model activated by perfect workload
recognition). Fifth, we evaluate the results of the EEG-based empirical work-
load model. Sixth, we evaluate the EEG-adapted model (i.e. with dummy
model activated by the empirical workload model).

Evaluation of Workload Assessment

Mental Physical Temporal  Performance Effort Frustration
Demand Demand Demand

20
18
16
1
1
1

N B

NASA TLX Score
o

o N B OO

B LOW (both data sets) B HIGH (LCT data set) B HIGH (Sternberg data set)

Figure 3.15 — Raw TLX ratings for different data sets and conditions. “Solo”
denotes recordings without secondary tasks.

We used the NASA-TLX questionnaire [HS88] to assess the experience of
our participants with the different tasks in our experiment. After every
PA run, the participants were handed a German version of the NASA-TLX
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questionnaire. We only used the raw questionnaire scores instead of the
weighted ones, as suggested by [BBH89]. Figure 3.15 shows the mean TLX
ratings for our experiments. The results fit to our expectations of the task
difficulty and the performance of our test participants: In all categories, the
Paired Associate task without secondary task was scored lowest (a lower score
generally corresponds to an easier task). In most questions, the combination
of PA with LCT (PA+LCT) was scored lower than the combination of PA
with Sternberg (PA+SB). Two categories do not follow this general trend:
Physical demand was ranked much higher for the PA+LCT than both other
task conditions. This is easily understandable given that driving a car poses
a much larger physical challenge than pressing keys on a keypad or speaking.
Also, our participants felt that the temporal demand of the Lane Change
Task was slightly higher than the temporal demand of the Sternberg task.
This coincides with the fact that LCT only influences response time and not
response accuracy of the PA task, while the Sternberg task influences both
(see next subsection). Overall, the evaluation of the NASA-TLX justifies the
notion of low and high workload conditions. Therefore, we will sometimes
refer to the condition PA without secondary task as LOW and the combination
of PA with either LCT or Sternberg secondary task as HIGH condition.

Comparison of Secondary Tasks Impact on Performance

Table 3.6 summarizes the performance of the participants on both data sets
for LOW and HIGH workload conditions in the PA task. We see that response
time and response accuracy rise significantly (p < 0.01 for all data sets and
performance metrics) for both data sets when an additional secondary task
is processed. A non-adaptive model which is designed to predict such per-
formance metrics assuming full concentration on the main task will therefore
greatly overestimate performance of human participants when a secondary
task is actually present. By inspecting the standard deviations, we also see
that the individual differences are large, stressing the need for model indi-
vidualization to perform real-time prediction.

Moreover, there is a difference between the two data sets in the quality of
performance impact: While the performance differences between LOW and
HIGH workload conditions are statistically significant on average, the mea-
sured effect size is not the same for both data sets. We have a strong impact
on the accuracy metric only for the Sternberg data set. For the LCT data
set, only reaction time shows a strong degradation for the HIGH condition
compared the corresponding LOW condition. This observation is consistent
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with the types of distraction which are caused by the two secondary tasks:
The Sternberg task incurs strong working memory load and therefore makes
the declarative module a bottleneck. This behavior harms both PA accuracy
and PA response time. On the other hand, the LCT task only marginally in-
fluences PA accuracy, as it does not occupy the declarative module. Instead,
occupying visual and manual module leads to delays in stimulus processing
and response execution, therefore to an increase in response time.
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Figure 3.16 — Breakdown of individual average response accuracy for the LCT
data set.

There is another difference between both data sets, regarding the consistency
of performance degradation between LOW and HIGH condition. This can be
observed when looking at the breakdown of performance metrics by individ-
ual participants in Figures 3.16, 3.17, 3.18 and 3.19: For the Sternberg data
set, both accuracy and response time suffered from the addition of a sec-
ondary task for every single participant. In contrast, this was only the case
for six out of nine participants for the LCT data set, because for three par-
ticipants response accuracy did not decrease (or even increased) in the HIGH
workload condition. Additionally, the standard deviation of the differences
between LOW and HIGH is much higher for the LCT data set compared to the
Sternberg data set (6.7 vs. 5.6 for accuracy and 0.44 vs. 0.28 for response
time). We explain this by the fact that the time window for responding to
stimuli in the LCT task was much larger than for the Sternberg task (2s
for Sternberg vs. ca. 8s for the LCT), opening up many opportunities for
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Figure 3.17 — Breakdown of individual average response time for the LCT
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Figure 3.18 — Breakdown of individual average response accuracy for the
Sternberg data set.

individual response strategies. This situation makes modeling of workload
effects of course much more challenging for the LCT data set.
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Figure 3.19 — Breakdown of individual average response time for the
Sternberg data set.

| Condition | Accuracy [%] | Response Time [s] |
LOW (Sternberg data set) 32.3 (3.34) 1.60 (0.29)
HIGH (Sternberg data set) 15.75 (6.29) 2.02 (0.49)
difference HIGH vs. LOW -16.55% 0.42%
LOW (LCT data set) 40.89 (5.78) 1.51 (0.32)
HIGH (LCT data set) 37.95 (7.46) 1.75 (0.38)
difference HIGH vs. LOW -2.94%* 0.24*

Table 3.6 — Average PA performance of all test participants for different
workload levels in two data sets. Standard deviation given in parentheses. An
asterisk denotes a significant difference between HIGH and LOW at a = 0.01.
Note that the LOW condition in both cases contains the identical PA task. The
data sets are presented separately because of performance differences.

Evaluation of Individualized Non-Adapted Model

In this section, we evaluate the performance of the individualized, but non-
adapted model (i.e. without dummy model) to the human performance in
the two data sets Sternberg and LCT. For evaluation of model prediction, we
use the prediction error (PE) metric, which is the average absolute difference
between empirically measured and predicted value. Often, we look at the
relative PE, i.e. the ratio between PE and the human performance.
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Table 3.7 shows the PE of the individualized non-adapted PA model when
predicting the performance parameters of the individual participants for LOW
and HIGH workload level. For this evaluation, we look at the metrics re-
sponse time and response accuracy of the Paired Associate task. We report
the absolute PE as well as PE relative to the respective metric measured
for the human participants. We compare model predictions to the human
performance in the final run in a session for each workload level, as this run
contains the weakest learning effects). Unsurprisingly, the individualized PA
model can very reliably predict performance for the LOW condition (this is not
trivially true as parameters were estimated on a different run of the PA task):
PE averaged across all participants is below 2% for both data sets. However,
PE increases substantially when transferring this model to one of the high
workload conditions. For the Sternberg data set, predicted response accu-
racy is nearly twice as large as measured empirically (92% PE for response
accuracy in the HIGH condition of the Sternberg data set). For both data
sets, the average response time of actual test participants was more than 20%
higher than predicted by the non-adapted model (21.4% for the Sternberg
data set, 25.8% for the LCT data set). This large prediction error for the
HIGH workload level mandates the use of a workload-adaptive model.

] Condition \ PE Accuracy \ PE Response Time ‘
LOW (Sternberg) | 0.39 (=1.12%) 0.02 (=1.25%)
HIGH (Sternberg) | 14.49 (=92.0%) 0.43 (=21.4%)

LOW (LCT) 0.21 (=0.51%) 0.02 (=1.32%)
HIGH (LCT) 6.3 (=15.4%) 0.39 (=25.8%)

Table 3.7 — Average absolute and relative prediction error (PE) for applying
the individualized, non-adapted PA model to data from different conditions.

Evaluation of the Individualized Oracle-Adapted Model

To evaluate the benefit of workload-adaptive models, we start by analyzing
the dummy-model approach using a workload oracle. The workload oracle
directly derived the correct workload level (high or low) from the task con-
dition and propagated this value to the ACT-R model to switch the dummy
model on or off. Table 3.8 presents average absolute and relative prediction
error when applying the workload-adaptive model using workload oracle. As
we assume perfect workload recognition, performance prediction in both LOW
conditions was identical to the performance of the non-adapted model in Ta-
ble 3.7 (which always operated without dummy model). When looking at
the results for HIGH conditions, we see that the prediction error compared
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] Condition \ PE Accuracy \ A Acc \ PE Resp. Time \ A RT ‘
LOW (Sternberg data set) | 0.39 (=1.12%) - 0.02 (=1.25%) -
HIGH (Sternmberg data set) | 5.52 (=35.0%) | -57% 0.27 (=13.4%) -8.0%

LOW (LCT data set) 0.21 (=0.51%) - 0.02 (=1.32%) -
HIGH (LCT data set) 6.3 (=15.4%) -0.0% 0.30 (=16.1%) -9.7%

Table 3.8 — Average absolute and relative prediction error for applying the
individualized, oracle-adapted PA model to data from different conditions.
Also given is the reduction of PE from the prediction of the non-adapted
model: “A Acc” is the absolute reduction in relative PE compared to the
prediction of the non-adapted model. “A RT” is the same for response time.

to the non-adapted model was reduced for all situations and metrics. For
easier comparison, we report the difference between non-adapted and oracle-
adapted prediction relative to the PE of the non-adapted model. For the
Sternberg data set, the result is most convincing, with a reduction of 57.0%
absolute (61.96% relative) in prediction error for response accuracy. PE
for response time was reduced by 8.0% (37.38% relative). Both reductions
in prediction error for the Sternberg data set were statistically significant
(p < 0.001 for both response accuracy and reaction time).

For the LCT data set, we also observe a reduction in prediction error, at least
for response time (absolute reduction of PE by 9.7%, which is 37.6% rela-
tive). This reduction barely not significant at p = 0.07. Regarding response
accuracy, we did not expect to observe an effect of using the oracle-adapted
model, as the LCT dummy model mostly affected stimulus perception and
response generation, but not memory retrieval. The fact that the reduction
in response time was not significant is caused by the high inter-person vari-
ability for the LCT data set; for one participant in this data set, response time
even decreases in the HIGH condition. The current parameter-free model (i.e.
a model which has no individual parameters which allow an individual ad-
justment the dummy model) is not able to predict the occurrence of such
“paradox” performance beforehand. The big advantage of a parameter-free
model is that for all other participants, it is able to provide a significant
improvement in prediction quality without the necessity of additional data
for fitting model parameters. This means that the workload-adaptive model
is not more complex (i.e. does not have more parameters) than the non-
adaptive one. If we remove the participant with “paradox” performance
from the analysis, the reduction in prediction accuracy (which then increases
to 12.0%, which is 46.51% relative) becomes significant (p = 0.01).
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The quantitative difference between both data sets also shows that the im-
plementation of a generic, task independent dummy model is not realistic:
For example, a model which would accurately predict the effect of the LCT
secondary task would inevitably underestimate the impact of the Sternberg
secondary task on response accuracy. A consequence of this observation is
that at least a rough estimate of the cognitive resource requirements of the
secondary task is necessary to select an appropriate dummy model, as well as
an estimate on the task intensity (i.e. the probability with which the dummy
model is active during HIGH workload).

Evaluation of Empirical Workload Model

In the last part of the evaluation, we want to replace the workload oracle from
the previous section with the workload predictions of an empirical workload
model. Before we can do that, we first need to evaluate the ability of the em-
pirical workload model to discriminate LOW and HIGH workload level. For this
purpose, we evaluate the classification accuracy after temporal smoothing.
Averaged over all participants, we achieved a person-dependent classification
accuracy of 84.1% (o = 14.1) for discriminating between LOW and HIGH for
the LCT data set and a mean person-dependent accuracy of 64.9% (o = 15.3)
for for discriminating between LOW and HIGH for the Sternberg data set. The
substantially lower accuracy for the latter evaluation can be explained by the
non-continuous workload induced by the Sternberg task (learning and query
phase) in comparison to the LCT: On average across all participants, the
temporally smoothed workload level for the query phases of the Sternberg
task is 0.15 higher than the recognized workload level for learning phases.

Evaluation of the Individualized EEG-Adapted Model

Up to this point, we have assumed a perfect workload oracle to differentiate
between low and high workload condition for triggering the dummy model.
This is of course a best-case assumption as workload prediction based on
empirical models will always be prone to classification errors. Such errors
may reduce the benefit of modeling high workload situations. Additionally,
they may lead to the activation of the dummy model in low workload con-
ditions. In the following, we quantify the effect of replacing the workload
oracle with a realistic empirical model. For this purpose, we modify the frac-
tion of time during which the dummy model is activated for each condition,
based on the workload estimates of the individual participants. When using
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\ Condition \ PE Accuracy \ A Acc \ PE Resp. Time \ A RT \
LOW (Sternberg data set) | 3.44 (=9.92%) | +8.8% 0.11 (=6.9%) +5.65%
HIGH (Stermberg data set) | 7.34 (=46.6%) | -45.4% 0.26 (=12.9%) -8.5%

LOW (LCT data set) 0.34 (=0.83%) | +0.32% 0.08 (=5.31%) +3.99%
HIGH (LCT data set) 6.1 (=14.8%) -0.6% 0.32 (=17.2%) -8.6%

Table 3.9 — Average prediction error for applying the individualized, EEG-
adapted PA model to data from different conditions. Also given is the re-
duction in PE from the prediction of the non-adapted model: “A Acc” is
the absolute reduction in relative PE compared to the prediction of the non-
adapted model. “A RT” is the same for response time.

a workload oracle, the dummy model is activated exactly at the desired ratio
(50% for Sternberg-Dummy and 25% for LCT-Dummy, see Subsection 3.5.2)
during HIGH conditions and turned of completely during LOW conditions. For
an EEG-adapted model, those ratios changes depending in the classification
accuracy a of the empirical workload model: The dummy model is then acti-
vated a-50% of the time during HIGH conditions and 1 — a of the time during
LOW conditions. Table 3.9 summarizes the prediction error of the adapted
models using those individual workload performance values. We see that
while prediction for the HIGH conditions is less accurate than when using
a workload oracle, we still outperform the non-adapted model. At worst,
we see an increase in prediction error of 8.8% for response accuracy in the
Sternberg condition. This value is close to the measured error probability
of the empirical workload model. For all other performance metrics, the in-
crease of prediction error is much smaller. A caveat is of course that when
using an EEG-based workload prediction, this will also be active during times
of LOW workload. Workload prediction errors during LOW phases would de-
grade model prediction compared to the baseline (non-adaptive) model. To
quantify whether workload prediction is still beneficial for the model when
regarding both LOW and HIGH sections, we need to compare the magnitude
of improvement in prediction error for the HIGH results with the magnitude
of deterioration for the LOW condition. For example for the Sternberg data
set, we have an improvement of 45.4% for the HIGH condition (EEG-adapted
model vs. non-adapted model) compared to a degradation of 8.8% for the
LOW condition. Assuming equal distribution of both conditions, this results
means that on average, we still achieve a substantial net benefit using the
EEG-adapted models.

Those results indicate that it is possible to combine empirical modeling of
human workload with computational modeling of task execution in a cogni-
tive architecture to provide adaptivity to varying conditions. All presented
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components (ACT-R model, EEG data acquisition and workload modeling)
are available as real-time capable components. This allows the system to
predict performance of a participant during the actual operation of the task,
even in the case of dynamically changing workload conditions.

3.5.5 Discussion

In the evaluation, we showed the importance of model parameter individu-
alization and workload adaptation for the purpose of model tracing in situ-
ations of variable workload. For both the Sternberg and the LCT data set,
we could show a significant reduction in prediction error for the workload-
adaptive model compared to the non-adaptive. This is an important finding
which is new to the research community.

The LCT data set proved to be more challenging, as individual differences were
not only present for baseline performance but also for the impact of adding a
secondary task. This can be seen in Figures 3.16 and 3.17, where we see some
participants which were not influenced negatively at all by the HIGH work-
load level (e.g. participants 1, 7, and 8), while performance suffered strongly
for other participants (e.g. participants 6 and 9). When applying the same
adaptation procedure (i.e. behavior of the dummy model, frequency of the
dummy model) to all participants, this lead to overestimation of the impact
of workload in some cases. This opens up more opportunities for model indi-
vidualization, but would also require more data for calibrating those models.
Still, we could show that on average, the dummy model approach significantly
outperforms a non-adaptive model in predicting task accuracy and reaction
time. This is also true if workload prediction is not perfectly accurate.

Additionally, we saw that the impact of the two secondary tasks on the
performance in the main task was different. This observation implies that
switching dummy models between tasks would lead to a substantial degra-
dation of prediction accuracy. A consequence is that while we do not need to
precisely model the secondary task with a full-blown ACT-R model, we still
need context information on the resources it consumes. This shows the neces-
sity of maintaining multiple dummy models for different (types of) secondary
tasks.

For the development of interaction systems, we can now use an ACT-R model
of the interaction task (which may already exist, for example for the purpose
of user simulation during interface prototyping) and a selection of dummy
models to predict performance. As a full ACT-R model of the main task
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needs to be available, this approach is especially appropriate for strictly
goal-oriented tasks for which a small set of clearly defined strategies ex-
ists. It should be noted that an ACT-R model cannot reliably predict the
performance of a single trial of the primary task. This is not a limitation
of the dummy model approach but due to the variability of human perfor-
mance itself. The model can however be applied well to situations in which
workload changes are rare compared to the frequency of new trials.
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Figure 3.20 — Differences in recognized workload levels for learning phases
(red) and query phases of the Sternberg task.

For future work, we propose to develop more sophisticated strategies to ac-
tivate the dummy model during HIGH workload. In the current implementa-
tion, the dummy model is activated randomly during phases of high work-
load. However, for most cognitive tasks workload is not distributed uniformly
across time. For example, in the Sternberg task there is a distinct resource
demand for the learning and the query phases, which implies different work-
load characteristics. This can also be observed in the recognized workload
patterns. Figure 3.20 shows the (temporally smoothed) EEG-based workload
prediction during one run of the HIGH condition of the Sternberg data set.
We have marked the four learning phases of the Sternberg task in red. The
other segments of the block belong to the recognition phases of the task. We
note differences of recognized workload levels within the output for the dual
task condition. It is clearly visible that the recognized workload in these
phases is lower than during the query phases.
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3.5.6 Comparison of Explicit and Implicit Modeling
of Workload

In the two previous sections, we proposed and evaluated two approaches to
model the effect of workload on behavior and performance in cognitive tasks.
The explicit overlay approach used different workload-dependent parame-
ter sets (optimized to data from human participants operating at different
workload levels) for the DMM memory model. The implicit dummy model
approach instead used the Threaded Cognition mechanism of ACT-R to im-
plement a dummy model which occupied cognitive resources. In multiple
experiments, we documented that both approaches for workload adaptation
of computational cognitive models significantly improved the prediction per-
formance in dynamic workload conditions compared to non-adapted models.
In this subsection, we will compare both approaches, as they show distinct
advantages and disadvantages. For this purpose, we look at four different
criteria for comparison: validity within the architecture, generalizability, pre-
dictability and modeling complexity.

Regarding validity within the architecture, the dummy model approach pro-
vides a more natural fit to the ACT-R architecture as it does not introduce
new mechanisms but works with any completely unmodified ACT-R 6 in-
stallation. In contrast, the overlay approach requires the introduction of
new mechanisms and parameters to core modules of an architecture (the
memory model in our case). As the numerous studies which validated the
mechanisms of the DMM were performed using the original memory module
without workload-dependent parameter sets, the overlay approach loses some
validity compared to the unmodified model and the dummy model approach.

Generalizability is concerned with the question whether all aspects of cogni-
tion are effected by the adaptation. Workload adaptation using the dummy
model approach is implicit as it does not directly interfere with the modeling
components. Consequently, it can potentially influence any ACT-R module,
as long as those resources are covered by the dummy model. The overlay
approach explicitly influences only the memory aspect of cognition. Gen-
eralization of the approach to other modules would require the modeler to
identify and optimize new parameter sets for those modules from scratch.

While its generalizability makes the implicit approach very versatile, a side ef-
fect of this approach is the limited predictability of the impact of the dummy
model on the main task model. While this is a result of the implicit and gen-
eralizing nature of the approach and may lead to the identification of effects
that would otherwise go unregistered, it also requires more engineering ef-
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fort to avoid unexpected behavior (i.e. which modules are influenced in which
regard): As the interference between main task model and dummy model de-
pends on the cognitive resources required by both tasks, as well as the timing
and order of resource requests, it is not easy to predict the exact effect of a
model prior to its execution. In comparison, the explicit overlay approach
modifies clearly defined elements of the parameter space, which have a known
impact on predicted behavior and performance. This ensures that only the
intended effects of workload level occur. In the analysis in Subsection 3.4.3,
we saw that the optimized parameter sets reflected very plausible effects on
cognition.

Next, we compare the two approaches with respect to modeling complexity.
In Section 3.5.4, we saw that different dummy models have very different
impact on the prediction accuracy. Using the dummy model approach there-
fore requires additional information on the type of secondary task to infer
information about the required resources to execute it. This information
could either be provided a-priori by the designer (which would lead to a
static system design), or be derived from context information. Another pos-
sibility would be to employ empirical cognitive models to derive information
about the workload characteristics of the secondary task (for example, in Sec-
tion 3.4, we showed that it is possible to reliably discriminate two perceptual
modalities, which are two types of cognitive resource in regard of the dummy
model). The overlay approach is of low modeling complexity, as it only de-
fines five existing variables of the declarative module which need to be set
in the workload-dependent parameter sets. Adjusting those parameters for
different workload levels requires only a straight-forward optimization (for
example with a genetic algorithm).

Another aspect of model complexity is the fact that the dummy model ap-
proach requires a complex cognitive architecture, while the direct overlay
approach can be easily implemented in an isolated model. This reduces the
entry barrier for including workload adaptive computational cognitive models
into interaction systems.

Table 3.10 summarizes the outcome of the comparison for all four criteria.
We see that there is no approach which is superior to the other for all relevant
criteria. This implies that the designer has to weight the different aspects to
make a decision for a specific use case.
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] Criterion Explicit Approach \ Implicit Approach ‘
Validity within Architecture - +
Generalizability - +
Predictability + -
Model Complexity + -

Table 3.10 — Comparison of explicit and implicit approach to represent the
effects of workload level in a computational cognitive model.

3.6 Prediction of Learning Opportunities &
Learning Situations

In the previous section, we demonstrated how empirical cognitive models can
help to improve the predictive power of computational models in the con-
text of dynamically changing user states. In this section, we will show that
this collaboration of models is not necessarily an unidirectional relation, i.e.
that the information flow is not restricted to the direction from empirical to
computational cognitive model. We develop a joint model which relies on in-
formation from both a empirical and computational modeling component. In
the evaluation of this joint model, we will show that it yields predictions on
a user’s state which cannot be extracted from the individual models. We will
investigate this joint model for the use case of analysis of strategy learning
during interaction. This is a frequent cognitive HCI task, for example when
using the computer as a tutor to improve problem-solving skills and when
learning about the operation of the computer itself, for example when explor-
ing a new software. There are many opportunities for a system to support
the user in such a situation. For example, a system could estimate to what
extend the user already learned the information associated with the current
learning item. This would help to predict in which situations the system can
expect the user to act skillfully on their own and in which situations they
still need support. The strategy of providing help or generating additional
learning opportunities can then adapt to the predicted situation.

3.6.1 Computational and Empirical Models of Learn-
ing

Reinforcement Learning (RL) is a fundamental mechanism of adaptive behav-
ior in humans. It is often implicitly involved in Human-Computer Interaction
(e.g. when users learn to operate a new software) but can also be explicitly
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employed as part of a predictive user model for adaptive systems. The under-
lying computational models of the learning progress are usually individually
calibrated through behavioral data (e.g. response probabilities). In recent
years, neural activity (as measured by EEG or fMRI methods) has become
a relevant source of information for empirical real-time user modeling. The
feasibility of a joint computational model was illustrated by [ABFF10], who
showed how the prediction of user states in an intelligent tutoring system can
be substantially improved by providing a joint model which combines predic-
tions of a computational cognitive model with an empirical cognitive model
using fMRI data. However, in order to successfully apply this approach,
neural markers need to be identified that can be integrated into user models
and which are easily accessible (e.g. derived from EEG) in real-time during
task operation. In this section, we employ a joint cognitive model consisting
of a computational RL model combined with an empirical cognitive model
based on EEG markers. The goal of this joint model is to identify learning
situations in an associative learning task with delayed feedback.

In RL, organisms learn to select sequences of actions that maximize their
received reward over time based on the reward signals (feedback) associ-
ated with task outcomes. This can be achieved through temporal difference
learning (TD), which assigns credit based on the temporal proximity of ac-
tions to outcomes. The authors of [FA06] demonstrated how a TD-based RL
model can predict learning performance by TD-based reward propagation
in a complex associative learning task with delayed feedback. One neuro-
physiological approach for studying RL is to analyze the Feedback Related
Negativity (FRN). The FRN is a frontocentral neural response appearing
200-300ms after the presentation of feedback indicating prediction errors
(i.e., a mismatch between mental model and observation). [WA11] docu-
ments that prediction error can be used in a task with delayed feedback
to predict the occurrence of FRN for task states immediately followed by
feedback as well as intermediate states. The authors present this effect as
evidence for credit assignment to intermediate states from future rewards.
[CFKA10] moves from time domain analysis to frequency analysis and links
prefrontal theta synchronization to adaption effects in a probabilistic rein-
forcement learning task. A Q-Learning model was used to estimate predic-
tion errors, which indicated whether a situation reflects a learning opportu-
nity. While the work mentioned above ([FA06, WA11l, CFKA10]) explicitly
addresses the processing of prediction errors, there are other cognitive pro-
cesses and corresponding neurological markers related to learning events, for
example working memory activity [CF12]. Early work on the relation of
EEG synchronization/de-synchronization and memory processes has iden-
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tified theta synchronization and alpha desynchronization during supposed
memory processes [K1i96, JT02, WMRO00, OTO"06]. Regarding alpha oscil-
lations, following research has also identified “paradoxial” alpha synchroniza-
tion during cognitive activity, which in subsequent work [KDST99, SKD*05,
KSHO7, THST07] was reinterpreted as a possible inhibition of task irrelevant
cortical processes or conscious inhibition of cognitive processes impeding the
task.

In this section, we establish a joint empirical and computational cognitive
model of learning situations in a complex associative learning task, partic-
ularly considering memory encoding and feedback processing. We selected
a complex learning task where a sequence of interdependent decisions is re-
quired to achieve a desired outcome. Learning such action sequences is both,
common and important in HCI, for example when trying to achieve a partic-
ular result with an unfamiliar software. The frequency-based EEG-analysis
of such a task in combination with a computational RL model — both in com-
parison of mean values and on a single-trial basis — is novel to the research
community.

3.6.2  Task Design

The behavioral task employed is a modified version of the task used in [FA06].
Formally, it is an abstract tree-search which requires three binary decisions
to move from the root node to a leaf node. Feedback about the success of a
decision sequence is provided when reaching a leaf node. When reaching a
non-target leaf node (failure), participants are moved back to the last node
where they were still on path to the target. When reaching the target leaf
node (success), one learning trial is complete and the participant is returned
to the root node for the next trial. Semantically, the task is framed as a
“strange machine”, which has four buttons (red, yellow, green, blue) and a
display showing its current state in a “unknown language” (a pronounceable
but meaningless German expression such as “Tarfe”). In each state two
of the buttons are active to move the machine into the next state. After
three button presses, the machine either reaches the target node or a failure
node and is reset as described above. The task goal is to learn to reach
the target node without failures. To increase the learning load, each node
has a set of three state labels, which are associated with different response
options. At each visit of a node one state label from this set is randomly
selected and displayed. We use the term node to reference an element of the
internal representation and the term state to represent the external, visible
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representation of a node. A person who is operating the task is never directly
informed about the current node he or she is in, only about the resulting
state. We further define a correct state as a state for which a sequence of
inputs exists which leads to the target leaf node without resetting. Any other
state is called incorrect state. Finally, a learned state is a correct state for
which the correct decision has been learned. See Figure 3.21 for a summary
of the internal structure and the display of a node. Table 3.11 summarizes
all important terms which are used to describe and analyze the “strange
machine” task.

] Term \ Explanation \
Node Internal element of a machine.
Leaf Node Node for which feedback (success or failure) is given.
Inner Node Any node which is not a leaf node.
Target Node Leaf node which successfully concludes a trial (success).
State External visible representation of a node.
Correct State State on a path to the target node.
Learned State State for which the correct decision has been learned.
Step Transition between an outgoing state and an incoming state.

Table 3.11 — Important terms for the analysis of the “strange machine” task.

Changes to the orignal task design of [FA06] were the reduction of state label
set sizes from four to three (to reduce time to learn one instance), the removal
of spatial terms (e.g. “left”) for the button names (replaced by colors to avoid
spatial cognition aspects), and the optimization for clean EEG recordings (no
mouse input, visually compact display).

3.6.3 Data Collection

Using the “strange machine” task, data were collected from 34 participants.
All participants were university students (23 female, mean age 23.1 years).
Participants gave written consent and were paid for their participation. 18
participants completed two instances of the task, 16 completed only one.

The data collection procedure consisted of brief instructions followed by 15
practice trials and a main learning phase with 100 trials'?. If participants
completed the main learning phase in less than 45 minutes, a second learn-
ing phase with a differently labeled version of the machine was conducted.
Stimuli were presented on a 20” screen, at approximately 1 m distance to the

12For the first 8 participants the main learning phase lasted 120 or 160 trials, which due
to ceiling effects was subsequently reduced to 100.
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Figure 3.21 — Internal structure and external view of the “strange machine”
task.

participant. All items were presented within a square of 2 cm to reduce the
amount of eye movements necessary to perceive all relevant information. All
relevant information on the execution of a task instance was logged to a file.
This log file contained the sequence of presented states, together with the
participant’s choice for each state. Each event (state presentation and action
selection) was annotated with a time stamp.

Kadon

Figure 3.22 — GUI of the “strange machine” task.

EEG was recorded from 29 scalp electrodes placed according to the inter-
national 10-20 system using actiCAP active electrodes and actiCHamp am-
plifiers (Brain Products, Germany) at a sampling rate of 500 Hz with Cz as
recording reference. The EEG data were re-referenced to a common aver-
age reference and segmented into windows of 400 ms length starting 100 ms
after a new state is displayed. Windows containing ocular artifacts were
identified and removed by testing for correlation of Fpl and Fp2 above a
threshold of 0.97 within the regarded time frame. This procedure rejects ap-
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proximately 4.5% of all trials. This means each window contains data from
processing the feedback (either a new state or direct feedback at a leaf node)
following a decision step. Each window was normalized by subtracting the
mean from 250-150 ms before stimulus. For band power analysis, we used
the Thomson’s multitaper power spectral density (PSD) estimate [Tho82].
The relevant (sub-)bands for analysis were estimated on an individual basis
following the method of [KI1i99]. The averaged PSD was then z-normalized
for each participant.

3.6.4 Reinforcement Learning Model

Similar to [FA06], we used a Reinforcement Learning approach to model hu-
man learning behavior. We employed the Naive Q-Learning (NQL) algorithm
(see listing 1), a variant of Watkin’s Q(A) [SB98] to model the participants’
learning progress. NQL is a Temporal Difference (TD) method with eligibil-
ity traces. The work of [WA11] demonstrates that TD methods are capable
of reproducing human learning behavior and predict the generation of propa-
gated FRNs. This work also demonstrated the benefit of eligibility traces for
the purpose of closely fitting human behavioral data. Reward was selected
to be +7 for the target node, —1 for the non-target leaf nodes and 0 for
any inner nodes. Temperature and A were fixed at 1.0 and 0.1, respectively.
Learning rate o was optimized between 0.02 and 0.3 for each participant in-
dividually to account for the large inter-participant variance in performance.
Each state label (not the node itself) is a state of the RL model, with two
possible actions corresponding to the buttons of that label. For each session,
a new model was initialized and trained using the action sequence as denoted
in the corresponding maze log file. This allowed us to trace the learning from
observation in each individual session. To quantify learning opportunities,
we define uncertainty as the entropy of the Softmax probability distribu-
tion [SB98] resulting from the action Q-scores for a specific state. Until any
feedback > 0 has been propagated to a state, this will result in a maximum
uncertainty value of log2. When a state accumulates propagated rewards,
uncertainty converges towards zero. As we can use this definition only for
correct states, we define certain incorrect nodes to have a negative QQ-score
< —e for both actions. The benefit of the notion of uncertainty compared to
the classic notion of prediction error - which is defined as the update delta of
the Q-score of the outgoing state for a certain step (see for example [WA11])
- is that it is defined in terms of states and not in terms of steps. Therefore,
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it can help a tutoring system to identify states which are not yet sufficiently
well learned.

Algorithm 1: The Naive Q()) algorithm
1: V(s,a) : Initialize Q(s,a) = 0 and e(s,a) = 0, trial = 0
2: Set m = Gibbs Softmax Method with static temperature 7
3: while trial | max allowed trials do
V(s,a): e(s,a) =0
5. Initialize s, choose a
6:  for all steps in an episode do
7 s’ <= DestinationState(s, a)
8
9

>

Choose a’ of ¢
: ax < argmax,Q7 (s, b)
10: d—r+Q"(s ax) — Q"(s,a)

11: e(s,a) < e(s,a)+1

12: for all s,a do

13: Q7 (s,a) < Q" (s,a) + ade(s,a)
14: e(s,a) < Ae(s,a)

15: end for

16: 5« s

17: a<+da

18: if s is end-state then

19: end episode

20: end if

21:  end for

22:  if r > 0 then
23: trial + +
24: end if

25: end while

3.6.5  Analysis

We investigate the relation between the prediction of computational RL
model and empirical EEG data to identify situations in which learning oc-
curs. We do this in two main steps: First, we use the RL model to predict
learning opportunities and look at neurological correlates in the EEG data.
Second, we detect from those learning opportunities the learning situations
which actually lead to correct decisions in the future. This second step shows
how empirical model and computational model interact to identify learning
situations better than each of them could do individually.
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For the analysis of EEG synchronization and desynchronization (i.e. increase
and decrease of power in a certain frequency band), we concentrate on two
effects that are related to feedback processing and memory encoding: Theta
synchronization in the prefrontal cortex and alpha synchronization in the
occipital cortex. We average PSD between electrodes O1 and O2 to represent
occipital activity and average PSD between electrode positions Fz, Fcl, Fc2
to represent prefrontal activity.

Identification of Learning Opportunities

We assume that memory encoding occurs systematically when new informa-
tion on the task is learned from the feedback at the end a step. We therefore
have to identify those situations which allow learning. For this purpose, we
look for steps between an uncertain outgoing state and a certain incoming
state. Such a step allows the transfer of knowledge about the certain step to
the uncertain one. To separate the steps into classes, we use the RL model
and apply two thresholds to dichotomize uncertainty: A strict threshold %,
(selected to characterize 80% of all values as "high uncertainty’) and a tolerant
t; threshold (selected to characterize 30% of all values as "high uncertainty’).
Those thresholds were chosen such that each of the resulting classes still
contained enough (i.e. more than 10 on average for one participant) steps.
We use t; to label outgoing states as (un)certain and ¢; to label incoming
states as (un)certain. This choice minimizes the number of missed learning
opportunities, as it maximizes the number of uncertain incoming and certain
outgoing states. The left side of Figure 3.23 summarizes the class definition:
Class LEARN denotes a learning opportunity, class NO-INFO denotes absence
of a learning opportunity due to missing information and class SATURATED
denotes absence of a learning opportunity due to an already saturated know-
ledge. We expect to see pronounced differences between LEARN on the one
hand and NO-INFO and SATURATED on the other hand. We expect the latter
two classes to be similar. To avoid class imbalance, we only include the first
five occurrences of each state in each class in our analysis. Statistics are calcu-
lated on the normalized averaged PSD distributions for the respective classes
as a two-sided paired t-test. To rule out that low-frequency ocular artifacts
confound the results, we verified that there was no significant difference in
eyeblink frequency between the different classes during preprocessing.

Figures 3.24 and 3.25 show average prefrontal theta power and average occip-
ital alpha power calculated for the three classes separately. In Figure 3.25, we
see an increase in alpha power from the NO-INFO class to the LEARN class in
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Figure 3.23 — Definition of learning opportunities (left side) and learning
situations (right side) as derived from the RL model to form the classes for
evaluation of classes.

the occipital cortex, while there is no significant difference between NO-INFO
and SATURATED. Analogously, we see a difference between NO-INFO class to
the LEARN and SATURATED classes in the theta band for the prefrontal cortex
in Figure 3.24. However, those differences in the regarded bands marginally
miss statistical significance: #(36) = 1.48, p = 0.07 for occipital alpha and
t(36) = 1.62, p = 0.057 for prefrontal theta. One reason for this lack of
significance is that learning opportunities denote the potential for learning,
but do not always lead to memory encoding as the participant overlooks the
opportunity or is not able to correctly memorize the new information.
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Figure 3.24 — Theta power at the prefrontal cortex for the classes LEARN,
SATURATED and NO-INFO for learning opportunities. Whiskers indicate stan-
dard error.
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Figure 3.25 — Alpha power at the occipital cortex for the classes LEARN,
SATURATED and NO-INFO for learning opportunities. Whiskers indicate stan-
dard error.

Identification of Learning Situations

The criteria we defined in the RL model yield a reasonable prediction whether
a learning situation occurs during a specific step. In the previous analysis,
we assumed the definition of a learning situation as a given ground truth to
investigate neurological markers for learning. However, we concluded that
the computational model can only yield a noisy prediction of a successfully
learning event. To quantify this predictive power, we introduce the term of
a learned state. A learned state is a correct state s for which holds that
the next two steps in the log file which have s as outgoing state stay on
the correct path. 38% of all steps labeled as learning situations do not re-
sult in a learned state'®. In the following, we combine this prediction by
the computational RL model with the information of EEG to detect those
missed learning opportunities. We propose that the observed alpha and theta
synchronization effects are caused by cognitive processes of learning situa-
tions. This implies that when separating learning opportunities in learned
and not-learned outgoing states, we should observe a similar difference in
PSD: Learned outgoing states show a level of alpha and theta synchroniza-
tion which is not present for missed learning opportunities. To investigate
this hypothesis, we sort the steps from the LEARN class of the positive and
negative learning opportunities by this criterion, forming the HAS-LEARNED
and the NOT-LEARNED classes. Steps which are not categorized as learning
opportunities form the NO-0OPP class, see the right side of Figure 3.23. Fig-

13This number depends of course on the threshold applied to the uncertainty level of
the outgoing step. A lower threshold leads to fewer false alarms but also increases the
number of missed learning opportunities.
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ures 3.26 and 3.27 show the band power for the three different classes, now
resulting in a significant (¢£(35) = 2.74, p < 0.005) increase in individual al-
pha power from the non-learned to the learned steps, as well as a significant
difference in theta power (£(35) = 1.76, p < 0.05) in the prefrontal cortex.
The steps in the NOT-LEARNED class are not significantly different from steps
in NO-0PP for both occipital cortex and prefrontal cortex.
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Figure 3.26 — Theta power at the prefrontal cortex for the classes
HAS-LEARNED, NOT-LEARNED and NO-0PP for learning situations. Whiskers in-
dicate standard error.
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Figure 3.27 — Alpha power at the occipital cortex for the classes
HAS-LEARNED, NOT-LEARNED and NO-O0PP for learning situations. Whiskers in-
dicate standard error.

We should note that the different classes are not distributed equally in time
over the course of one session: For example, steps that constitute learning
opportunities are rare at the beginning and the end of a session. To exclude
that the observed effects are of temporal origin, we compare steps between
inner nodes from the beginning and the end of each session. We do not see
a significant difference between steps at the beginning and at the end. This
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indicates that the previous results measured a real learning effect and not a
temporal effect.

Note that while the empirical model is able to differentiate actual learning
situations from missed learning opportunities, it still requires the RL model
to identify learning situations: When we remove the prediction of learning op-
portunities and directly compare PSD distribution in prefrontal and occipital
cortex for learned and not-learned states, the previously observed difference
between both classes becomes non-significant in this condition (p > 0.1 for
both regions and the corresponding bands). This indicates that we are able
to identify learning situations but that this is only possible using both, the
computational and the empirical model.

Single Trial Classification of Learning Situations

To make this significant difference accessible for a tutoring system, we need
to provide prediction of learning situations on a single trial basis. For this
purpose, we train a Naive Bayes classifier to separate the HAS-LEARNED and
the NOT-LEARNED class. As features, we use individual occipital alpha power
and prefrontal theta power. We evaluate this classifier in a participant-
dependent leave-one-out crossvalidation. To exclude cases where one class
receives too few training samples, we remove the most imbalanced sessions
where the majority class contains more than 70% of all samples from the
analysis. The resulting classifier yields an average recognition accuracy of
71.0% which is significantly better (¢(25) = 2.49, p = 0.01) than the baseline
accuracy of 59.6% (relative frequency of majority class NOT-LEARNED), as
determined by a one-sided paired t-test of classification accuracy vs. size of
majority class for each subject. The average improvement over the baseline
is 19.7% relative.

To conclude, our results show that we can use the computational RL model to
identify learning opportunities in an associative learning task, despite delayed
feedback. We further showed that we can combine the model with an EEG
based empirical model to predict learning success. This is also feasible on a
single trial basis. The empirical model and the computational model each
on their own were not able to perform this prediction reliably.
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3.7 Discussion

In this chapter, we described the development of computational cognitive
models for use in adaptive cognitive interaction systems. We used those
models to predict two complex cognitive user states, memory configuration
(in Section 3.3) and learning situations (in Section 3.6). Empirical cognitive
models would not have been able to predict those user states on their own.
This does not mean that computational cognitive models exist independently
of empirical cognitive models. On the contrary, we presented and compared
two different approaches to adapt the predicted behavior and performance of
a computational cognitive model to different workload levels, as estimated by
an empirical cognitive model. These extensions to computational cognitive
models improved the prediction of individual performance in situations of
dynamically changing workload, which is an important contribution to the
application of models in an HCI context. In the final Section 3.6, we showed
that both, computational and empirical cognitive models can contribute to
the joint prediction of a user state. Taken together, the results in this chapter
show that a combination of different types of models is can predict user
states which could not have been predicted accurately with only one type of
model. These results are new to the research community and will advance
the research on cognitive modeling for interaction systems.



CHAPTER 4

Interaction Manager & Usability

Evaluation

In this chapter, we describe the development and evaluation of an adap-
tive interaction manager AIM. Following the presentation of the gen-
eral interaction framework, the focus of this chapter is on multiple user
studies to investigate several objective and subjective usability aspects
of adaptive cognitive interaction systems. Finally, we outline the devel-
opment of a cognitive user simulation.

4.1 Introduction

Adaptive Cognitive Interaction System

In the last chapters, we described our contri-
butions to empirical and computational cogni-
tive modeling. We demonstrated that cogni-
tive models are able to model user states and
cognitive processes. In this chapter, we lever-
age those results to develop end-to-end adap-
tive cognitive interaction systems. For this
purpose, this chapter concentrates on two as-
pects: On the one hand, we turn our attention
to the final component of such interaction sys-
tems, the interaction manager which engages

the user and manages input, output and discourse. On the other hand, we
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investigate objective and subjective usability aspects of adaptive cognitive
interaction systems to determine whether adaptive interaction is beneficial
to the user in a measurable way.

We start by reviewing the relevant related work, regarding interaction man-
agement in general and adaptive interaction management and user modeling
in particular. Afterwards, we introduce our own AIM adaptive interaction
manager for a rapid development of adaptive multimodal interaction systems.
Then, we present the design and evaluation of three different interaction sys-
tems which were implemented using AIM. We investigate several usability
aspects of adaptive systems. The first system is an end-to-end workload-
adaptive information presentation system which adapts its speaking style
and mode of information presentation to the user’s workload level. We show
that such adaptation yields significant benefits in effectiveness, efficiency and
user satisfaction. For the second system, we investigate the effect of different
workload-adaptation strategies in terms of intrusiveness. Our results indicate
that there is a discrepancy between the objective benefit of a strategy and
the subjective assessment by the users. Third, we describe a system which
detects and reacts to the user’s confusion resulting from recognition errors by
a gesture recognizer. We show that a pro-active reaction to confusion by the
system increases the robustness of the recognizer with higher efficiency than
manual correction methods. Finally, we look at the development of a cog-
nitive user simulation, which incorporates computational models of memory
and workload. We show that such simulation is able to generate plausible
interactions.

4.2 Related Work

In this section, we review related work, i.e. the fundamentals of interaction
management and the State-of-the-Art in terms of adaptive interaction sys-
tems and user modeling and simulation.

4.2.1 Fundamentals of Interaction Management

In this section, we present the fundamental components of an interaction
system. We furthermore give some examples of interaction systems to show
how those components can be implemented. The term interaction system
refers to any system which receives input from the user and outputs infor-
mation to the user via one or multiple modalities. In this thesis, we adopt
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Figure 4.1 — Major components of an interaction system. Adapted
from [BRO9].

the terminology from spoken dialog systems as those are interaction systems
which handle the most complex input and discourse structures. Since spo-
ken dialog systems have evolved to multimodal interaction systems during
the last decade, their design forms a general basis for all, also non-speech
based interaction systems. The general structure of such an interaction sys-
tem is depicted in Figure 4.1. A communication hub connects the input and
output components with the central interaction manager. Examples of in-
put components are Automatic Speech Recognition (ASR) combined with a
Natural Language Understanding (NLU) unit, a gesture recognizer or sim-
ply a keyboard. Examples of output components are Text-to-Speech (TTS)
systems, a Graphical User Interface (GUI) or a virtual 3D avatar. The inter-
action manager receives input events via the communication hub. Using this
information, it updates the multi-dimensional interaction state which stores
all information to represent the progress of the interaction, the assumed state
of the user, and other context information. The interaction state is then used
by the interaction strategy to decide on the action of the system, which is
then executed by the interaction manager. Actions can either trigger activity
of the application backend or be propagated to the output components.

For implementing the interaction strategy, there exists a number of ap-
proaches ranging from very simple, rigid architectures to flexible, generic
approaches. [McT02] categorizes those approaches into three groups. The
first one, based on Finite State Machines (FSMs), is one of the simplest ways
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to implement an interaction strategy. Here, the interaction state is identical
to the current state of the FSM. Outgoing transitions between states rep-
resent the allowed user actions or the encoded system actions taken in that
state. One of the main challenges of FSM based strategies is that they do not
scale reasonably well with the number of parameters which define the interac-
tion discourse and the number of possible user inputs for each state [McT02].
The second category is called “frame-based systems”, which are representa-
tives of the more general category of systems using the Information State
Update (ISU) approach [LT00]. Here, the strategy is implemented as a set of
rules which operate on the interaction state. This state comprises variables
which represent “the mental state of the agent” or a “structural view of the
dialogue” [LT00]. Compared to strategies based on FSMs, the frame-based
approach is more flexible as it allows implicit definition of the state-action
space. Strategies based on this approach therefore scale much better and
offer high flexibility to include all relevant attributes within the interaction
state. The third category in [McT02] is “agent-based systems”. Those sys-
tems model the user and the system as agents which try to collaboratively
solve a joint task. Agent-based systems use techniques from general Artificial
Intelligence to represent interaction state and select system actions. Imple-
mentations of this approach use logical interference or planning algorithms.
While the author of [McT02] himself promotes agent-based systems as the
most advanced category of interaction strategies, this evaluation is actually
not clear-cut. The behavior of agent-based systems is very difficult to un-
derstand and predict for the interaction strategy designer. We will see later
in this section and also in our own contributions (Section 4.5) that small
differences in system behavior can make a large difference in the usability
evaluation. Controllability and predictability of system behavior for the de-
signer is therefore a critical property of an adaptive interaction strategy.

Another approach to interaction strategies which has recently (i.e. after the
publication of [McT02]) caught the attention of many researchers is based on
Reinforcement Learning (RL). This approach aims at learning optimal system
behavior from data or simulation. Strategies based on RL represent the dialog
state as a (Partially Observable) Markov Decision Process ((PO)MDP). On
this (PO)MDP, an optimal policy is learned. A challenge of this approach
is that it requires a lot of training data or a realistic user simulation to
generate training episodes. This is feasible as long as the interaction state is of
low dimensionality but becomes challenging [WY07] once more variables are
added to it. For adaptive interaction systems which incorporate information
on the user state, we expect the interaction state to be of high dimensionality,
for example representing detected user states. Therefore, application of RL
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is not always feasible. Additionally, training of adaptive strategies requires
the availability of data or of sophisticated user simulations to reflect the user
behavior in different user states. Such resources are rarely available, as the
number of possible combinations of domains and user states is very large.

The general framework of interaction management is brought to life by sev-
eral existing interaction system frameworks. The TAPAS interaction man-
ager [Hol05] is based on a rule-based architecture. It maintains a set of
slot-value pairs to keep track of the dialog progress and an abstract dialog
state. TAPAS evaluates the slots and the dialog state when selecting rules
eligible for execution. TAPAS has been applied to build interaction systems
which autonomously acquire new information about people [PHO8| or ob-
jects [HNWO08]. Olympus is an interaction system [BRH*07] which includes
the Ravenclaw interaction manager [BR09] as central component (together
with modules for ASR and TTS). Ravenclaw consists of two main compo-
nents, the task tree and the agenda. The task tree represents the structure
of interaction plans for achieving certain goals in the target domain. The
agenda is a stack of agents which represent the current focus of attention in
the interaction. Agents consume matching input from the user to be acti-
vated and to update their state. The OpenDial interaction framework [Lis14]
is a toolkit which is based on probabilistic rules for interaction management,
defined in an easily accessible XML format. Probabilistic rules allow the im-
plicit definition of graphical probabilistic decision models. While the value of
designated parameters of those rules can be automatically learned (e.g. with
RL), the structure of the rules is defined manually by an expert to specify
domain knowledge.

While the presented approaches are generally able to represent a user state as
part of their interaction state, special consideration is required to implement
the adaptation mechanisms. [FDH12] develops a taxonomy of different types
of adaptation. The authors define four main mechanisms: “Modification
of function allocation”, “Modification of task scheduling”, “Modification of
interaction” and “Modification of content”. The authors give numerous ex-
amples of how those generic mechanisms could turn into concrete mechanisms
for certain applications. For a workload-adaptive system, those mechanisms
could be directly applied: Function allocation and task scheduling allocate
the right tasks at the right time to the user, while assigning others (e.g.
tasks which are too difficult in the given situation or which are well-suited
for automation) to automatic processing. Modification of interaction refers
to change in presentation style to accommodate a certain level of workload,
for example by modifying speaking rate of synthesized speech. Modification
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of content could for example be realized by limiting choices for selection from
a menu.

While those mechanisms characterize the desired effects of adaptation, [Jam09]
systematically analyzes a number of usability challenges to be addressed for
the design of adaptive interfaces, which may not be visible immediately.
The main points are: “the need to switch applications or devices” (e.g. be-
cause non-standard sensors are required), The “need to teach the system”
(e.g. because a statistical user state model needs calibration data for each
user), “narrowing of experience” (e.g. the user does not learn to handle high
workload situations themselves), “unsatisfactory aesthetics or timing” (e.g.
because of automatic system adjustments instead of handcrafted behavior
patterns), “need for learning by the user” (e.g. because the user has to ac-
cept that they must not compensate for high workload but should let the
system intervene), “inadequate control over interaction style” (e.g. because
the adaptation removes certain menu items), “threats to privacy” (e.g. as
the user is constantly monitored), “inadequate predictability and compre-
hensibility” (e.g. as workload recognition and adaptation triggers are not
transparent), and “imperfect system performance” (e.g. as workload recog-
nition still has double digit error rates for most applications). As indicated
by the given examples, all of these aspects are directly relevant for workload-
adaptive interfaces and need to be considered. While there exists literature
which indicates the general feasibility of workload adaptive systems (see next
subsection), those aspects have not been considered to the full extend.

The claim of building adaptive cognitive interaction systems is that those
systems will improve human-computer interaction. However, there is no uni-
versal metric to quantify the quality of an HCI application. [MEK™09] define
a large taxonomy of usability aspects from hedonistic to pragmatic criteria,
which all influence the final acceptability of a system. Therefore, we need
to clearly define the criteria by which we evaluate adaptive cognitive in-
teraction systems. We claim that adaptive systems are more robust, more
efficient and more satisfying for the user than static, non-adaptive interaction
systems for the same task. All three criteria are measurable in an evalua-
tion: Robustness, we can measure by evaluating recognition accuracy of an
input recognizer or by evaluating task success metrics, i.e. number of solved
sub-tasks. Efficiency, we can measure as information throughput or using
a cost metric of interaction. User satisfaction, which is a subjective quality
criterion, we can measure with questionnaires.
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4.2.2  Adaptive Interaction Systems

In this section, we look into the related work on adaptive interaction systems
which model and timely react to the users traits and states, for example by
adapting parameters of language generation components [MW10]. One of the
earliest targets for adaptive interaction systems was the emotional user state.
For example, [FRL11] presented a wizarded tutoring system which was adap-
tive to the uncertainty level of the student. In follow-up research, [FRL12]
investigated the automation of the system behavior for adaption. [GROS|
described a gaming interface based on emotional states using discourse fea-
tures like history of interaction and actual user command. [NL0O7] described a
user modeling approach for an intelligent driving assistant, which derives the
best system action (in terms of driving safety) given estimated driver states.
States included emotion and personality, partially derived from physiological
measurements like heart rate. [Con02] presented an educational dialog sys-
tem that decides for different user assistance options based on the emotional
state. The work applied the cognitive OCC appraisal theory (by Ortony,
Clore and Collins), which relates the users’ emotions with their goals and ex-
pectations. Pattern-based adaptation approaches have been proposed which
base an adaptation decision on the observation of user behavior and internal
state changes [BM10]. The adaptation patterns described recurring problems
and proposed solutions. Affective computing has been most successful in the
area of virtual agents [Conl3] and tutoring systems [BANAG10]. This seems
plausible as both are domains in which a broad variety of emotions is in-
trinsically present. For general purpose applications, often the only emotion
which is consistently present is anger [BvBET09] as a post-hoc appraisal of
interaction problems. While this may be useful as an indicator of erroneous
system behavior (see also below), it limits the impact of affective interfaces
for general purpose applications for scenarios in which full-blown (and there-
fore easily detectable) emotions are rare.

There are also a number of systems which adapt to the user’s workload
level. We can find most work in this regard in the domain of adaptive au-
tomation. The authors of [WLRO00] evaluated workload recognition for the
Multi-Attribute Task Battery, using six EEG channels and other physiologi-
cal sensors, combined in a neural network for classification. In high workload
condition, two of the subtasks were turned off. In a study with seven sub-
jects, the authors showed that this adaptation improved the performance for
the remaining tasks drastically. [KDB'07] showed that a real-time detection
of workload can be successfully used to manage distractions while driving
in real driving situations. The authors showed that a real-time recognition
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of workload (induced by a cognitively complex distraction task) based on
band power features of the EEG can improve reaction time significantly in
a simple, response task which mimics the user’s reaction to a traffic warn-
ing system. The system suppressed this response task when high workload
is detected and thus only requires a response in low workload situations.
[CV04] employed a similar adaptation mechanism to reduce distraction from
cell phone notifications in high workload situations. User state was assessed
by a fusion of multiple physiological modalities. Corresponding to the de-
tected workload level, one of four notification styles (ring, vibrate, silence)
was selected, according to the indicated user preferences.

In [WRO7], subjects controlled a remotely piloted aircraft in scenarios with
variable difficulty levels. The authors evaluated an adaptation mechanism
which reduced task speed and memory load when triggered by an artificial
neural network classifying workload in real-time. The results showed that
physiologically triggered adaptation was significantly better than random
interventions. However, the effects were very different for low and high per-
formers of which the latter benefit more from a targeted adaptation. The
authors of [CE13] used a similar scenario. The presented system provided
support in form of target highlighting. Their main finding was that the
effects of co-adaptation only occurred at the third day of the experiment.
Before that, a manually triggered adaptation proved more effective and less
subjectively demanding. The authors speculated that this effect is caused by
changes in subjects’ strategies or in an active or indirect modification of the
generated EEG signals, similar to a biofeedback system.

[BSFT06] compared the effect of adaptive automation versus adaptable au-
tomation for two different tasks. While an adaptive system adjusts itself
based on observation of their users, an adaptable system may be modified
by the users themselves to fit their current needs. In the adaptive case, au-
tomation was triggered by a threshold on the engagement index calculated
from relative EEG band power. The authors saw that performance increased
and subjectively perceived workload decreased for the adaptive system which
did not require user-initiated intervention. They also observed that for the
adaptable case, users hesitate to manually activate automation even in situ-
ations in which they would benefit from doing so. There is also evidence that
the user’s workload level is relevant for spoken dialog systems. In [VL11],
the authors investigated the effect of different interaction strategies of users
at different workload levels (assessed from questionnaires and biosignal anal-
ysis) in a driving situation. They revealed that a guided interaction strategy
of the system was less cognitively demanding in high-workload situations
compared to a open, user-initiative strategy. [GTH'12] also reported that
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user behavior differs between different workload levels. Those behavior dif-
ferences comprised of user obedience to system requests, response behavior
to confirmations, the number of barge-ins and internal consistency of user
answers. The authors concluded that “the system should alter its behavior
to match user behavior”.

One example of a study on effects of adaptation on subjective usability as-
pects is given in [GCTWO06]. Here, the authors explored different adaptation
strategies to promote functionality which was frequently or recently used
in the past. They investigated both the perceived benefits as well as the
perceived costs (e.g. caused by suboptimal choices of the system or its un-
predictability) and show that even slightly different strategies are located
at vastly different locations in the benefit-cost space. They also show that
there is no general relationship between perceived benefit and user satisfac-
tion. In [GET08], the authors further explored the effect of predictability
and accuracy of adaptive graphical user interfaces on usability.

Overall, we conclude that there is research on the development of workload-
adaptive interaction systems and that the general effectiveness of such sys-
tems was demonstrated. However, there are limitations on the current State-
of-the-Art: Most user studies concentrate on purely objective aspects of task
performance, and disregard other aspects of usability, including subjective
measures of user satisfaction. The systems under investigation are also lim-
ited to unimodal input based on mouse and keyboard and output via graph-
ical user interface. In our contribution to this field, we will investigate mul-
timodal adaptive interface and look at both objective and subjective success
criteria.

4.2.3 Reinforcement Learning and User Simulation

In this section, we describe systems which use Reinforcement Learning (RL)
to automatically determine an optimal interaction strategy. We focus on
examples which use RL to train strategies which adapt to certain user states
or traits. To train interaction strategies requires to iterate a large number of
training episodes. Usually, those episodes are provided by a user simulation,
which generates plausible user’s actions depending on the interaction context
and the last system utterances. When looking at adaptive systems, the user
simulation needs to model the user states which are used for adaptation and
the influence of those states on the user’s behavior.
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The application of RL for the optimization of dialog strategies has already
been established in the dialog community. Its applications range from simple
early systems [LKSWO00] to more systematic investigations in more complex
domains [RL10]. While the application of RL for industry applications is
still a matter of discussion (because of high computational complexity and
difficulty of maintenance) [PP08], it is established in the research community
for its ability of automatically optimizing complex strategies in non-trivial
state and action spaces. We can also identify some works which extend
RL approaches to include information about a user’s states or traits. For
example, in [BPNZ06] RL was used with partially observable Markov models,
which include information on the user’s affective state, such as stress. In
simulation, the authors show that the learned strategy handled stress-induced
user errors better than handcrafted strategies. [TTMO8] presented a speech-
enabled therapist robot which adapted its personality to certain personality
traits of its rehabilitation patients. The system used online RL to train
its behavior. [SH10] used RL to integrate adaptive turn-taking behavior
depending on the urgency and certainty expressed by the simulated user.
However, this approach lacked an integration of models which take cognitive
processes and inner states explicitly into account to enhance the statistical
models with prior knowledge about human behavior.

Due to data spareness and the complexity of the optimization problem faced,
nearly all works which apply RL for strategy optimization rely on some kind
of user simulation. The most prominent types of user simulations are statis-
tically motivated and range from simple bigram models, which models the
most likely user action as reaction to the last system action (first introduced
by [ELP97]), to more advanced Bayesian Networks [PRI09] and inverse RL
for imitation learning from experts [CGLP11]. A survey on those statis-
tical user simulation techniques can be found in [SWSY06]. [RL11] is an
example of a statistical user model for Reinforcement Learning. The user
simulation was trained on data of multimodal human-computer interactions
gathered in a Wizard-of-Oz setting. The authors showed that the learned
strategy outperformed those executed by the individual human wizards, as
it could learn optimal behavior from data of different humans. Purely statis-
tical user simulation techniques create behavior which is satisfyingly realistic
when regarding each utterance separately. However, they lack coherence
over longer periods of time and adaptivity to changing conditions which are
not represented in the training data in more complex interaction scenar-
ios. Approaches to counter this problem usually introduce some kind of (at
least partially) non-statistical, rule-based model. One example is the agenda
based simulation approach [STWT07, KGJ*10]. Here, a regularly updated
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agenda of the user determines the user’s goals and derived action plans and
can handle multiple, changing and stacked goals. Another example is the
hybrid MEMO [MEE*06] system which focused on the rule-based modeling
of errors made by the user due to misunderstandings caused by the interface.
Injection of expert knowledge to statistical user simulations in the form of
rules or in the form of data selection was also used to represent different user
traits and states. For example,[LCGE11] modified the appropriateness of
the generated user utterances regarding the previous system request to rep-
resent different levels of cooperativeness. [JLO09] simulated users of different
levels of expertise by including a corresponding variable to a statistical model
for expression generation in a helpdesk domain. [GWM10] showed that by
selecting training data from different age groups, they were able to train a
user simulation that models the behavior of young and old users differently.
[Eng14] used the concepts of needs and plans derived from needs as described
in the PSI architecture [DSS99] to build a cognitive user simulation. Needs
were used to enable and weight different subgoals to determine the generated
speech acts of the simulated user. While most models for user simulation are
static during the interaction, [EHO05] is an exception, in that it used multi-
agent learning in the context of dialog systems to train the stategies of two
agents: a dialog system and a simulated user were represented as learning
agents in a RL framework. The approach is used to generate dialogs which
require agreement of both agents on certain items.

4.2.4 Error-aware Interfaces

In this subsection, we focus on interfaces which are able to automatically
correct recognition errors which occur during the recognition of user input.
Such error-aware interfaces are able to deal with the user state confusion,
which results from erroneous system feedback following such recognition er-
rors. There exists a number of systems which make use of confidence scores
to estimate the presence of recognition errors [GHWO08, SSYH12]. However,
when statistical models are unreliable and generate incorrect results, it is
unreasonable to expect a very reliable confidence estimate. For example,
[VKS10] shows that confidence scores in ASR correlate well with recognition
performance for well-trained models but confidence reliability starts to de-
teriorate for models which are trained on little data or data which does not
match the testing data.

Therefore, researchers investigated options to more directly predict erroneous
system behavior. In Chapter 2.5, we showed how Error Potentials (ErrPs)
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can be extracted from EEG signals as markers of unexpected system feedback
caused by misinterpretation of the user’s input. HCI research investigates
how ErrP detection can be leveraged to construct error-aware interfaces.
Unsurprisingly, the idea to use ErrP detection for improving interaction has
been first introduced in the context of Brain-Computer-Interfaces (BCls),
for which the necessary equipment is already in place. BCIs as input or
control device suffer from far-from-perfect recognition rates. A standard
technique to remedy this is to always repeat each input several times. This
increases robustness but leads to a low transfer rate [KSM™08]. The detection
of ErrPs allows to increase accuracy and therefore increase the potential
transfer rate. [CCM*12] showed how to detect ErrPs during operation of a
P300 speller BCI. They suggested to use the second best recognition result
of the BCI in case of a detected ErrP and showed in simulations that it
improved performance. [SBK*12] pursued a different approach and deleted
the previously given input in case an ErrP was detected and prompted the
user to repeat. They showed that the use of an online ErrP classifier to
significantly increase transfer rate.

[LvGGT11] used detected ErrPs to adapt the weight parameters of a logistic
regression model for BCI operation to better represent the (assumingly) mis-
classified trial. They use simulation and offline analysis of data from eight
subjects to show that this process improves classification accuracy. Simi-
larly, [FBCT10] used classification of ErrPs during operation of a gesture
recognition system to improve its performance by adaptation of the gesture
recognizer to different users. In contrast to our proposed approach in Sec-
tion 4.6, their system did not immediately react to the detected ErrPs by
error correction. Trials which were classified correctly (i.e. did not result in
an ErrP) were added to the training data to train a personalized gesture
recognizer. This selection of adaptation data addressed the challenge of un-
supervised adaptation that the addition of misclassified trials can result in
performance degradation instead of improvement.

[VS12] proposed an ErrP recognition system based on a consumer-level EEG
device. They performed subject-dependent two-class ErrP classification, us-
ing a test set of 80 trials of Flanker Task execution and achieved a recognition
accuracy of about 0.7. The authors did not report how the classes are dis-
tributed in the test data but showed a similar accuracy for both classes. Using
a simulation of ErrP classification with different error rates, they showed that
already an ErrP detection rate between 0.65 and 0.8 can be beneficial for the
enhancement of interactive systems in order to detect user errors spatial se-
lection with the Flick technique on a touch surface. The authors analyzed
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accuracy improvements of allowing manual corrections when an ErrP is de-
tected, but do not analyze costs or other usability aspects.

While there exists a large corpus of usability investigations on gesture-based
interaction systems, we are not aware of studies on the impact and handling
of recognition errors. However, recovery from error states is a required feature
for all types of interaction in which the interpretation of user input is error-
prone. Most advanced are probably spoken dialog systems. [HG04] described
strategies for an interactive humanoid robot to recover from dead-end situa-
tions during dialog. They showed that by allowing repeated inputs in cases of
an inconsistent discourse, the number of completed task goals could be sub-
stantially increased compared to a system without recovery strategy. [BROS|
described ten distinct strategies to recover from non-understanding situations
(i.e. the speech recognizer detects speech but does not yield a result) and em-
pirically evaluated the performance impact of the different strategies. Most of
the presented strategies involve one of several alternatives of “reprompting”
the user after a non-understanding. [ZSHM10] performed a similar study
comparing different error recovery strategies and concluded that. Research
in speech processing uses confidence measures to identify erroneous sections
of a speech recognition result and propose n-best hypotheses [SSYH12].

4.3 AIM: Adaptive Interaction Manager

To realize adaptive cognitive interactive systems, we developed our own light-
weight interaction manager: The Adaptive Interaction Manager (AIM). The
goal of this interaction manager was to provide a flexible architecture for
multimodal interaction systems with a focus on adaptation to user states.
The basic architecture of the framework is depicted in Figure 4.2. It is
based on an event handling mechanism to which an arbitrary number of
input modules can be connected. Input modules act send messages to AIM
which convey information about the user’s input, information about the user
or changes in the environment to the system in form of events. Messages
are converted to events, which are queued and regularly evaluated in the
event loop. Each event belongs to a certain event type. For each event
type, a handler is registered. Those handlers define the integration of an
event into the interaction state. The variables which form the interaction
state are an abstraction of the relevant interaction parameters of the current
session, for example the type of the past system actions and user actions
or the detected workload level. The interaction state also encapsulates any
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computational modeling components which are used during interaction. The
interaction state is used by the interaction strategy to select the actions of
the system. The interaction strategy can also decide to take no actions. All
actions which are scheduled by the interaction strategy are queued and than
executed within the execution loop. Scheduling, execution and termination
of actions trigger events which can in turn be used to update the interaction
state. As long as an action is scheduled but not executed, the execution
schedule can be modified by (re)moving queued actions. Actions which are
executed but not terminated can be aborted. This allows the interaction
manager to react in an adaptive fashion to changing user states, which may
render actions which are currently scheduled or in the process of execution
as inappropriate to the new state. The interaction manager can segment
longer actions into sub-units to allow switching interaction behavior during
the execution of an action (e.g. because of a rising workload level).

AIM allows the application of different interaction strategies. Besides an
implementation for strategies trained by Reinforcement Learning, the most
mature implementation uses a rule-based information state update approach.
In each iteration of the execution loop, a set of rules is evaluated for execution.
Rules determine the actions of the interaction manager. They consist of
two components: The preconditions formulated using the variables of the
interaction state and execution bindings accessing the connected external
components. If the preconditions, which test for certain configuration of the
interaction state, of a rule are fulfilled, it is activated and the connected
system actions are scheduled for execution. Rules are assigned a priority
which determines the executed action in case that multiple rules are eligible.
This architecture follows the Blackboard design pattern where input from
various sources is gathered in a central data structure which is used to decide
on the selected system actions. It should be noted that this architecture is
similar to the symbolic rule selection mechanism of ACT-R, see Section 3.2.1.

The current implementation of the AIM supports a large variety of input and
output components. Examples of such input modules are a speech recognizer,
a user state recognizer, a head movement tracker or a keyboard. For an adap-
tive cognitive interaction system, empirical cognitive models form one of the
most important types of input sources. An empirical cognitive model runs
as a stand-alone component, sending events to the AIM regularly or when
changes in user state are detected. Examples for supported output com-
ponents range from text console output over several Text-to-Speech (TTS)
engines (currently supported: OpenMary! and any TTS using the Microsoft

Thttp://http:/ /mary.dfki.de/
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Speech API?) to graphical output on a computer screen. This variety of out-
put components allows the system to chose appropriate output modalities,
e.g. when it observes that perceptual workload of a certain modality is higher
than of others, see Section 2.4. The interaction manager can also connect
to the Thinking Head [LLP11], a 3D avatar which supports lip-synchronous
speech synthesis. The Interaction Manager can send both, TTS commands
as well as visual commands to the avatar. This allows to trigger synthesized
mimics accompanying the speech output. For TTS, the interaction man-
ager is able to set the parameters of the selected voice via Speech Synthesis
Markup Language®, enabling adaptive speech synthesis. For example, the
system can speak more slowly or add emphasis when the system detects a
high workload level of its user.

Input
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Y State
| Event Events Interaction Variables | Interaction
Loop "l state "| Strategy
A
Scheduled
Schedule Events Execution Actions
Loop |

Executed Actions

y

Output
Modules

Status Messages

Figure 4.2 — Main components of the AIM.

For communication with external components, AIM supports different mid-
dleware implementations which allow the connected components to commu-
nicate across operating systems, programming languages and physical ma-
chines. The current implementation supports the one4all middleware used
traditionally for the ARMAR robotic system and the lcm (lightweight com-
munication and marshalling) middleware*. For speech recognition, AIM em-

2http://msdn.microsoft.com/en-us/library /ee125077.aspx
3http://www.w3.org/ TR /speech-synthesis/
4https://code.google.com/p/lem/
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ploys a grammar-based recognizer build with the BioKIT decoder [TWGT14].
Tagged grammars are also used for natural language processing, similar to
the approach described in [FHWO04]. Customized extensions can be easily
attached to AIM by a generic connector module. For example, the system
was connected to the ARMAR robotic head [AWA™108] to control its head
movement imitating natural communication gestures like nodding, head bop-
ping, etc. in order to generate the impression of an emphatic communication
partner. If some input components are not available or should not be used
to reduce complexity of an experiment, a Wizard-of-Oz GUI is available,
for example to send virtual speech recognition results or simulated workload
recognition to the interaction system.

AIM has been employed successfully to implement a number of interaction
applications for various scenarios. It was demonstrated successfully in mul-
tiple public presentations. In the next sections, we present a number of
adaptive cognitive interaction systems which were implemented using AIM.
These sections serve several purposes: First, we demonstrate the versatility
of the presented AIM. Second, we develop a number of adaptation strategies
for simple and complex interaction systems, making use of empirical and
computational cognitive models. Third, we perform several user studies to
show that those adaptive cognitive interaction systems yield a significant im-
provement in usability compared to static, non-adaptive interaction systems.
As introduced in Section 4.2.1, we expect adaptive cognitive interaction sys-
tems to provide usability improvements in three different ways: First, we
expect the systems to be more robust towards mistakes by the user and by
the system. Second, we expect the systems to be more efficient, i.e. allowing
a higher throughput. Third, we expect the system to be more satisfying for
the user. To measure robustness, we compare task error rates and recogni-
tion accuracy between adaptive and non-adaptive interaction systems. To
measure efficiency, we compare task execution time or other task execution
costs. To measure satisfaction, we evaluate questionnaires to capture subjec-
tive assessment of adaptive and non-adaptive systems. In the following user
studies, the presented systems will be evaluated using those metrics.

4.4 Workload-Adaptive Information Presen-

tation System

To investigate whether an end-to-end adaptive cognitive interaction system
could actually be beneficial to a user, we conducted a user study evaluat-
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ing different usability aspects comparing the fully automatic adaptive sys-
tem to two static baseline systems and to a omniscient oracle system as a
gold standard. The main research questions of this section are: 1) Can a
workload-adaptive interaction system provide a measurable benefit to the
user compared to a non-adaptive interaction system in terms of task success,
efficiency and user satisfaction? 2) Is the empirical workload model accurate
enough to provide this benefit in an end-to-end system? 3) What is the re-
lationship between accuracy of the empirical workload model accuracy and
the achieved benefit?

In this experiment, a user worked with an information presentation system
called ROBERT, represented by a robotic head as shown in Figure 4.3. The
user’s task was to systematically write down information the system pre-
sented him or her via synthesized speech output. During this task, we
dynamically manipulated the participant’s workload level by enabling and
disabling a secondary task. An empirical workload model based on EEG is
employed to discriminate low and high workload situations. This information
is used by the interaction strategy to switch between different information
presentation behaviors of the system. We compare this system with two dif-
ferent non-adaptive baseline systems as well as with a an oracle-based system
which acts as a gold standard.

4.4.1 Adaptation Strategy

The strategy of presenting this information to the users is adapted to their
brain patterns recognized from the EEG data. ROBERT has two different
behavior styles which can be switched seamlessly between two utterances:
The Low behavior style is designed for brain patterns which correspond
to low mental workload, and the HiGH behavior style is designed for brain
patterns corresponding to high workload conditions. Although the style of
presentation differs between LOw and HIGH, the content of information stays
the same:

The Low behavior style focuses on high information throughput, i.e. only
short pauses between utterances and between different database entries are
made. Whenever possible, multiple information chunks are merged into one
utterance and phone numbers are presented in a block-wise fashion. However,
as ROBERT is designed to be a social robot, maximizing efficiency is not
the only criterion but will be complemented by politeness. Thus, ROBERT
takes the time to convey information in complete sentences to mimic a polite
communication partner.
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The HIGH behavior style on the other hand is tuned towards situations in
which the user has to divide his cognitive resources between two tasks which
he or she executes in parallel. As this multi-tasking may cause memory
capacity reduction, split attention, and limited processing capabilities, the
HiGH behavior style accommodates the situation by presenting information
in an isolated fashion, giving only one attribute at a time and reporting
phone numbers as single digits. Furthermore, pauses are extended between
utterances and database entries such that the user has more time to deal with
the secondary task. Reporting time is conserved by limiting the information
to the attribute name and value, thus minimizing utterance duration and
omitting politeness.

The motivation for the selected behavior styles bears its origin in theories of
information processing. It is known that complexity of processing an utter-
ance and therefore the mental effort required to decode it can be measured
in number of tokens, presence of certain grammatically constructs or sen-
tence orderings [CK92]. This is also supported by neuroscientific evidence
showing patterns of increased neural activity during the processing of more
complex utterances [JCK*96]. As a consequence, simplification of language
structure reduces complexity of information processing and therefore reduces
workload. Additionally, we use the theory of threaded cognition [ST08] to
see that introducing longer pauses in the interaction behavior of the system
frees exclusive cognitive resources (e.g. working memory, visual attention,
motor control) to allow for the secondary task to be executed. This avoids
congestion of tasks at those exclusive resources and again reduces workload.

| ROBERT’s Behavior style | Low | HicH

Pause duration short (500ms) long (2000ms)

Number presentation | blockwise isolated

Items per utterance multiple single

Formulations polite concise

Example utterances The name of the next Heidi Kundel
person is Heidi Kundel. | Telephone: 5-2-1-1-6-6-3
Her telephone number
is 52-11-66-3.

Table 4.1 — Low and HiGH behavior styles for information presentation.

The interaction strategy of the information system defines in which fashion
switches take place between the two behavior styles over the course of a sec-
tion. For the experiments described below, we implemented four strategies:
ALwAaYsHIGH, AtwaysLow, EEGADAPTIVE, and ORACLE.
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] Presentation strategy \ Behavior style \

ArnwaysLow Fixed to Low

ArwaysHIGH Fixed to Hicu

EEGADAPTIVE Derived from EEG

ORACLE Derived from ground truth
on secondary task

Table 4.2 — Presentation strategies and corresponding behavior styles of the
information system ROBERT.

The AtwAaYsHIGH and the ALwAYSLOW strategies define baseline systems
which ignore the current state of the user but rather stick to one behavior
style. The EEGADAPTIVE strategy uses the recognized brain patterns to se-
lect an appropriate behavior (i.e. HIGH when brain patterns corresponding to
high mental workload are detected, and LOw otherwise). As a gold standard,
we also define the ORACLE strategy which switches between behavior styles
according to the reference information on the secondary task, i.e. instead of
relying on potentially noisy information from EEG data, it selects the opti-
mal behavior for each utterance according to the contextual information of
whether the secondary task is currently running or not. Behavior switches
may occur at any point during information presentation, even within one
utterance. Tables 4.1 and 4.2 summarize ROBERT’s presentation strategies
and corresponding behavior styles. All strategies were implemented using
the AIM interaction manager.

4.4.2  Experimental Setup

We designed a multi-level evaluation study in which participants had to per-
form two tasks, partly in dual-tasking fashion to induce different levels of
mental workload. In the primary task participants were asked to manually
fill in a paper form according to spoken instructions given by ROBERT. Per-
formance criteria are correctness and completeness of the information filed on
paper. In the secondary task participants processed a variant of the cognitive
Eriksen flanker task [ES79], in which horizontal arrays of five arrows are dis-
played (e.g. <<><<). Participants were expected to report the orientation
of the middle arrow by pressing the corresponding left or right key on the key-
board. Performance criteria are correctness and reporting speed. Apart from
the objective performance measures correctness, completeness, and reporting
speed, we collected subjective user judgments by a questionnaire. Based on
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the questions we evaluated how users perceived the interaction quality and
efficiency, to what degree users noticed the adaptation of the EEGADAPTIVE
and ORACLE strategy, and how changes in strategy and behavior style impact
the subjective user experience.

Figure 4.3 shows the experimental setup. ROBERT was present in form of
a humanoid robot head [AWAT08] which talked to the participants using
text-to-speech synthesis. The participants faced paper forms to be filled in
as well as a desktop computer to execute the flanker task.

|

Figure 4.3 — Recording setup with ROBERT (left side), the Computer for the
secondary task (center) and participant wearing an EEG cap (right side).

In total 20 participants entered the experiment and completed five sections
which were recorded consecutively in one session. In the first section A, EEG
data were recorded to train a person-dependent empirical workload model
for each participant. In four subsequent sections B; to B, we varied the
presentation style in which ROBERT gives instructions to the participant.
In each section B; one of the strategies ALWAYSHIGH, ALwAYsLow, EE-
GADAPTIVE, and ORACLE was applied consistently throughout the section.
To eliminate the impact of bias effects such as fatigue, the order of strate-
gies was randomly chosen. Each section consists of a fixed sequence of two
alternate segments with and without secondary task. Transitions between
segments were marked by an acoustic signal. Each segment lasted approx-
imately one minute. Table 4.3 summarizes the experimental design. Each
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participant performed five sections of four minutes duration each, resulting
in about 20 minutes data per participant, summing up to about 400 minutes
data for all 20 participants.

For each Segment: Single | Segment: Dual | Segment: Single | Segment: Dual
Participant || 1 Minute 1 Minute 1 Minute 1 Minute
Section A EEG brain pattern training

Section B; ArLwavysHIGH ArLwaysHIGH ALwaYsHIGH ArLwaysHIGH
Section By ArwaysLow ArwaysLow ArLwAaysLow ArLwAysLow
Section Bs EEGADAPTIVE EEGADAPTIVE | EEGADAPTIVE EEGADAPTIVE
Section By ORACLE ORACLE ORACLE ORACLE

Table 4.3 — Structure of a session and amount of evaluation data. Order of
B; was randomized.

Prior to the main experiment we performed a pilot study on five participants
to calibrate task difficulty and duration. The main purpose was to ensure
that all test conditions (i.e. all behavior styles with and without secondary
task) significantly differ from each other and do not result in overloaded or
underchallenged users. The final study was performed on 20 new participants
between 21 and 29 years old, who participated voluntarily in the study. All
participants are students or employees of the Institute for Anthropomatics
at Karlsruhe Institute of Technology (KIT). Each participant signed a con-
sent form prior to the experiments. None of the participants had any prior
experience with the EEG-based workload recognition system.

The employed system included an online empirical workload model which
was calibrated for the user in a training phase of 4 minutes. To collect train-
ing data, each condition of the experiment (i.e. each combination of system
behavior and workload condition, see below) is executed by each participant
prior to the actual testing phase. This data collection simultaneously served
as task training for the participants. The employed workload recognition
system is implemented as described in Section 2.3, using only spectral EEG
features for classification. Another difference is that the system was trained
in a person-dependent fashion, i.e. using training data collected before the
execution of the actual experiment.

Table 4.4 lists all questions of the questionnaire the participants answered
immediately after each section B;, so for each participant we collected in total
four questionnaires. Each question was assigned to a 6-point scale. The items
deal with the adaptation capabilities of the robot (Q1), the appropriateness
of its behavior (Q2, Q3), its social competence (Q5, Q6) and an overall
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’ 1d \ Question Text ‘

Q1 | How strongly did the robot adapt to the switch between the
conditions with and without secondary task?

Q2 | How appropriate was the behavior of the robot in conditions
without secondary task?

Q3 | How appropriate was the behavior of the robot in conditions
with secondary task?

Q4 | Would you like to work together with a robot with this behavior?
Q5 | How do you judge the behavior of the robot

concerning “friendliness”?

Q6 | How do you judge the behavior of the robot

concerning “empathy”?

Q7 | How do you judge the behavior of the robot in general?

Q8 | Experienced time pressure*

Q9 | Experienced accomplishment*

Q10 | Experienced effort*

Q11 | Experienced frustration®

Table 4.4 — Questionnaire for subjective evaluation of presentation strategies.
Items marked with * are extracted from the Nasa TLX workload scale.

judgment (Q4, Q7). Ttems Q8 to Q11 were adopted from a subset of the
Nasa TLX scale [HS88] to evaluate the experienced workload.

Strategy Correctness | Completion | Correctness
(robot) (robot) (flanker)
ALwAYsLow 86% 98% 69%
ArwaysHIGH 96% 58% 87%
EEGADAPTIVE 96% 85% 82%
ORACLE 94% 85% 86%

Table 4.5 — Completion and correctness rates for the robot instruction and
the Eriksen flanker task, averaged over 20 participants.

4.4.3 Evaluation

To analyze the outcome of this experiment, we evaluate (1) the performance
of the real-time EEG-based brain pattern recognizer for discrimination be-
tween high and low mental workload, (2) the impact of the presentation
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strategies on the users’ task performance, and (3) the users’ overall subjec-
tive appeal to the end-to-end system.

Regarding workload recognition, we achieve an average accuracy of 83.5%
(0 = 6.5) with accuracy values ranging between 70.8% and 94.0%. The
main reason for non-perfect recognition is a delay between changes in task
demand and changes in recognized workload. We explain this by effects of
the temporal smoothing of workload estimates over time as well as the fact
that switches in task demand do not immediately lead to changes in the
workload level. We will later see whether this performance is high enough to
achieve measurable benefits during interaction. Note that the classification
accuracy averaged over all time slices is not a-priori a measure of the end-
to-end system’s quality in terms of strategy adaptation. This is due to the
fact that only a fraction of the recognized workload decisions have an impact
on the system’s strategy changes. Only the recognition results at the utter-
ance boundaries influence the strategy since within utterances the behavior
remains unchanged. Therefore, we performed an experiment in which we
limited the classification accuracy calculation to the relevant decision points.
This resulted in an average accuracy of 81%, which is reasonably close to the
overall recognition accuracy of 83.5%. We therefore conclude that the over-
all performance of the recognizer is indeed a robust estimator of the system
performance in the adaptation task.

Table 4.5 gives the correctness and completion rates of robot and flanker
task performance averaged over all 20 participants for the four presentation
strategies. The numbers show that the presentation strategy ALWAYSLOW
outperforms all other strategies in terms of completion rate due to the high
throughput. In contrast, for the ALWAYSHIGH strategy participants only
manage to complete about half of the items. However, ALwAYSLOW trades
this high completion rate with a dramatically lower correctness rate. Since
ALwAYSLOW leaves only few resources for the participants to properly carry
out the secondary flanker task, ALWAYSLOW is outperformed by the other
strategies in terms of flanker correctness rate. In comparison, both adaptive
strategies EEGADAPTIVE and ORACLE are able to maintain a reasonable
completion rate while keeping the correctness rate at the same level as the
conservative ALWAYSHIGH strategy. Furthermore, it can be observed that
the fully automatic strategy adaptation applying EEGADAPTIVE compares
favorably with the ORACLE strategy, indicating that the EEG-based recogni-
tion of brain patterns results in a fairly reliable switching behavior. Overall,
we conclude that adaptive strategies improve the information presentation
by switching behavior styles without hurting task performance.
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] Item \ ArwaysLow \ ArwaysHIGH \ EEGADAPTIVE \ ORACLE \

Ql 2.0 2.5 45 5.4
Q2 1.6 1.1 1.9 5.1
Q3 2.3 1.3 3.9 5.1
Q4 2.2 3.3 3.6 1.8
Q5 3.1 3.8 3.7 4.3
Q6 2.2 2.6 34 4.4
Q7 2.8 4.0 3.9 4.8
Q8 5.3 3.2 4.0 3.5
Q9 3.0 3.8 3.7 4.0
Q10 5.1 3.5 44 4.0
Q11 4.0 2.5 3.0 2.5

Table 4.6 — Agreement score (1 = no agreement, 5 = strong agreement) to
the items of the user satisfaction questionnaire for the different strategies.

Table 4.6 summarizes the results of the user satisfaction questionnaire. The
result for question Q1 shows that both adaptive strategies (EEGADAPTIVE
and ORACLE) are indeed perceived as being adaptive. This observation is
in accordance with the objective effectiveness of adaptivity measured by the
EEG-based brain pattern recognition rate. For appropriateness of behav-
ior, we differentiate between behavior in absence of a secondary task, i.e.
single-tasking (QQ2) and in presence of a secondary task, i.e. dual-tasking
(Q3). For single-tasking, the relative drop from the best to the worst strat-
egy is as small as 24.4% (4.1 for ALWAYSHIGH to 5.1 for ORACLE). For
dual-tasking, the participants clearly prefer the HiGH behavior: The gap
between the worst and the best ranked strategy increases to 54.9% (2.3 for
ArwaysLow to 5.1 for ORACLE). We explain this observation by the fact
that the benefit of both behavior styles is perceived asymmetrically: While
HiGH improves throughput and convenience of the information presentation,
Low can make the difference between successful task completion and men-
tal overload. Still, the order of strategies for single-tasking is as expected:
ArwavysLow, EEGADAPTIVE and ORACLE have very similar scores with
non-significant differences while the slow ALWAYSHIGH strategy is perceived
worst. For dual-tasking, the EEGADAPTIVE strategy scores slightly worse
than ORACLE and ALWAYSHIGH which perform both optimally in dual-
tasking segments (ALWAYSLOW is indisputably the worst strategy). EE-
GADAPTIVE usually switches to the correct strategy but with a small delay.
As described above, this delay is determined by the window size of temporal
integration in the classifier and the fact that a switch of behavior style takes
place only between utterances. We assume that a more immediate classifica-
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tion mechanism, a more flexible adaptation scheme and scenarios with longer
segments of constant mental workload will mitigate this effect.

The two questions Q4 and Q7 define a metric for overall perceived quality of
the system. Both items are strongly correlated (r = 0.86). The results reveal
a clear quality gap between ALWAYSLOW and the other strategies. While
ORACLE outperforms the others by far, the average difference between AL-
WAYSHIGH and EEGADAPTIVE is much smaller. This observation is some-
what surprising given the significant differences in objective performance
criteria. However, it can be explained by the fact that the EEGADAPTIVE
strategy depends solely on the recognition performance of the brain pattern
classification. This dependency is expressed in higher standard deviations
of most items for EEGADAPTIVE compared to ORACLE (which works in a
deterministic way). Table 4.7 further investigates this issue. Most of the
items are significantly correlated with recognition accuracy. When splitting
the data into two groups according to the section’s recognition rate (below
average vs. above average, denoted acc. < @ and acc. > @), the distance to
the scores of ORACLE is reduced for the better sections and thus the gap be-
tween EEGADAPTIVE and ALWAYSHIGH increases. In summary, we observe
a distinct user preference for EEGADAPTIVE over the non-adaptive strategies
given a sufficiently high recognition accuracy. This observation supports our
assumption that workload classification performance is a key factor which
determines subjective evaluation of system behavior. This means that fur-
ther improvement of brain pattern classification will directly translate to
improvements of user satisfaction.

To further analyze the perception of the four presentation strategies, Q5
and Q6 asked for how friendly and emphatic the behavior was perceived
over the section. Q6 reveals that the adaptive strategies (EEGADAPTIVE
and ORACLE) were indeed perceived as most empathic. Adaptivity and
perceived empathy are highly correlated (r = 0.73 between Q1 and Q6).
This indicates that developing adaptive strategies for interactive systems is an
important step towards the implementation of systems which obey the Media
Equation (see Section 1.1); the Media Equation implied that users expect
empathy from advanced interaction systems with natural input or output
modalities. For friendliness, no significant differences between strategies were
observed. We ascribe this to the fact that both behavior styles could lead to
a perception of friendliness: While HIGH speaks in complete and thus more
polite sentences, LOW produces minimal phrases which might be perceived
as more considerate given the stressful tasks.
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Item | diow := O-E | dpign := O-E | diow-dnign | p between acc.
and E-O (acc. < @) (acc. > @)
Q1 1.1 0.6 0.5 20.40
Q2 0.4 0.1 0.3 0.18
Q3 1.5 0.8 0.7 -0.51%
Q4 1.3 1.1 0.2 -0.35
Q7 1.3 0.6 0.7* -0.51%
Q5 0.8 0.5 0.3 -0.74*
Q6 1.5 0.4 1.1% -0.54*
Qs 0.8 01 0.7 0.29
Q9 0.3 0.3 0.0 -0.24
Q10 -0.9 0.1 -1.0* 0.46%*
Q11 -0.6 -0.3 -0.3 0.24

Table 4.7 — Comparison of user satisfaction items between participants with
below-average (acc. < &) and above-average (acc. > @) workload recognition
results. The first column shows the average difference between EEGADAPTIVE
and ORACLE (E-O) for the respective questionnaire item for participants in
the acc. < @ group. The second column contains the same value for the
acc. < & group. The third column shows the difference between the first
two columns. The last column presents the correlation coefficient p between
workload classification accuracy and E-O calculated for all participants. Scores
are mapped such that high values are favorable for the system.

Questions Q8 to Q11 investigate the experienced workload in single- and
dual-tasking segments. The dimensions time pressure (Q8), accomplish-
ment (Q9), effort (Q10), and frustration (Q11) show similar patterns: AL-
WAYSHIGH expectedly performs best, receiving scores which indicate rela-
tively low workload. ORACLE gets very close to those bounds. This shows
that an adaptive strategy is able to reach near-optimal workload levels while
it flexibly makes the most of cognitive resources whenever available in single-
task situations. ALwAYSLOW is indisputably much worse in all regards com-
pared to adaptive strategies. EEGADAPTIVE approaches the lower workload
bound and performs (with exception of Q10) more similar to ALwAYSHIGH
than to ALWAYSLoOw. This indicates that the fully automatic adaptive strat-
egy EEGADAPTIVE is a very reasonable approximation to the ORACLE strat-

egy.

4.4.4 Discussion

To conclude, we documented that an end-to-end adaptive cognitive sys-
tem yields significant, measurable benefits for the user compared to a non-



4.5 Intrusiveness Levels of a Workload-Adaptive Support System 195

adaptive system. This is the case even for a workload recognition system
with an average recognition error rate of 16.5%. Comparing with results
from other empirical workload models (see Section 2.2.3) and the results
from our own large-scale evaluations (see Section 2.3), we see that this error
rate is representative for empirical workload models. Therefore, we conclude
that recognition performance which can typically be achieved is good enough
to provide benefits to the user. As we showed a connection between workload
recognition performance and improvement in subjective system assessment
(compare results for acc. < @ and acc. > & in Table 4.7), we conclude
that further improvement of workload recognition will translate to further
improvements of interaction quality.

One limitation of the presented study is the fact that the interaction in the
presented study was uni-directional, i.e. the user did not give information
to the system. Furthermore, while the workload level was switched dynami-
cally, the main task itself was homogeneous and did not require reaction to
different stimuli or planning. In the following section, we will address these
two limitations.

4.5 Intrusiveness Levels of a Workload-Adaptive
Support System

In the previous section, we successfully documented that a workload adap-
tive interaction system can provide measurable benefits to the user. In that
case, the definition of optimal adaptive behavior could be derived directly
from psychological fundamentals (see Section 4.4.1); we validated the strat-
egy choice in an informal post-hoc Wizard-of-Oz study, which revealed that
human wizards in the role of the information presentation system followed
an adaptation strategy which is very similar to the strategy performed by
the EEGADAPTIVE strategy. One reason for the straight-forward design of
the adaptive strategy was the fact that communication was uni-directional
and the task did not involve complex cognition. Consequently, adaptation
only transformed the presentation style of the system but did not interfere
with the task directly. For more complex HCI applications, the designer of
an adaptive strategy has to chose between several possible system behaviors.

We believe that one of the major factors which determines the acceptance
of adaptive system behavior is its level of intrusiveness. In Section 4.2.1, we
discussed that a comprehensive adaptation does not only involve the “Mod-
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ification of presentation” (as did ROBERT in the previous section) but also
defines mechanisms to influence task allocation and task scheduling. Adap-
tive behavior which makes use of such mechanisms provides a system with
more options to support its user but is also more intrusive as it interferes
with the user’s plans and actions. We know from [Jam09] that such inter-
ference may lead to a perceived loss of control and loss of predictability.
Consequently, a highly intrusive support might be able to provide more sub-
stantial help, but risks to be rejected by its users. Understanding the effects
of different levels of intrusiveness is therefore crucial to the development of
adaptive systems.

In this section, we describe a user study which we carried out to investigate
how a workload-adaptive system can optimally support the participant. We
compare adaptation strategies which differ in level of intrusiveness by ob-
jective and subjective performance metrics. To our knowledge, this is the
first contribution on this topic to the research community and one of the few
works on usability evaluation of user state adaptation.

4.5.1  Task Design

In this section, we describe the primary and secondary task which we used
in our study. The goal of the presented study was to systematically investi-
gate support strategies with different levels of intrusiveness. We did so for
the a scenario which mimics the demands of a complex HCI task: A con-
tinuous stream of inputs which require the participant’s attention, planning
and decision making under time pressure as well as multitasking. Those are
typical requirements for professionals like emergency call agents, air traffic
controllers or dispatcher.

The participants of the study were told to work as a dispatcher in a factory,
allocating workers with different skills to different incoming requests on de-
mand. Requests appeared randomly in a list. Each request had a title (e.g.
‘mechanical defect in factory 2’) and a skill requirement. Each request had
a duration assigned, after which it disappeared (“timeout”) and was marked
as failed. The duration to timeout was not known to the participants. Each
worker had a primary skill and a secondary skill. The participant was in-
structed to assign workers to requests which matched the required skill with
the worker’s primary or at least secondary skill. Only if neither was possible,
an unskilled worker was to be assigned to not let the request disappear unad-
dressed. The quality of an assignment depended on the time elapsed from the
arrival of the request to the assignment (shorter was better). When a worker
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was assigned, the corresponding request was removed from the list and the
worker became unavailable for a period of time. As the number of workers
was limited, sometimes the participant had to decide whether to wait for the
return of a worker or to perform a sub-optimal assignment immediately.

A total of 30 requests was presented in one run of this task with lasted 3.5
minutes. Requests were distributed randomly in time. We call this primary
task the Dispatcher Task (DT). The DT was operated using a graphical user
interface (GUI) which showed requests and the roster of available workers.
Workers were assigned to requests by keyboard commands. Figure 4.4 shows
a screen shot of the DT-GUI. The DT required constant visual attention,
quick decision making and planning, as assigning one worker may limit op-
tions to handle other tasks satisfactorily. The frequency of new requests
maintained a constant workload level over the course of one run of the DT.
Still, the random generation of requests lead to a heterogeneous distribution
of cognitive demand over time.

1 + I

=
2 Ausfall des Kassenservers _m . 2 Mark
3 Unfall in Lagerhalle 2 3 Jenny
4 4 Alex
=
5 Backup durchfiihren =Y 5 Frank

: .

7 Storung im Steuerungssystem 7 Sarah

8 Storung im Steuerungssystem 8 Peter
9 Unfall im GroBraumbiiro 9 Jan

10 Ausfall des Kassenservers 10 Maria

>y Di-batnerso>0
LY +E N - PR

0>

Figure 4.4 — User Interface of the Dispatcher Task with list of requests (with
skill requirement and timer) on the left hand side and list of workers (with
primary and secondary skill) on the right hand side.

In some configurations of the experiment, the participant had to handle an
additional secondary task, in which the participant had to sort out important
messages from a continuous stream of e-mails. E-mails which were not dealt
with in a certain time window are discarded and scored as failures. This
secondary task ran in an additional window on the same screen as the DT
and required the participant to constantly divide his or her attention between
the two tasks, making well-planned distribution of workers in the DT much
more difficult. We call this secondary task the Mail Task (MT). We also
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refer to the configurations without MT as low workload condition and the
configurations with MT as high workload condition. We will justify this
naming scheme later in Subsection 4.5.5 by comparing subjective workload
ratings.
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Figure 4.5 — User Interface of the Mail Task.

4.5.2  Assistant with Different Support Strategies

In this section, we describe the multimodal assistant which we implemented
to support the participant in coping with the DT, particularly in the high
workload condition. The assistant was able to send notifications to the user
using synthesized speech and graphical highlighting in the DT GUI. It was
also able to automatically perform assignments in the DT. The assistant
implemented several different support strategies. Those support strategies
were designed to automatically take over some of the dispatcher decisions,
thus reducing the number of required mental operations in a given time.
The assistant was implemented using the AIM interaction manager. AIM
was extended to receive messages from the DT and MT about events in
those tasks (e.g. newly arrived requests) and to send commands for worker
assignment.

Note that the assistant was not omniscient concerning request durations and
request requirements, i.e. the assistant performed optimal assignments only
with a certain probability and assigned worker with secondary skill match or
with no skill match otherwise. This simulated the fact that in a typical use
case in a professional environment, the user is an expert whose knowledge
is difficult to reproduce automatically. The expert knowledge is instead ap-
proximated with an error prone heuristic. For the DT, we implemented the
following “heuristic”: For a given request, this heuristic selected a (random)
worker with fitting primary skill with a probability of 70%. If no such worker
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was selected (or none was available), it selected a (random) worker with fit-
ting secondary skill with a probability of 50%. If no such worker was selected
(or none was available), it selected a (random) worker with no fitting skill.

The support strategies mainly differed in their level of intrusiveness. More
intrusive strategies are potentially more effective as the participant has to
make fewer decisions, but they also might reduce the (subjective and objec-
tive) level of control. This is because the participant cannot predict the de-
cisions of the support strategy, and therefore cannot consider these decisions
during planning. When the support strategy interferes with the participant’s
plan (e.g. assigns workers to other requests as designated by the participant)
the participant cannot control the task as desired and has to adjust.

The three support strategies with decreasing level of intrusiveness were as fol-
lows: The ACT strategy intervened as soon as the number of active requests
exceeded a threshold. Then, it selected the oldest request and assigned a
worker to it (using the heuristic mentioned above). The strategy was con-
strained such that it could not act while the participant had a pending partial
selection (i.e. a worker or a request were selected but the assignment was not
submitted yet) to avoid interference with the participant’s decisions. Each
automatic assignment was reported to the participant via speech synthesis
with a statement that names the quality of skill match and the name of the
processed request. This feedback was useful as it informed the participant
about the intervention by the assistant and the resulting change in the DT
state. It also helped the participant to judge if he or she needed to pay
more attention to the DT to improve assignment quality. However, ignoring
the system statements did not influence the course of action. The 0PT-0UT
strategy allowed the participant to exert more influence on the intervention
by the assistant. Instead of directly executing an assignment, the assistant
proposed it to the participant by verbalizing it and by simultaneously high-
lighting it in the graphical interface. Those proposals are guaranteed to not
interfere with a partial selection of the participant. While the proposal was
pending, the participant was able to operate the interface in the usual way.
After five seconds, the proposed assignment was executed (if still valid). The
participant had the ability to suppress this execution by pressing a button. In
that case, the proposal was discarded and potentially replaced by a new one.
The OPT-IN strategy reduced the intrusiveness of the system even further.
It generated and presented assignment proposals to the participant in the
same fashion as OPT-0UT did. The main difference was that for OPT-IN, the
system required a key press to accept and execute the proposed assignment.
If not accepted within a certain period of time, the proposal was discarded
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and potentially replaced by a new one. The ’support strategy’ which did
nothing, i.e. did not give any support, is referred to as NONE.

We used synthesized speech as output modality for all three strategies, as the
visual load of both DT and MT was already high and because the participant
was able to process verbalized information regardless of his or her focus of
visual attention. While the strategies were mainly designed to support the
participant in a high workload situation, the system was not directly aware of
the presence of a secondary task. If adaptive behavior is desired, we therefore
need to provide an empirical workload model.

4.5.3 Empirical Workload Model

To provide adaptive behavior, the system had to recognize the user’s work-
load level. The setup of the empirical workload model mainly followed Sec-
tion 2.3: Classification was performed on windows of EEG data of 2 s duration
with an overlap of 1.5s. For preprocessing, the influence of ocular artifacts
was reduced by performing Independent Component Analysis and automat-
ically removing components containing artifact patterns. Frequency-based
features (power of 28 frequency bins from 4 Hz to 45 Hz) were calculated
for each channel and then concatenated into a feature vector of 896 dimen-
sions. A binary classifier based on Linear Discriminant Analysis was trained
person-dependently to separate low vs. high workload conditions. Tempo-
ral smoothing of the results of ten subsequent windows was performed to
improve recognition stability.

In contrast to the experiment in Secion 4.4, workload recognition was per-
formed offline. For the usability evaluation of different adaptation strategies,
we relied on a workload oracle, as introduced in Section 4.4. The benefit
of using a workload oracle is a reduced setup time, which is required to al-
low the evaluation of different strategies within one session. Furthermore,
the inter-participant variation in workload classification performance would
confound the results of an adaptation strategy comparison. This effect was
documented in the previous Section 4.4, where we showed a relation between
workload classification accuracy and benefit of adaptation®. The use of a
workload oracle allowed us to focus on the comparison of strategies, inde-

pendently of individual workload classification accuracy.

5In Section 4.4, this relation did not negatively impact the results as we only investi-
gated one adaptation strategy. However, when comparing multiple adaptation strategies
as in this section, different workload classification accuracies would confound the effect of
different adaptation strategies.
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A workload oracle does not limit the transfer of our results to real-world ap-
plications: In Section 4.4, we showed that a workload classification error rate
of 16.5% was low enough to achieve a measurable benefit for the interaction
similar to the benefit of a workload oracle. If we can achieve a comparable
offline workload classification performance in the present dispatcher scenario,
we can conclude that the results for a workload oracle will transfer to system
with an online empirical workload model.

4.5.4 Experimental Setup

The experimental setup was as follows: First, the participants were intro-
duced to the DT with written and oral instructions. After that, the partic-
ipants performed several training runs of the DT to familiarize themselves
with the keyboard layout and the task flow. Then, the four strategies were
executed in four randomly ordered runs of the DT. Immediately before a run,
the corresponding strategy was explained and demonstrated. After each run,
the participant filled out a questionnaire on the user experience in that ses-
sion. Table 4.8 presents the items of the questionnaire. The questionnaire
covered several aspects of user satisfaction which we deemed relevant for as-
sessing the quality of a strategy. It included statements on subjective task
performance, quality aspects of the system behavior, attribution of success
and intrusiveness. The questionnaire used a five point Likert scale. Sub-
jective workload was estimated using the NASA TLX questionnaire [HS88].
After the four runs with DT only, the Mail Task was introduced and demon-
strated. The participants performed a training run of the high workload
condition (i.e. DT4+MT). Again, the order of the four support strategies was
determined randomly and the participants performed four runs with subse-
quent questionnaire. With this setup, we recorded a total of 16 sessions.
Participants were all university students or staff members. Participants were
paid for their participation in the study. 12 of those sessions were performed
with EEG recordings for the analysis of a person-dependent empirical work-
load model. EEG was recorded using a 32 channel BrainVision actiCap with
active electrodes, sampled at 500 Hz and referenced at Pz.

4.5.5 Evaluation

For the evaluation, we look at five research questions: 1) Do the support
strategies lead to an improved task performance? 2) Is there a difference in
the extend how they do so? 3) How are different support strategies assessed
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’ Item ‘ Text ‘
Q1 I had no problems with handling the task.
Q2 I am content with my performance.

Q3 I pressed keys randomly.

Q4 I was in control of the task.

Q5 The assistant supported me.

Q6 I could work relaxedly.

Q7 I listened carefully to the assistant.

Q8 The assistant helped in a timely fashion.

Q9 I felt patronized by the assistant.

Q10 | The assistant distracted me from the task.
Q11 I felt I was not up to the task.

Q12 The assistant allowed accurate task execution.
Q13 | The assistant behaved obtrusive.

Q14 | The assistant allowed fast task execution.

Q15 | I wanted to succeed without support.

Q16 | Task success was on me.

Q17 | It was pleasant to work with the assistant.
Q18 | I had to work against the assistant.
Q19 I would chose to work with the assistant.

Table 4.8 — Items of the user satisfaction questionnaire to evaluate the sup-
port strategies of the DT.

subjectively by the participants? 4) Does the benefit of support strategies
change with the workload condition? 5) Does the subjective rating of sup-
port strategies change with the workload condition? If the answer to 4) and
5) turns out to be “yes”, we could make a strong argument for the applica-
tion of adaptive system behavior, i.e. switching between support strategies,
depending on the detected workload level.

Prior to the analysis, we filtered the data by removing high performer, i.e.
participants who were able to handle the Dispatcher Task with a success
rate of 100% even in the presence of the Mail Task while their Mail Task
success rate is > 95%. For those participants, no assistance of any type
can improve their performance in the DT and this will also influence their
subjective assessment of the support strategies. Of the 16 participants, five
fit the definition of a high performer. For the analysis of task performance
and user satisfaction, we excluded those participants to avoid ceiling effects.
From exploratory sessions, we estimated that high performer exhibited sim-
ilar behavior as the other participants when task difficulty was increased.
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Therefore, the results in this section are likely to also apply to high perform-
ers in cases in which they actually require support.

Performance Metrics & Workload Assessment

In this section, we define and analyze the metrics which we used to evaluate
and compare the different strategies. We employed three different objective
performance metrics for the DT and one performance metric for the MT: For
both tasks, we measured success rate (SR) as the relative number of items
(i.e. requests for the DT, e-mails for the MT) that were handled before they
expired. For the DT, we additionally evaluated response time (RT) as the
time it took to deal with a request (only regarding requests which were even-
tually dealt with at all) and assignment quality (AQ) as the average match
between assigned worker skill and request requirements (assignment quality
of 2 means a primary skill match, assignment quality of 1 is a secondary skill
match and assignment quality of 0 is no match).

DT SR [ DT RT | DT AQ | MT SR MD
(%] [s] [Quality] (%] [TLX Score]

T | NONE 91 7.18 1.64 - 13.5
%:@ OPT-IN 86 7.65 1.52 - 13.9
= 5 | OPT-0UT 93 7.04 1.63 - 13.9
= | ACT 99 5.15 1.67 - 12.9
T | NONE 79 8.95 1.39 93 15.8
5o | OPT-IN 88 8.35 1.47 92 15.4
f 5 | OPT-0UT | 87 8.30 1.48 95 14.2
= | ACT 99 5.61 1.67 96 13.8

Table 4.9 — Average performance measures for Dispatcher Task (DT) and
Mail Task (DT): Success Rate (SR), Reaction Time (RT), Answer Quality
(AQ). Also given is the 'mental demand’ dimension (MD) of the TLX ques-
tionnaire on a scale from 0 (low subjective workload) to 20 (high subjective
workload).

Table 4.9 summarizes averaged performance metrics for all eight runs (4
support strategies in low and high workload condition). We first note that,
unsurprisingly, the Mail Task had a strong impact on the performance in the
Dispatcher Task: The average success rate of the DT dropped significantly®

8For all differences reported as ’significant’ in this section, this refers to a paired, one-
sided t-test with a = 0.05. Tests were family-wise error-corrected for multiple testing
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by 13.2% relative (¢t = 3.23, p = 0.004) from 91% to 79% between the low
workload condition and the high workload condition for the NONE strategy;
likewise, the average answer quality (AQ) dropped significantly by 15.2%
relative (t = 3.13, p = 0.005) from 1.64 to 1.39 and the average reaction time
(RT) rose significantly by 24.7% relative (¢t = 2.38, p = 0.02) from 7.18 to
8.95. Furthermore, the 'mental demand’ dimension of the TLX questionnaire
rose significantly by more than 17% relative (¢t = 3.97, p = 0.001) from 13.5 to
15.8. We focus on the 'mental demand’ dimension as of all TLX dimensions,
it varies the most with workload level and strategy and is the best indicator

of mental workload (as opposed to dimensions like ’frustration’ or "physical
demand’).

We now look at the impact of the different strategies on performance metrics
in the low workload condition. There was a maximum improvement in SR
of 8.2% relative from NONE to ACT (from 91% to 99%), but also a small
decrease of 5.5% relative from NONE to OPT-IN (from 91% to 86%). We
see the same pattern for AQ, with ACT being better than NONE and OPT-IN
being worse. The OPT-0UT strategy performed similar to NONE for both SR
and AQ. Regarding RT, only ACT provided a substantial reduction compared
toNONE, by 28.3% relative from 7.18s to 5.15s. This is reasonable as ACT
is the only strategy where multiple assignments can be processed truly in
parallel. Regarding subjective workload assessment, there is a non-significant
reduction of 4.4% relative in the 'mental demand’ dimension of the TLX
from NONE to ACT (13.5 to 12.9). In contrast, the strategies OPT-IN and
OPT-0UT increased the mental demand compared to NONE in the low workload
condition, as they impose additional decisions on the participant.

In the high workload condition, the gain of employing a support strategy
was more substantial than for the low workload condition: SR now improved
by up to 24.9% relative for ACT compared to NONE (from 79% to 99%) and
overall, all strategies yielded significantly higher SR than NONE (¢ = 3.13,
p = 0.005 for ACT, t = 3.24, p = 0.004 for OPTIN and t = 2.11, p = 0.03
for OPTOUT). While in the low workload condition, there was no notable
difference in AQ), in the high workload condition, there was an improvement
in AQ of 20.1% relative for ACT compared to NONE (¢ = 3.06, p = 0.006),
from 1.39 to 1.67. This means than under high workload, it was not only
possible for the participants to handle more requests when the ACT, but
the performed assignments were also better. This is an interesting result
as the assistant is programmed to perform sub-optimally compared to an

using the Bonferroni-Holm method. We report the t-value and the resulting p-value for
each test.
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expert user. Also for OPT-IN and OPT-0UT, we see small improvements in AQ
between 5% and 6% relative compared to NONE. RT is again only influenced
positively by the ACT strategy (reduced from 8.95s to 5.61s). Overall, we
see substantial improvements for the ACT strategy and positive effects for
all three strategies. ACT increased all performance metrics to or above the
levels of the low workload condition with the NONE strategy. Differences
in task performance are also reflected in subjective workload assessment,
measured by the TLX questionnaire. The 'mental demand’ dimension drops
significantly from 15.8 to 13.8 between NONE and ACT in the high workload
condition (¢ = 2.11, p = 0.03). On the other hand, the OPT-IN strategy
shows no significant difference in this dimension compared to NONE (15.4 vs.
15.8). The difference in mental demand between OPT-0UT and NONE barely
misses significance (¢t = 1.71, p = 0.058 for the difference between 15.8 and
14.2).

In summary, we see that the ACT strategy yields the highest improvement
compared to NONE. However, all three strategies were able to improve the DT
performance in the high workload condition. The ranking of strategies which
we can derive from those results on performance metrics (in high workload) is:
ACT > OPT-0UT > OPT-IN > NONE. This ranking corresponds to an ordering
of strategies from highest intrusiveness to lowest intrusiveness.

Subjective Evaluation by Factor Analysis

Next, we analyze the answers for the satisfaction questionnaires to evalu-
ate how participants judged the different supporting strategies. Table 4.10
summarizes the results (Refer to Table 4.8 for the content of each question-
naire item). A general summary of the participants’ judgment is given by
the overall acceptance (Q19) of the strategies. Compared between runs with
and without MT, acceptance for all three strategies improved for the high
workload condition compared to the low workload condition (agreement to
Q19 increases from 3.9 to 4.0 for OPT-IN, from 1.5 to 3.7 for OPT-0UT and
from 2.0 to 3.5 for ACT). This can be explained by the fact that participants
reported that they were less ambitious to handle the DT completely on their
own in the high workload condition compared to the low workload condition
(agreement to Q15 decreased by 30.7% relative averaged across all strategies).
This result is highly relevant for the application of adaptive user interfaces
as it shows that supportive behavior should not be activated all the time to
be helpful, but must adapt to the user’s workload level. The ranking of the
strategies derived from acceptance (Q19): OPT-IN is significantly preferred to
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OPT-0UT (4.0 vs. 3.7 for the high workload level; t = —2.72, p = 0.006) which
is preferred to ACT (although the difference is less pronounced and therefore
not significant: 3.7 vs. 3.5 for the high workload level; t = —1.02, p = 0.16).
This means the order of preference is reversed compared to the order derived
from task performance improvement (see Table 4.9). Such discrepancy be-
tween objective performance metrics and subjective user satisfaction is long
known in usability research [FHHO00].

Low High
Workloa Workloa

g = = % = = % =

55| |2 |88 &|% |5
P O Y I S R = VO B S

o o o o

Ql [ 42(35(139|35]|28|31]29]35
Q2 | 41(34(36|36|29|35]3.7]35
Q3 |14 (20 (19|15]20|211]24]22
Q4 [ 3833323221 ]28]30]3.1
Q5 - 139132 (23| - | 174034
Q6 - 252522 - |30|30]|238
Q7 - |34|135|15] - |30|28|19
Q8 - 131128 (20| - [32]32]3.1
Q9 - 122135139 - | 212439
Q0| - [29(37(34| - |21]25|26
QL1 | - 22|25 25| - |22]22]25
Q12| - [32(24]|120]| - |341]29]3.0
Q13| - [25133(|39| - |18]25]35
Q4| - (3633|124 - |35]30]3.1
Q15| - (2213238 - |19]22]24
Q6| - [38(38|37| - |36]36]3.2
QL7 | - [31(28|26| - |35]34]3.1
Q8| - [1.7(31|36]| - |15]23]27
Q9| - [39(25(|20| - |40]37|35

Table 4.10 — Results of the satisfaction questionnaire for the different strate-
gies and workload levels. Q5-Q19 do not apply to the NONE strategy. 1 =
strong disagreement, 5 = strong agreement.

When taking a more detailed look at the items of the questionnaire in Ta-
ble 4.8, we see that those covered different aspects of the interaction. To
group the items, we performed an explorative factor analysis with Varimax
rotation on all items but Q19. We extracted five factors (see Table 4.11),
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which in total explained more than 70% of the variance in the data. A x? test
indicated that five factors are sufficient (p = 0.04) to explain the data. We
see how the items of the questionnaire are grouped together in semantically
meaningful factors. The resulting factors could be interpreted as represent-
ing objective benefit of the assistant (F1), its obtrusiveness (F2), the amount
of control exerted by the participant (F3), the desired level of independence
(F4) and the level of experienced overload (F5). Figure 4.6 presents the ques-
tionnaire item scores for the different strategies, averaged across the items
loading on the corresponding factors. We see significant differences between
strategies for F1, F2 and F3. In contrast, differences between strategies for
F4 and F5 were not significant. This result means that participants perceive
the benefits (F1) of ACT compared to OPT-0UT in reversed order compared
to the objective criteria (2.39 vs. 2.99; ¢t = —1.76, p = 0.047). The same
phenomenon can be observed when comparing OPT-0UT to OPT-IN: OPT-0UT
is perceived as less helpful as OPT-IN (2.99 vs. 3.2; p = 0.09), which is in
contrast to the results of the objective metrics. One reason for this result
may be that participants evaluated ACT as much more obtrusive (F2) com-
pared to OPT-IN (3.18 vs. 2.47; t = 4.47, p = 0.0007) which was perceived
as slightly more obtrusive than OPT-IN (however not significantly: 3.18 vs.
3.06; t = 0.68, p = 0.25). This indicates that perceived obtrusiveness was
dominated by whether the assistant performed assignments autonomously
(OPT-QUT, ACT) or not (OPT-IN); the ability to suppress automatic assign-
ments is less important. Furthermore, participants also felt that they lost
control over the task (F3) from OPT-IN to OPT-0UT (2.08 vs. 2.83; t = 3.66,
p = 0.001) and from OPT-0UT to ACT (2.83 vs. 3.59; t = 3.31, p = 0.002).
F4, i.e. the desire for independence from the assistant, on the other hand
did not vary with strategy. We explain this by the fact that desire for in-
dependence is a stable personality trait and therefore not dependent on the
strategy. Experienced overload (F5) also does not change with the strategy.
This is in line with the observation that none of the six workload dimensions
of the NASA TLX correlated significantly with acceptance (r < 0.19 for all
dimensions).

As the overall acceptance item Q19 was excluded from factor analysis, we
can predict this item from the resulting factors. For this purpose, we es-
timated a linear regression model with Q19 as dependent variable and F1
to F5 as independent variables. Table 4.12 shows the resulting model. The
overall model achieved an 7?2 of 0.51. Looking at individual factors, F2 and
F4 were significant predictors of Q19 (p = 0.0005 and p = 0.04, respectively)
and most strongly influenced the overall acceptance of the system. In con-
trast, the influence of the objective benefits of the assistant (i.e. F1) is not
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‘ Id ‘ Loading Items ‘ S o2 ‘ Interpretation ‘

F1 | Q8 (0.87), Q12 (0.78), Q14 (0.76) 21% | objective benefit of assistant
F2 | Q9 (0.88), Q13 (0.93), Q18 (0.61) 36% | obtrusiveness of assistant

F3 | Q2 (0.96), Q4 (0.65), Q6 (0.50) 47% | task control
F4 | Q10 (0.73), Q15 (0.69), Q16 (0.51), | 59% | desired independence
Q18 (0.52)

F5 | Q1 (0.92), Q3 (-0.60), Q7 (0.56) 70% | overload

Table 4.11 — Result of the factor analysis for user satisfaction questionnaire
items. Given are the items which load on each factor, the cumulative explained
variance (Y 02) and our interpretation of each factor.

significant. Of the most influential factors, F2 was much more positive for
OPT-IN than for the other two strategies, and was slightly more positive for
OPT-0UT compared to ACT, but not significantly. This explains the observed
preference pattern reflected by Q19, which behaves analogously. This result
means that perceived intrusiveness is indeed a key predictor of agreement,
as hypothesized in the introduction. The fact that F4 is also a predictor
of acceptance indicates that not only situational workload plays a role for
strategy acceptance, but also the user’s personality.

] Indep. Variable ‘ Estimate ‘ p-value ‘

Intercept 3.83 0.0001*
F1 0.18 0.35
F2 -0.79 0.0005*
F3 -0.08 0.61
F4 0.39 0.04*
F5 0.04 0.76

Table 4.12 — Linear regression model Q19 = Z?:o Bi - F; with factors from
Table 4.11 as independent variables (Fy = 1 is the intercept) and Q19 (accep-
tance) as dependent variable. An asterisk indicates a 3; which is significantly
different from 0.

Workload Classification

We finally evaluated the classification accuracy of the empirical workload
model. We assigned to all data of low workload conditions the class label
LOW and assign to all data of high workload condition the class label HIGH. An
EEG-based empirical workload model (see Section 2.3) was trained to sep-
arate the two classes. For this binary classification problem, we performed
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Figure 4.6 — Questionnaire scores for the factors resulting from factor anal-
ysis, given for the different support strategies. Questionnaire score measures
agreement to the factor: 1 = strong disagreement, 5 = strong agreement.

an offline analysis in a person-dependent 16-fold cross-validation. The aver-
age classification accuracy which resulted from cross-validation was 75.8%,
with a standard deviation of 16.8%. If we excluded one participant for which
technical problems had compromised data quality of some electrodes, clas-
sification accuracy improved to 79.3% with a standard deviation of 12.1%.
This indicates that the system was able to reliably differentiate between the
different workload levels, with similar accuracy as reported in Section 2.3.
Given that the training material is very heterogeneous (i.e. data containing
different assistant strategies), this is a satisfying result. In Section 4.4, we
showed that a classification accuracy in a similar range already allowed adap-
tive automation with substantial improvements in task performance and user
satisfaction compared to non-adaptive systems.

One limitation of the present workload evaluation is the fact that the order
of the workload conditions was fixed (in contrast to the order of the sup-
port strategies). This could have potentially biased the workload classifier
towards learning temporal effects instead of workload differences. However,
in Section 2.3, we showed that the employed workload classifier was robust
against such ordering effects. As the classification setup in that evaluation
was similar to the present one, we are optimistic that this robustness also
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transfers to the workload classification in this section. Note that this order-
ing limitation will not substantially influence the behavioral results of the
study. In general, participants improve their skills on both DT and MT, i.e.
switching the order of workload conditions would only emphasize the benefit
of the support strategies which we showed in the evaluation.

4.5.6 Discussion

There are three main points we conclude from this user study: First, support-
ing behavior is helpful to the user and generally accepted, but only in high
workload conditions. This shows the importance of adaptive user interfaces
which only assist when required. Second, the level of intrusiveness is a major
determinant of how well a specific support strategy is perceived. The objec-
tively most successful support strategy was ranked low compared to a more
acceptable, less intrusive alternative. Third, we reconfirmed the robustness
of the EEG-based empirical workload model in the employed scenario.

The results give no easy indication on what strategy is optimal in the given
scenario. A designer will have to decide whether an additional performance
gain is worth the cost of discontented users. This decision will for example
be driven by the costs of mistakes during the main task. A reliable work-
load classifier can help to only activate intrusive support when necessary to
reduce the negative effect on user satisfaction of to a minimum. Although
the employed main task was presented with a cover story of a dispatching
scenario, it was abstract in nature and we expect results to transfer to any
task which has the same main properties, i.e. 1) heterogeneous but frequent
inflow of requests, 2) distraction by a secondary task and 3) the property
that work can be freely and independently distributed between human op-
erator and machine. Examples of such tasks are air traffic control or crisis
management, assuming that there are is an algorithm to automatize the pro-
cessing of requests (see for example [PHM™12] for automation of air traffic
control). While automation always comes with the risk of introducing errors
compared to the performance of a human expert, a workload-adaptive assis-
tant can limit the activation of automation to situations of high workload,
in which the human is not able to handle the task on his or her own.

A limitation of the present study is the fact that workload recognition was
performed offline. We argue that previous research indicates that online
workload recognition is feasible at levels which are sufficient to provide sig-
nificant usability improvements. Still, an analysis with an online workload
recognizer for selection of supporting behavior would introduce realistic er-
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rors. Another limitation is that the strategies we investigated in this work
are limited to local decisions, i.e. each request is treated independently. This
is helpful as it maximizes the flexibility of the system and allows immediate
switching between different behaviors. As the inflow of future tasks can-
not be predicted by the system or the user, this flexibility is needed. Still,
in slightly different scenarios, long-term variants of the presented strategies
(which would store the user’s decision on desired support over a certain pe-
riod of time) could provide a more efficient and less intrusive behavior.

4.6 Self-Correcting Error Aware Interface

Natural input modalities like speech or gesture recognizers have become
broadly available. However, while those input techniques are an important
step towards intuitive and efficient HCI, there are some important aspects
which are still lacking. One major challenge when using machine learning
and pattern recognition techniques to interpret the user’s input is the sub-
stantial risk of errors compared to traditional input devices like keyboards.
Reasons are on the one hand limitations of generalizing from a finite set of
training samples to data of high intrinsic variability and on the other hand
inherent ambiguities of complex, natural input patterns. Recognition errors
often lead to an inefficient and unsatisfying interaction. Such system behav-
ior leads to a user state of confusion and is detrimental to the interaction
flow.

In this section, we propose the design of an error-aware interface which is able
to pro-actively detect erroneous system behavior in reaction to the input of
a user. To detect errors, we exploit the fact that a discrepancy between the
expected and the observed system behavior results in characteristic brain
activity of the user. This brain activity is called Error Potential (ErrP) and
appears almost immediately after erroneous feedback is presented following a
user action. It can be measured by EEG. In Section 2.5, we already described
the development of a person-adapted empirical cognitive model for the user
state confusion. In this section, we will use such a mechanism to improve the
quality of a gesture-based interface. Different strategies for recovery from
error are discussed and evaluated.

In the following, we will introduce a gesture-based selection task and define
different recovery strategies which are employed to respond to detected ges-
ture recognition errors. For evaluation, we collect and evaluate a data corpus
of 20 participants — called Gesture-Sim — who perform the gesture task. We
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evaluate the performance and associated costs of a large number of recovery
strategy variants in a simulation. Afterwards, we perform a user study of 10
participants — called Recovery-Study — using three selected recovery strategies
to compare user satisfaction between automatic and manual strategies.

To our best knowledge, the proposal of an end-to-end self-correcting gesture
interface is completely new to the research community. The same holds for
the presented systematic evaluation, which includes a comparison of different
strategies and takes into account both objective and subjective performance
metrics.

4.6.1 Experimental Setup

To evaluate the potential of adaptive cognitive interaction systems which
model the user state confusion, we designed an experiment using a recognizer
for pointing gestures. The experimental setup consisted of a gesture-based
selection task, a gesture recognizer and the self-correcting interface.

Gesture Task

In this section, we describe the pointing gesture task which we used as sce-
nario to evaluate different error recovery strategies. In the employed task,
participants selected and dragged images presented on a large projection
screen to a certain spot of a 2x3 matrix, depending on the content of the
image (color and vehicle type). Figure 4.7 shows the interface of the task.
To classify the six possible pointing gestures, we used data from a wireless
sensor wristband equipped with an inertial-measurement-unit (IMU) fixed to
the participant’s right hand.

Before execution of the actual experiment, each participant trained a pre-
defined movement sequence: From a resting position, the participant moved
the arm to point at the bottom left corner (where the image was shown),
paused for about a second, moved the arm to the target cell of the matrix
in a smooth motion, paused for about a second and returned to the resting
position. This schema ensured consistent execution quality across all par-
ticipants. The task supported the participant in the correct execution by
giving acoustic feedback when a pausing position could be ended. After the
gesture was completed, the recognition result was displayed as a large over-
lay showing an abstract pictogram representing color and vehicle type of the
recognized class (see Figure 4.8). At this point, an ErrP classifier evaluated
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Figure 4.7 — Interface of the gesture task. Users were asked to drag the image
appearing in the lower left corner to the corresponding matrix cell, according
to its color and vehicle type. The arrow in the figure is for illustrative purposes
but was not visible to the participants.
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Figure 4.8 — Feedback presentation after a gesture input, indicating type and
color corresponding to the recognized class.

the subsequently recorded EEG to recognize whether an error has occurred.
Such a stimulus-locking is important as the recognition of ErrPs in EEG
depends on temporal patterns in the range of milliseconds.

Gesture Recognition

In this section, we describe the person-independent gesture recognition sys-
tem which we used to recognize the selected matrix cell from the performed
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gesture. Arm motion was sensed with a sensor equipped wristband. We used
a jNode sensor [SvLGT12], an open research sensor platform which contains
a 9 degrees-of-freedom inertial measurement unit (IMU). Sensor data was
sampled at 50 Hz and sent wirelessly to a computer. We applied a three-
stage processing chain consisting of a segmentation, a feature extraction and
a classification stage. It should be noted that the gesture recognizer was de-
liberately not optimized towards high accuracy. An almost perfect recognizer
would not be of use in our scenario, since we investigate recovery strategies
from errors. We headed for an accuracy of about 75%.

We employed a two-step segmentation which first identified segments of mo-
tion and then separated the actual pointing gesture from other hand move-
ments. In the first step, the motion data was segmented into parts containing
motion and parts containing no motion (idle). A segment was detected as
motion whenever the angular rate exceeded a given empirically determined
threshold. The motion segment ended if the angular rate was below the
threshold and remained below it for at least 200ms. In the second step
of segmentation, we modeled the motion sequence with a finite state au-
tomaton. Since the movement sequence followed a strict schema, this was a
feasible approach for this study. The finite state automaton had four states
called UNDEFINED, POINTSTART, GESTURE, and POINTEND.
Whenever the segmentation step detected a motion/idle change, we checked
for a state transition. The start state was UNDEFINED, which captured
all motions that occurred between two gestures. The POINTSTART state
corresponded to the initial pointing on the picture at the bottom left corner of
the display. The transition into the state POINTSTART was performed if
the acceleration in the axis perpendicular to the back of the hand was within
a range of 0.98m/s? of an experimentally determined reference value. This
means, the orientation of the hand in 3D space was compared to a reference
orientation based on the measured earth acceleration. The reference orien-
tation depended on the height and distance of the projected image relative
to the user and was therefore dependent on the local environment. The next
motion segment triggered the transition into the state GESTURE, which in-
dicated the execution of the actual gesture. The next idle segment triggered
transition into the state POINTEND, indicating the pause at the target
position. The next motion segment lead to the transition back into UNDE-
FINED. The motion segment corresponding to the state GESTURE was
used for the actual classification of the pointing gesture. The employed six
classes corresponded to the six matrix cells. Figure 4.9 summarizes the state
transitions of the second step of segmentation.
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Figure 4.9 — Finite state automaton for the second step of segmentation of
the gesture recognizer.

For the classification stage, we used a Gaussian mixture model (GMM) with
five Gaussians per class for maximum likelihood classification. Features were
computed on the complete segment associated with the GESTURE state
in the finite state automaton. Preprocessing consisted of a mean subtraction
to compensate constant offsets introduced by gravity (mean calculated on
previous trials) and signal smoothing with a running average filter of order
five. Due to the drift and noise present in inertial sensor readings, the tech-
nique to reconstruct the actual trajectory performed in 3D space is error
prone. As a result, we could not simply compute the direction and length of
the performed gesture reliably. Instead, we computed the angle of motion in
each of the three axes, the Lo-norm of these three angles and the duration of
the gesture segment. The angles were computed by integrating the angular
rate measurements from the gyroscope over the whole gesture segment. The
resulting feature space therefore had five dimensions. The classifier was eval-
uated in cross-validation, yielding a person-independent recognition accuracy
of 77% (on the Gesture-Sim corpus). Therefore the gesture recognizer met
the criteria for our experiments. We also computed a confidence estimate for
the gesture classification: Scores of the GMMs for each feature vector were
normalized to a probability distribution across classes. The distance between
the normalized score of the highest and second-highest scoring class was used
as a confidence estimate of the classification result.
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4.6.2  Self-Correcting Interface

For the described scenario, the self-correcting interface was designed as fol-
lows: The gesture classifier received input from the IMU and outputs a prob-
ability distribution for six classes corresponding to the six possible matrix
cells. The most likely class was used to present feedback on the recognized
class to the user. The EEG data following this feedback was analyzed; if
an ErrP was detected in this data, a recovery behavior was started to cor-
rect the error. The exact nature of this recovery behavior depended on the
implementation of the recovery strategy. Different strategies may have dif-
ferent characteristics in terms of recovery accuracy, recovery costs and other
factors.

In Section 2.5, we already showed than an EEG-based empirical confusion
model can reliably detect ErrPs caused by erroneous feedback during the
gesture task. In the user experiments comparing different recovery strategies
however, the ErrP component was replaced with a simulated ErrP classifier
which received the ground truth gesture class and the output of the ges-
ture classifier to detect ErrPs with a recall and precision of 0.8, respectively.
Simulating the ErrP classification allowed us a better control over the dis-
tribution of errors and therefore a better comparability between sessions.
Furthermore, it reduced the setup time, and thereby allowed us to record
data from a larger number of participants. The results from the isolated
analysis of the ErrP classifier justify this simplification of the experimen-
tal setup as they showed that we are able to achieve this performance from
real EEG data. It should be noted that the described ErrP classifier (see
Section 2.5) can also be operated in online mode, therefore the results from
the experiment can be generalized to an end-to-end system with EEG-based
classifier.

Next, we define the different analyzed recovery strategies. All recovery strate-
gies were implemented using the AIM framework, which received n-best lists
as input from the gesture recognizer and sent commands to the graphical user
interface to determine the displayed feedback and the task flow. The most
basic strategy was the REPROMPT strategy. REPROMPT reacted to a
detected error by prompting the user to repeat the input. The initial gesture
data was discarded and the second gesture was used as final classification
result. We did not repeat the correction procedure after the first repetition
as frequent handling of the same error might lead to unexpected EEG signal
patterns. The 2ND-BEST strategy was a modification of REPROMPT
that does not always reprompt if an error was detected. Instead, it inspected
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Figure 4.10 — Flowchart of the 2ND-BEST strategy.

the probability distribution of the all classes and picked the second best class.
However, this estimate might be unreliable as it was based on a probability
distribution which had just been indicated as erroneous by the detection of
an ErrP. Therefore, we only used the second best class if its re-normalized
confidence (i.e. probability mass of the first best class distributed equally
across all remaining classes) was above a certain threshold ¢. Otherwise, the
user was asked to repeat the input once. Figure 4.10 shows the control flow
of both correction strategies (REPROMPT is a special case of 2ND-BEST
with threshold ¢t = 00).

As we also want to compare the automatic correction strategies with user-
triggered correction, we defined the MANUAL strategy which required the
user to actively report a recognition error. This could for example be exe-
cuted with a “manual override” button on the wristband, which we simulated
in our experiments by a two-handed keyboard command issued by the user.
When triggered, the system performed a reprompt of the last trial. This
strategy had the advantage of near-perfect recognition of error events but
did impose additional overhead on the user. For comparison, we defined
the strategy NONE, which did not provide any mechanism to recover from
detected error situations.
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Figure 4.11 — Execution of the gesture task.

4.6.3 Results

Simulation-based Evaluation of Recovery Strategies

Using the setup described in Section 4.6.1, we recorded a total of 20 sessions
from 20 participants. All participants were university students or employees.
During the experiments, participants first performed a number of training
trials and then three blocks with 35 trials each. Between two blocks was
a pause of several minutes for the participant to rest. This is the Gesture-
Sim corpus which we used to evaluate the baseline gesture classifier and to
simulate the effects of different recovery strategies.

First, we have a closer look at the gesture classification performance. The
average confidence values yielded by the gesture classifier show a difference
of 0.84 vs. 0.64 for the correct and the incorrect results, respectively. This
difference is barely significant with an average p of 0.079 (one-sided t-test
on each fold). This result indicates that the confidence value alone was not
reliable enough to detect errors. An additional knowledge source, like the
proposed EEG-based ErrP detection, is necessary to reliably identify errors.
For all misclassified trials, Figure 4.12 shows a histogram of the rank of the
correct gesture class within the n-best list. We see that most of the trials
were concentrated at the lower ranks. For 52.2% of all misclassified trials, the
second best estimate was the correct one. This indicates that if the 2ND-
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Figure 4.12 — Histogramm of ranks of the correct gesture class within the
n-best list (only for misclassified trials).

BEST strategy is pursued, one can expect to reduce the error rate by about
50%.

In the following, we evaluate the different recovery strategies for their impact
on recognition accuracy of the gesture recognizer and the associated costs in
form of additional gestures. We did this in simulation, where we used the
actual results from the gesture recognizer for each trial but simulated ErrP
classification and recovery strategy, including all additional gesture classifi-
cations during recovery. This method gave us the opportunity to evaluate a
large number of recovery strategies with different parameters to study and
compare their effects.

To quantify the effect of the different recovery strategies, we defined the
corrected recognition accuracy which is the fraction of correctly identified
gestures after applying the effects of the recovery behavior of the system.
Corrected recognition accuracy takes into account the error of the gesture
recognizer as well as both types of errors of the ErrP classifier (false posi-
tives and false negatives). Corrected recognition accuracy a is calculated as
follows:

a=a- (1 pcor) +a- Dcor - ATP <41)

+ (1 - CL) * Dincor * AFP
where p.,. is the probability of detecting an ErrP if the gesture input was
classified correctly (i.e. the false alarm rate of the ErrP classifier) and pipcorr
is the probability of detecting an ErrP if the gesture input was classified
incorrectly (i.e. the precision of the ErrP classifier). a is the raw accuracy of
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the gesture recognizer and can be estimated during crossvalidation. arp and
arp are the probabilities of a successful recovery when an ErrP was identified
correctly (i.e. true positive) or incorrectly (i.e. false positive) for the initial
gesture input. For REPROMPT, we simply have a = arp = app, as every
detected ErrP leads to an additional unmodified gesture trial. For the pure
2ND-BEST strategy (i.e. t = 0), we have arp = poyp and arpp = 0, where
ponp is the probability that the second best estimate is correct, given the
first one was already excluded. psnyp can be estimated from the histogram
in Figure 4.12 as the fraction of second best results of all wrongly classified
gesture trials (52.2% in our case). For 2ND-BEST with ¢ > 0, we have:

t)-a+ P(canp > t) - panD
t)-a

arp = P (CQND

<
p (4.2)

app = P (CzND

In Equation 4.2, conp is the renormalized confidence of the second best recog-
nition result. Again, the necessary probabilities can be estimated from the
histogram in Figure 4.12 by counting only the trials with high confidence.

We also assess the costs of each correction strategy to measure system effi-
ciency. As metric, we calculate the costs of a correction as the average number
of additional user inputs (gestures or key presses) necessary to perform the
correction. For REPROMPT, this amounts to one gesture for each detected
error, including false alarms. Those costs are reduced for 2ND-BEST which
in favorable cases corrects errors without any additional costs for the user.
For MANUAL, we have no false alarms but additional costs for triggering
the correction. We favorably assume that the signal to trigger manual correc-
tion is always issued correctly by the user. Correction costs can be estimated
in cross-validation by counting the number of (automatically or manually
triggered) reprompts.

To assess the performance of the different strategies using those metrics, we
perform a block-wise leave-one-out cross-validation of the gesture recognition
system and calculate a number of statistics on errors and confidence values.
The cross-validation simulates online recognition, i.e. normalization param-
eters for each trial are only calculated from the data previous to this trial in
chronological order. For each fold, we evaluate the gesture classifier on the
testing block and use equations 4.1 and 4.2 to estimate corrected recognition
accuracy for the different correction strategies.

Table 4.13 summarizes the results, averaged across all folds. We see that
for all correction strategies, the corrected accuracy exceeds the baseline ac-
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curacy (i.e., NONE) and therefore improves the overall performance of the
gesture classifier. As expected, MANUAL yields the highest improvement,
followed by REPROMPT. Still, 2ND-BEST ranks only 3.1-9.9% worse
than REPROMPT (depending on the selected threshold, see below) and
provides a statistically significant improvement over NONE (block-wise one-
sided paired t-test, t = 4.38, p = 0.002). When we rank the strategies by
their correction costs, we get the reverse result compared to the ranking
based on corrected accuracy: The MANUAL strategy imposes correction
costs of 0.46 on the participant, i.e. the participant has to execute 1.5 com-
mands on average per desired input. This is reduced to 0.34 (a reduction by
more than 26% relative) when using the REPROMPT strategy, which can
detect automatically most of the situations which require a correction. The
costs are further reduced to 0.19 (a reduction by more than 58% compared
to MANUAL) for the 2ND-BEST strategy (with £ = 0.7), which in many
cases requires no additional user input for correction and never incurs higher

costs than REPROMPT.

A caveat for the 2ND-BEST strategy is that while it fixes a number of
erroneously classified gestures, it also reacts to a number of false alarms with
no chance of recovery (in contrast to REPROMPT which can still generate
a valid final result in case of a false alarm). To some degree, this is mitigated
by the confidence threshold ¢ applied to the second best result: With ¢ = 0,
the corrected accuracy of 2ND-BEST is 71%, i.e. below the raw accuracy of
NONE. Using a confidence threshold of 0.7, 53% of all error trials are selected
for suggesting the second best result. This yields a tuning parameter with
which the designer can select between different trade-offs between accuracy
and correction costs: Table 4.13 lists results for three different parameter
settings to demonstrate this.

’ Strategy ‘ Corr. Accuracy ‘ Corr. Costs ‘
NONE 77.0% 0
MANUAL 93.0% 0.46
REPROMPT 86.8% 0.34
ROW-COL-PEPROMPT 76.4% 0.34
SELECTIVE-PEPROMPT 88.1% 0.34
2ND-BEST (¢t=0.5) 78.2% 0.14
2ND-BEST (¢t=0.7) 81.4% 0.19
2ND-BEST (¢t=0.9) 84.1% 0.27

Table 4.13 — Performance measures of the different error correction strategies.
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It is surprisingly difficult to beat the simple 2ND-BEST strategy (and its
special case REPROMPT) in terms of corrected accuracy. We explored a
number of other strategies which use allegedly clever mechanisms to improve
the recovery process. For example, the ROW-COL-REPROMPT strategy
tries to estimate the correct row or column of the image matrix (by identifying
the row or column with the highest cumulative confidence after removing the
first best result) from the initial gesture and only reprompts this reduced
set. Indeed, accuracy of the gesture recognizer rises to 88% when only the
one missing dimension (i.e. row or column) has to be estimated from the
reprompt. However, errors in the automatic selection of the correct row
or column, which inevitably prevent a successful correction, lead to a non-
competitive corrected accuracy of 76.4%, which is worse than NONE. An
alternative which performs better is SELECTIVE-REPROMPT. It also
limits the number of reprompted items but selects the three best classes from
the initial gesture input, including the one marked as incorrect by the ErrP
detector. This leads to an accuracy of 88.1%, reducing the number of errors
of 9.8% relative compared to REPROMPT. However, we pay for this benefit
by the fact that we are required to re-arrange the matrix for the reprompt
(e.g. moving the three candidates to a joint row) to actually benefit from a
simplified pointing and classification task. Informal user tests showed that
this is highly confusing to users.

As false alarms and missed errors are not symmetrical in their influence on
the performance of a recovery strategy, we also need to look at the impact
of different precision/recall values of the ErrP classifier. For example, it may
be favorable to tune the classifier towards a higher precision at the cost of
reduced recall, to avoid false alarms which might invalidate correct gesture
inputs. In Section 2.5.6, we showed that it is possible to achieve a precision
of 0.96 by modifying the class balance of training data. Simultaneously, this
step reduces recall to 0.76. While this results in a slightly lower F-Score of
0.84 compared to the optimal system, its the false positives which cause the
most trouble for automatic recovery; this is especially true for 2ND-BEST,
which cannot recover successfully in such situations. As a consequence, cor-
rected recognition accuracy improves by 3.5% relative for REPROMPT
and 6.3% relative for 2ND-BEST when adjusting precision and recall of the
ErrP detector by +0.1 and —0.1, respectively. The overall ranking of recov-
ery strategies stays the same, although the gap to the MANUAL strategy
is reduced, as it does not benefit from the adjustment.
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User Satisfaction of Recovery Strategies

The results up to this point indicate that is is possible to develop a self-
correcting interface that significantly improves the accuracy of the employed
gesture recognizer. However, usability of such a system does not only de-
pend on efficiency and effectiveness and we still have to investigate whether
users will accept the different correction strategies. From a general perspec-
tive, [Jam09] systematically analyzed a number of undesired side-effects of
adaptive interfaces. The author discussed the cause of such side-effects and
ways to remedy them. For our application, the most relevant side-effects are
“Inadequate Control over Interaction Style” and “Inadequate Predictability
and Comprehensibility”, as the user has no control over when a correction is
triggered and has no way to predict when an error is detected, as well as “Im-
perfect System Performance” (of the ErrP classifier), which may lead to nega-
tive user experience when a correct interpretation is discarded, are the main
challenges specific to the presented system. To investigate whether those
challenges affect user satisfaction, we recorded the Recovery-Study corpus,
a user study in which we compared REPROMPT and 2ND-BEST (with
t = 0.7) to the MANUAL correction strategy. Of all evaluated strategies,
those three are the most basic and therefore allow a principal comparison of
recovery strategies with different levels of autonomy. After a training phase
to accommodate with the gesture recognizer, each participant performed 35
trials for each of the three strategies in random order and filled a usability
questionnaire. Averaged across all participants, raw recognition accuracy
was 76.2%. Table 4.14 describes the actual performance of the different cor-
rection strategies. Compared to the simulation results, we can conclude that
in simulation we made satisfactory predictions on accuracy and correction
costs. Table 4.15 summarizes the items of the questionnaire and the results.
Items were presented with a 5-point Likert-scale, with 1 indicating no agree-
ment and 5 indicating the highest possible agreement. In the following, we
analyze the corresponding questionnaire responses. Given the limited sample
size, not all results are significant, but the tendencies give a good impression
on the perception of the different strategies.

We see that users were not daunted by the self-correcting interfaces. By ten-
dency, the self-correcting systems were evaluated more positively compared
to the system with manual correction regarding all presented questionnaire
items. However, there was a difference between REPROMPT and 2ND-
BEST in which items they more distinctively differed from MANUAL. Due
to the reduced number of manual interventions necessary, automatic correc-
tion by the 2ND-BEST strategy was perceived as less strenuous, less te-
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’ Strategy \ Corr. Accuracy \ Corr. Costs ‘
MANUAL 91.7% (93.0%) 0.52 (0.46)
REPROMPT 84.0% (86.8%) 0.37 (0.34)
2ND-BEST (¢t=0.7) 79.7% (81.4%) 0.18 (0.19)

Table 4.14 — Performance measures of the different error correction strategies
for the Recovery-Study corpus. For reference, we repeat the simulation results
in parantheses.

REPROMPT
2ND-BEST

Questionnaire Item
felt supported 3.6 3
system reacts proactively | 4.4*% | 3.5% | 2.1
errors corrected reliably 3.1 ] 32 |26

“I MANUAL

system predictable 3.4 1 3.1 |25
system intuitive 4.6% | 4.3 [4.1
user has control 4.0% | 3.4 |33
felt observed 1.3 | 1.8 | 1.8
pleasant experience 3.3 | 3.7 3.0
system strenuous 29 | 24 |28
correction tedious 3.0 [ 24%]35
system impedes user 25 | 24 129
system confusing 2.2%1 29 |30

Table 4.15 — Subjective evaluation of correction strategies (1 = no agreement,
5 = high agreement). An asterisk denotes a significant difference (one-sided,
paired t-test, a = 0.05) between MANUAL and the respective automatic
strategy.
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dious and more pleasant than manual correction. Comparing both automatic
strategies regarding ease-of-use, users preferred the REPROMPT strategy.
REPROMPT was evaluated as the least confusing, most predictable, most
intuitive strategy. For REPROMPT, there also was a stronger perception
of pro-active behavior compared to both other strategies. The reason we see
for this difference between both self-correction strategies is that 2ND-BEST
provided the more complex user interface behavior as it added new elements
to the interaction flow, while REPROMPT only repeated elements which
were already familiar to the user. Both behaviors also differed in their han-
dling of false alarms. While reprompting a user after presented feedback
can be interpreted as a confirmation of an unreliable classification result, the
2ND-BEST behavior explicitly discarded the initial classification result and
gave the user no opportunity to counter this behavior.

4.6.4 Conclusion

In this section, we showed that it is possible to improve accuracy of a ges-
ture recognizer using ErrP classification to enable pro-active recovery from
recognition errors. We discussed all components necessary for an end-to-end
error-aware interface and evaluated different recovery strategies, looking at
both objective and subjective evaluation metrics.

To our best knowledge, the presented study is the first in the research com-
munity which analyzes how a detection of the user state confusion can be
used to recover from recognition errors. We provide an extensive evaluation
in simulation to analyze the effect of recovery strategies on both recognition
accuracy and recovery costs. Furthermore, we conduct a user study on the
subjective assessment of recovery strategies. This study also confirms the
simulation results in live human-computer interaction.

The presented recovery strategies are very general in nature. Reprompting
for additional user input or re-interpretation of the original input are both
strategies which apply to any noisy input modality. Also, the simulation-
based evaluation of recovery strategies can be easily extended to other strate-
gies and be applied to other applications. When transferring the results to
another domain, one may have to adjust the employed cost model as re-
questing additional user input may be more or less costly (or measured on
a completely different scale, e.g. time) than in this section. This may also
change the user preference for different recovery strategies. Another influ-
encing factor is the baseline performance of the input classifier. A very high
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baseline accuracy also demands a high ErrP classification precision. Other-
wise, nearly all detected errors will be false alarms.

One limitation of the described approach is that it is relying on time-locked
evaluation of EEG data relative to feedback presentation. This works well
for situations were the system can give instantaneous feedback in an un-
ambiguous way, for example global feedback on a graphical user interface.
This becomes more challenging when feedback is given more locally, is not
immediately obviously erroneous or is spreading across longer periods of
time. In such cases, the ErrP classification has to rely on additional in-
formation sources (e.g. eye tracking to track when a presented feedback was
perceived) or become less relying on temporal alignment (e.g. by using meth-

ods from [MRM13]).

4.7 Cognitive Interaction Simulation

In Chapter 3.3, we introduced a memory model for application in interaction
systems. In this section, we show how employing this memory model helps us
to simulate plausible user behavior and to predict relevant system utterances
in a complex interaction scenario.

Cognitive user simulation is a paradigm of testing system prototypes for their
usability by having cognitive models interact with the software to predict task
performance and efficiency. However, existing approaches (see Section 3.2.2)
are restricted (1) to implement the whole cognitive model within a given
cognitive architecture (which imposes severe restrictions on the software ar-
chitecture of the interaction system and the user model), (2) to traditional
graphical user interfaces, and (3) to a small number of fixed behavioral strate-
gies of the simulated user. In contrast to computational cognitive models,
there exist statistical user simulation approaches (see Section 4.2.3) for train-
ing and evaluation of spoken dialog systems. Those allow a greater variability
in behavior, but have no representation of cognitive processes. To our best
knowledge, the approach of combining statistical and computational model-
ing for user simulation is new to the research community.

In this section, we propose to combine both approaches by integrating com-
putational cognitive modeling aspects with a statistically trained user simu-
lation. This combination brings together the benefits of both approaches: It
uses State-of-the-Art techniques of flexible statistical user simulation which
is employed in a complex application domain. The user model of this simu-



4.7 Cognitive Interaction Simulation 227

lation is extended by a computational cognitive model to provide a plausible
prediction of human behavior and performance, for example with regard to
memory or workload level. With this approach, we can exploit validated
computational models without being restricted to a specific cognitive ar-
chitecture. This approach is in the same spirit as the development of a
stand-alone memory model for interaction systems in Section 3.3.

The application context in this section is the development of an interactive
multimodal tourguide system in the car. The tourguide acts as a naviga-
tion system that also provides information to the driver on Points of Interest
(POI) along a route through the fictional city of Los Santos. During one
episode of the tourguide scenario, traffic junctions and POIs occur at dif-
ferent points in time, while system and user can ask questions or exchange
information. The utterances of systems and users as well as external events
(e.g. a POI occurring) result in a dynamically changing context for the inter-
action, influencing the appropriateness of the information which the system
can provide. Other factors also determine the interaction context: POIs
belong to different categories (e.g. restaurants, museums, etc.) and are of
different relevance for the driver. Furthermore, the driver experiences differ-
ent workload levels caused by variable road conditions and external events.
The workload level influences the user’s behavior and performance. The
tourguide system tries to provide appropriate information to the driver in
appropriate complexity using appropriate modalities.

The tourguide scenario has two main challenges: First, as mentioned above,
the driving task and the occurring distractions result in a variable workload
level of the user. The system has to predict the impact of the workload level
on the driver’s cognitive abilities, for example when processing information
given by the system. Second, the system has to deal with an ever-changing
context in the dynamic environment. Therefore, we need to integrate com-
ponents in our interaction system that are able to explicitly model, predict,
and cope with the imperfect user as well as the varying attentional focus and
memory content to ensure a seamless and successful interaction experience.

Especially in interaction scenarios which are not directly task-driven, system
utterance selection is not trivial: While we follow a clearly defined goal of
providing as much interesting information as possible, the system has no clear
order or priority of information chunks to present. The same is true if we want
to simulate a user for evaluation or automatic strategy learning. To create
coherent user behavior, we need to provide a dynamic, workload-adaptive
memory model, as seen in Sections 3.3 and 3.4. This section describes how
we employ a memory model for utterance selection for both the system and
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the simulated user. The primary goal of the utterance selection is to find an
utterance that is most relevant in the current context and of most interest
to the user.

4.7.1  Cognitive User Model

The basis for the cognitive user simulation is a cognitive user model. This
model provides predictions on the cognitive state of the users, for example
their memory or their workload level. This user model can be applied in two
different ways: First, it can be used in a generative fashion within the user
simulation component to create plausible user behavior which is consistently
driven by the simulated cognitive state. This state is updated by system
utterances and external events. Second, the cognitive user model can also be
used by the interaction system in a predictive fashion. Using this perspective,
the system tries to trace the cognitive state using the model to generate the
most usable system utterances. Figure 4.13 (left) illustrates both applications
of the user model and their interplay in the simulation of interactions between
user and system.

=)
N
S

- |---»
1

!

1
Utterance i Utterance :
Selection |} Processing :

E o0

Utterance § Utterance
Processing | Selection

|
|
|
|
o0
|
|
|
|

1
1
1
L) | )
\_ h
! traces
1
0 order model ' Q ® 0% order model \ ® o
|
' 00O (Oane)
1 1% order model 1% order model
@ o ' Q@ o traces
1
(opne] ' (oane}
2" order model : 2" order model
]

A =] A =]
Figure 4.13 — The implemented simulation framework with different user

models for system and simulated user (left). Hierarchy of user models which
trace the memory state of lower order models (right).

For simulating realistic interactions between user and system, it is not suffi-
cient to provide one global user model which is accessed by both simulated
user and system. One important characteristic of spoken interaction is the
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process of grounding [Bre98], i.e. the process of establishing a joint under-
standing of the topic and discourse. In the context of cognitive user models,
this involves the process of aligning the user’s memory with the memory
model of the system. Transferring this process to the application of cog-
nitive user simulation — where the simulated user is also represented by a
user model — mandates that the system does not have access to the memory
model of the simulated user. Instead, it is required to indirectly trace the
state of the model using information from the discourse. The system issues
grounding utterances to reduce the information mismatch between system
and user, by providing information about POIs. The user also has the aim
of grounding the interaction by providing information on his or her memory
state which they believe the system is not yet aware of (i.e. the user indi-
rectly traces the memory model of the system, which again indirectly traces
the user’s memory).

Therefore, a complete interaction simulation setup with an autonomous sys-
tem and a simulated user contains multiple user models. Those user models
represent the user’s cognitive state at different levels of indirection. We call
the level of indirection of a user model its order. In our simulation setup,
there are three user models, as summarized by the right side of Figure 4.13:
The 0*"-order model represents the actual cognitive state and is used for user
simulation. It receives input from the environment and from system utter-
ances as perceived by the user (i.e. they pass through an error model). The
1%*-order model is maintained by the system during interaction and represents
the system’s view on the user. It receives input from the environment and
from perceived user utterances. Finally, there is the 2"¥-order model which is
also under control of the user and which represents the user’s understanding
of the 1%*-order model and receives input from the environment and from the
actual user utterances.

In the following, we describe the main components of the cognitive user
model: (1) the memory model to predict which memory items are activated in
a dynamically changing context, (2) the workload model to predict the influ-
ence of the workload level on the memory model, (3) a strategy optimization
module to learn system and user behavior with Reinforcement Learning, and
(4) the utterance generation module to select utterances which for simulated
user and system which optimally fit to the memory activation.
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4.7.2 Memory Modeling

A major building block of the cognitive user model is its memory model. It
is implemented following the Dynamic Memory Model (DMM) described in
Section 3.3. We use the memory model to represent the current activation
of different information, from which we derive plausible user actions and
optimal system actions.

Importance of an Item

From the definition of activation in Section 3.3, we see that the activation
values of memory items summarize multiple influences and time scales of
memory effects: On the one hand, base level activation can be interpreted
as the result of learning from frequent presentations of the corresponding
memory item. On the other hand, the volatile spreading activation does
not result from past presentations of the item but from associations to other
activated items. To create questions of the user or information statements
of the system, we need to identify the most relevant memory items for a
given context. For this purpose, we have two different criteria on activation:
First, we do not want to ask or present information which is highly activated
due to frequent and recent presentation causing a high base level activation:
Such information is already known to the user. Second, items which are not
activated at all will be uninteresting or unexpected for the user. We therefore
define the concept of importance of an item as the ratio between spreading
activation and base level activation. This marks a chunk as important if
it was activated through spreading from associated memory items, but not
directly presented.

Interest of an Item

To identify the most relevant memory items (e.g. to select the most appro-
priate system utterance), it is not sufficient to use the activation value as an
indication of relevance. Pure activation caused by stimulation from the con-
text is not a very precise parameter to determine relevance for the user. For
example, activation of a POI rises when it is mentioned by the system, but
this POI may be irrelevant to the driver, because he or she is not interested in
this category of POI. We therefore define an additional value called interest.
Interest is the static component of relevance and accounts for the fact that
certain information is intrinsically more interesting for the simulated user
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than other, independently of the current activation values. For example, a
user might always be more interested in churches than in sport stadiums,
even if items from the latter category are currently more activated.

Interest is modeled as a probability distribution over a discrete scalar vari-
able. Probabilities are modeled using a Bayesian network based on the same
topology as the semantic memory network, but using only the ontological as-
sociations. Using this Bayesian representation, interest in general categories
is related to the interest value of associated specific chunks. It is possible to
define a-priori distributions to represent expert knowledge on item interest.
This model can be used both in a generative manner in the 0**-order model
(to model individual differences in interest by setting evidence to the nodes
of the network) and in a predictive manner in the 1%-order model.

For interest generation, at the beginning of each episode, the 0*'-order model
sets evidence to all category nodes in the interest network. The evidence is
generated by iterating over the model beginning at the root nodes and ran-
domly generating evidence from the respective distribution given the already
set nodes. For interest prediction, information from questions or statements
that express a degree of interest (e.g. “I am very interested in churches”) are
integrated into the 1%'-order model by setting evidence in the nodes or the
interest network which correspond to the mentioned concepts.

Model Updating & Utterance Processing

At the beginning of an episode, we begin with a memory network with no
activation besides noise for all model orders. While the user drives on a route,
stimuli for an increase of activation come from the environment model which
represents events outside the driver cabin that influence the user. Examples
are events which trigger the activation of certain memory items. Such events
are based on tracking the user’s position on his route, fetching nearby points-
of-interest (POI) from our database and activating them in the memory
model. This activation spreads to connected nodes for which the spreading
activation (but not the base activation) rises and therefore their importance.
In case of the 1%-order model, memory items can also be stimulated by direct
user intervention, asking for information on the POI. The same is true for
the 0*-order model and system utterances.

To connect the user and system utterances with the items from the memory
model, we tag the utterances with the associated memory items. For user
utterances, the associated memory items are usually objects and concepts



232 Interaction Manager & Usability Evaluation

that the utterance requests information about. For system utterances, the
tagged memory items are to relations that describe the knowledge that is
encoded within the utterance. When an utterance of one agent (system or
user) is perceived by the other agent, the chunks associated to that utterance
are retrieved and stimulated in the respective memory model. In the case of
system utterances, this will stimulate relations which often connect to other
chunks previously not activated for the user and which are then brought
into focus. In the case of user utterances, stimulation targets objects and
spreading is received by adjacent relations, which gives the system cues on
new useful information.

4.7.3  Workload Modeling

A big advantage of the presented utterance selection scheme is the ability
to naturally integrate various cognitive modulators that influence the selec-
tion process. Mental workload is a very crucial modulator for memory and
utterances selection. Therefore, it is modeled in our cognitive user simula-
tion. The implemented workload model follows the multi-resource model of
Wickens [Wic08]. In this model, workload is not represented as a uniform
scalar variable but consists of different dimensions of workload. Those di-
mensions correspond to processing stage, input modality, response modality
or processing code and type of visual processing. The purpose of the the
multiple-resource-model (MRM) is to determine workload in a dual-tasking
situation. The general principle of the model is to compare the resource de-
mands for two cognitive tasks which are executed in parallel. Examples for
cognitive tasks in the tourguide domain are “processing a system utterance”,
“generating an utterance”, or “processing an external event” (different exter-
nal events result in different cognitive tasks). The higher the overlap between
the two tasks, the higher the workload which results from dual-tasking.

Resource demand of a task is formalized as a resource vector which denotes
the cognitive resources required for the execution of this task on the four
MRM dimensions on an integer scale. To calculate workload, we check the
interference between the tasks on each dimension, i.e. the amount of overlap
across all dimensions. For each overlapping dimension, a constant value is
added to the workload level. Besides interference, another component which
contributes to the overall workload level is the combined task demand of the
individual tasks.

To integrate this model into the user simulation, we must define tasks and
corresponding resource vectors. Tasks can be associated to actions of the
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user, to actions of the system (which are perceived and processed by the
user) or to environmental events. It is also possible to define tasks associated
with ongoing cognitive activity, for example driving or a generic dummy task
similar to the one used in Section 3.5 to reflect increased workload level
caused by tasks outside of the scope of the simulation. To adapt the MRM
for our system, we need to include a number of extensions to the original
approach by Wickens: First, we extend it by improving the handling of more
than two tasks. We do this by repeating the interference calculation for
each pair of tasks, adding up the resulting workload values. This leads to
quadratic growth of comparisons with the number of tasks. Second, as the
original model by Wickens has no notion of time, we extend it by adding a
duration to each scheduled task. Then, each time slice of the simulation, all
tasks which do not have their duration exceeded are evaluated to calculate
the overall workload level.
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Figure 4.14 — The four dimensions of Wickens multiple-resource workload
model [Wic08].

The last extension of the MRM focuses on the handling of situations of
mental overload. Once the general workload level exceeds a certain threshold
t, not all scheduled tasks can be executed with full quality [GWK™08]. To
handle such situations, we follow the analogy of understanding cognitive
tasks executed in parallel as threads in an operating system [STO08]: This
analogy leads to the introduction of priority values which are assigned to
each cognitive task. When t is exceeded, all scheduled tasks are sorted by
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priority. Beginning with the task of highest priority, tasks are executed with
full quality until the cumulative workload induced by them reaches ¢t. The
remaining tasks are removed from the schedule and not executed. The task
which is responsible for the workload exceeding ¢ is still executed but with
reduced quality.

The overall workload model influences how the simulated user processes in-
formation. First, it controls the user’s chance of disregarding a system ut-
terance. Second, it influences how well the information of a regarded system
utterance is memorized by the user. Disregarding of a system utterance
happens with a probability depending on the overall workload level. More
precisely, a sigmoid function is used to map overall workload level to a failure
probability”. The difficulty for successfully processing an utterance depends
on its complexity. This is modeled by assigning a task with lower intrin-
sic task demand and lesser cognitive resource demand to utterances of low
complexity (i.e. utterances which contain few semantic concepts). When a
system utterance passes this check (i.e. is not disregarded by the user), a high
workload still influences the activation and learning of the presented items
in the memory model, following the approach presented in Section 3.4. This
results in a lower activation and faster forgetting for items when workload is
high.

We demonstrate the functioning of the workload model with an example.
We first consider a user who is driving a car on a curved rural road with
moderate traffic. We model driving as a task of unlimited duration. The
resource vector associated to this task is shown in the first entry of Table 4.16.
The table lists the resource demands for the driving task in terms of the
dimensions of the MRM: visual perception (both focal and ambient), spatial
processing codes (processed information are mainly distances, velocities, etc.)
and manual responses. The resource demands are derived from the driving
model described in [Sal06]. When the user listens to the system which gives
direction information to the user, we add another task “Information (a)” for
the duration of the system utterance. The resource vector of this task loads
on auditory perception and the processing of verbal and spatial information,
see again Table 4.16. We calculate the interference of the two tasks which
yields an overall workload of 4.2 (see Table 4.17). This value results from
the sum of 1) number of individual resource demands of the two tasks and
2) the workload resulting from resource demand overlap (in the example:
Perception/Cognition cognition stage, Spatial processing code). The exact

7A degraded execution quality leads to an additional multiplicative penalty on failure
probability.
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resulting value depends on the weights between summands 1) and 2) and the
score which is attributed to each resource overlap.

It should be noted that Wickens himself saw the merit of his model rather
in the relative comparison of different situations than in the absolute pre-
diction of performance [Wic08]. Consequently, the interpretation of absolute
workload values should be considered as highly context-dependent. Refer-
ence values (e.g. to derive parameters for error probability calculation) can be
established as suggested by [GWK™08] by choosing prototypical task combi-
nations for which task performance or subjective workload values are known.
For example, [vE11] investigated the resulting workload level of different
combinations of driving tasks and secondary tasks in an expert workshop.

Returning to the example, what happens if another distraction takes place
during the processing of the system information? This depends on the re-
source vector which is added. In our example, we add an auditory distraction
(“Distraction(a)”) representing the user listening to a radio message. The
resource vector of this task has high interference with the already scheduled
tasks, which leads to a steep rise in overall workload when added to the tasks
“Driving” and “Information(a)” (from 4.2 to 12.3). The dimensions which
contribute to this rise are the “verbal” processing code and the “auditory”
perceptual modality.

One way to remedy this problematic situation is to enable the system to
switch information presentation modalities. The system could replace the
auditory presentation with a visual one of semantically equivalent informa-
tion. For the example of a directional information, a spatial hint (e.g. an
arrow) could be presented on an in-car display or a heads-up display on the
windshield. Compared to the task “Information(a)”, the visual information
task “Information(v)” replaces the auditory component with a visual one
and removes the processing of verbal information. As a consequence, overall
workload level drops from 12.3 to 10.7.

Note that the visual information is not superior in general to the verbal one.
For example, the combination of the visual information task with a distrac-
tion task which uses visual and spatial resources (e.g. avoiding an overtaking
ambulance, “Distraction(v)”) leads to even higher overall workload compared
to the combination of auditory information with an auditory distraction (see
Table 4.16). This interaction between different tasks underlines the necessity
of modeling and recognition of different dimensions of workload to select the
optimal system action.
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Task Resource Vector

Driving Perception.Visual. Ambient.Spatial
Perception.Visual.Focal.Spatial
Cognition.Spatial
Responding.Manual
Information(a) | Perception.Auditory.Verbal
Cognition. Verbal
Cognition.Spatial
Distraction(a) | Perception.Auditory.Verbal
Cognition.Verbal
Information(v) | Perception.Visual.Focal.Spatial
Cognition.Spatial

Distraction(v) | Perception.Visual.Focal.Spatial
Perception.Visual. Ambient.Spatial
Cognition.Spatial
Responding.Manual

Table 4.16 — Examples of state and action attributes for system and user.
Perceptual modalities: a = auditory, v = visual

Task 1 | Task 2 Task 3 Overall Workload
Driving | - - 0.4
Driving | Information(a) | - 4.2
Driving | Information(a) | Distraction(a) 12.3
Driving | Information(v) | Distraction(a) 10.7
Driving | Information(v) | Distraction(v) 16.8

Table 4.17 — Overall workload level resulting from different combinations of
tasks. Perceptual modalities: a = auditory, v = visual

4.7.4  Joint Strategy Optimization

The previous subsections described the computational modeling components
of the user model. In this subsection, we describe the statistical, RL-based
approach to determine the behavior of system and simulated user.

In many cases of interaction strategy optimization, an RL framework is al-
ready in place for the training of interaction strategies of the system (see
Section 4.2.3). This framework can be naturally extended to form a frame-
work in which both the system and a simulated user are represented as agents
that use RL to jointly optimize their strategies.



4.7 Cognitive Interaction Simulation 237

In terms of RL theory, we transform the single-agent learning problem as de-
scribed in Section 3.2.1 to a multi-agent problem. The single-agent problem
is usually defined to consist of an agent representing the interaction system
and an environment which primarily consists of a static user simulation that
describes the behavior of a generic user. In the multi-agent problem, there are
two learning agents, one representing the user and the other one presenting
the system. Both agents can actively influence the joint environment. The
task which both agents are trying to solve — i.e. creating a efficient, effec-
tive and pleasant interaction — is cooperative in nature, although the formal
definitions of rewards, states and actions can differ between both agents.

State Update & Action Selection
observ\ Aerve

Global Interaction

State S ﬁl

Au U

J
\ v / \ M /
update update

Figure 4.15 — The implemented RL-based simulation framework with two
simultaneously acting agents representing the user and the system.

The setup for the learning framework is designed as follows (see Figure 4.15):
For every time slice, both agents simultaneously observe the current state
from their perspective (S, and Ss) and chose an action (a and s¥) from their
available action set (A, and A,) according to their exploration strategy and
their learned Q-values. Our current implementation explores according to the
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Softmax paradigm during the training phase and uses greedy exploitation
during simulation. The action sets always contain an empty action that
produces no output to handle situations in which an agent decides to remain
silent. The actions of both agents are simultaneously used to update the
global interaction state S. The agents are then informed about the state
update and perform a learning step (both agents implement the Sarsa(0)
learning rules, which is a variant of Q-Learning as described in Section 3.2.1).

States and actions consist of several discrete attributes. The attribute set

comprises attributes which describe the discourse and internal states of the

user (derived from the computational modeling components of the user model).
Examples for state and action attributes are given in Table 4.18. With the

introduction of many attributes to the state and action space, generating

a sufficient number of training episodes can quickly become impossible. A

modularization approach which we describe later proposes a solution to this

dimensionality problem.

] Dimension ‘ Explanation ‘
State Dimensions
Froor who is currently speaking
(user, system, both or none)?
WORKLOAD degree of mental workload
of the user.

WORKLOADSENSOR workload as estimated by
a noisy sensor of the system.

Action Dimensions

SPEECHACT which speech act is this action
part of?
UTTERANCESTATE at which position (begin,

middle, end) of the utterance

is this action?

COMPLEXITY how complex is the

associated utterance? (estimated from
number of concepts in the utterance)

Table 4.18 — Examples of state and action attributes for system and user.

The two agents do not have the same perspective on the global dialog state.
For example, while the simulated user can directly access its true internal
state which drives its behavior, this state is not directly visible to the system
agent. Instead, the system agent has to rely on the output of simulated
sensors which reflect the noisy output of the empirical cognitive models that
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observe the user. This separation corresponds to the different orders of user
models defined in Section 4.7.1.

Actions & Speech Acts

For time representation, a dialog is partitioned into short time slices of 0.5s.
The actions of simulated user and system therefore work on a sub-speech
act level. Modeling the actions of the agents on a speech act level (as it is
common in statistical dialog simulation) would be too restrictive to allow
a prompt reaction to changes in the behavior of the other agent or of the
dynamic environment. While actions of both agents are defined on a very
fine time scale, they can be grouped to describe the interaction on the speech
act level. Each action belongs to exactly one speech act. Because the action
selection takes place on the fine time scale, speech acts can be aborted or
restarted at every point of the interaction. This is especially relevant in dy-
namic scenarios. However, condensed status information on the speech acts
(e.g. the fraction to which a speech act is completed) is set in form of at-
tributes of the corresponding action to influence the action selection process
(see Table 4.18 for examples). More generally: To each action, background
information is attached which is not directly visible to the action selection
process but stores information from which action attributes can be derived.
Most importantly, this comprises the concrete utterance which realizes the
corresponding speech act. The utterance also determines the duration of the
speech act, i.e. how many subsequent actions have to be executed for the
speech act to be completed. When a speech act is completed (i.e. all corre-
sponding actions were executed), the attached utterance is processed by both
agents. For the agent which perceives the utterance, it passes through an
error model. This error model can lead to disregarding the utterance, with
a probability depending on certain model parameters (e.g. average mental
workload during the utterance in the case of the simulated users). This sim-
ulates both malfunction of the speech processing components of the system
(i.e. rejection of a user utterance as no ASR result could be produced which
matched the current context) and missed utterances due to mental overload
of the user.

Training of Strategies

The training of the two agents consists of two stages: Learning from action
scripts and learning by exploration. An action script defines one complete
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episode of interaction, consisting of system and user actions as well as ex-
ternal events in a fixed temporal order. Those episodes either describe one
critical situation the designer wants to confront the learning agents with or
are created by annotating existing interactions. The action scripts help the
agents to learn the fundamentals of meaningful interaction. The scripts are
processed in a flexible way that randomly introduces slight modifications to
the script in each iteration, resulting in a broader range of trained episodes.
The second stage of learning lets both agents explore the state-action space
autonomously, using Softmax exploration as described above.

The motivation for this two-stage approach is that immediately using Soft-
max exploration with randomly initialized learning tables would lead to very
chaotic behavior in the initial steps of multi-agent training. Therefore, we
start with a training on action scripts and switch to Softmax exploration
when a baseline behavior has been learned. When creating learning episodes
using the Softmax exploration strategy, we have to consider that mostly op-
timal behavior with occasional random explorations can still create chaotic
behavior due to frequent abortions of speech acts. To counter that, we cre-
ate a certain small amount of sessions in which the exploration probability
is globally set to zero.

Cognitive Urges

To generate plausible user behavior, it is crucial to define an appropriate
reward function for the user agent. What the user desires is dependent on
the state of the interaction, but also on the inner state of the user and his or
her individual preferences. For example, a user under high mental workload
may be less interested in non-crucial information than a user who is less busy
and may welcome an entertaining interaction. It is clear that a reward which
reflects a large set of desires cannot be defined as a monolithic function.

Instead, we calculate the weighted sum of the output of multiple reward
functions. Each of those represents a single requirement the user has for
a satisfying interaction. Different reward functions may be orthogonal or
even adversarial to each other. For example, the desire to maintain a low
mental workload favors other actions than the desire to acquire additional
information by maximizing the interaction efficiency. To find a cognitively
valid structure of reward functions, we resort to the concept of urges as
defined by Dérner [DSS99] in his cognitive W-architecture. We adapt this
concept to the domain of conversational interaction systems. An urge models
one unique fundamental need of an agent and should be as universal as
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possible for the application in information-providing interaction systems. For
the tourguide application, we define the following urges: The most general
desire in this context is the information urge, i.e. the desire to acquire more
information. It is determined by calculating the sum of importance scores
for all chunks, weighted by the corresponding interest value. Additionally,
the activation grounding urge is the user’s desire to reduce the perceived
discrepancy between his or her own mental state and the mental model he
or she believes the system has of him or her. This would enable the system
to provide more suited information. Formally, we model this urge as the
discrepancy between 0®-order model and 2"-order model in activation by
calculating a sum of weighted differences between importance scores. The
interest grounding urge does the same for interest scores. All three urges
can be seen as a specialization of Dorner’s cognitive urges which describe the
desire for competence and a reduction of uncertainty.

In addition, there is the urge that controls the need to obey social conventions
in spoken interactions (in analogy to Dérner’s social urges), i.e. to follow the
common rules of interaction: turntaking, finishing utterances, etc. As the
agents initially do not know anything about appropriate behavior in dialog,
they have to learn it with the help of adequate reward functions, which are
combined in the social urge. Each of those functions rewards or punishes a
specific behavior in the interaction. Examples for those kinds of behavior are
a penalty for aborting unfinished utterances, a penalty for barge-in, reward
for respecting the turn order, etc. This urge allows both participants to show
compliant dialog behavior. Due to the modular urge structure, agents are still
able to break the learned social rules when necessary, e.g. when an emergency
forces the immediate abortion of an utterance. Finally, there is a workload
reduction urge (corresponding to Dorner’s urge of energy preservation) which
targets a low workload of the user.

Modularization

A learning algorithm for interaction strategies in dynamic environments faces
the problem of a large state and action space. A larger number of dimensions
comes with exponentially growing need for training episodes to still guarantee
convergence to a local maximum. In addition, larger state and action spaces
become difficult to store in computer memory. We deal with this situation
by decomposing the learning task into smaller modules. Each module is im-
plemented as its own RL-agent. All modules which belong to the simulated
are combined to one meta-agent (and likewise for the system). The urge
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concept introduced in the previous paragraph induces a natural structure for
this modularization. Each module is associated with its own reward function
and a separate view on the state and action space. This way, the module only
sees those parts of the state and action space which are relevant for its own
task defined by the reward function. To determine the action of an agent, its
observed state and its available action set are mapped into the reduced state
and action space of each module. The modules then consult their own scoring
tables and the scores for each action are accumulated over all modules. This
approach is similar to the “greatest mass” algorithm [Kar97]. Each module is
associated with a weight that determines the influence of the corresponding
module on the decision process. Each module can also maintain a separate
set of learning parameters (e.g. learning rate or discount factor) to account
for the fact that the learning problems of different modules may be of dif-
ferent complexity and set on different time scales (e.g. some work on action
level and some on speech act level). Our current implementation contains
several mapping mechanisms to offer full flexibility in reducing the state and
action space. This includes complete removal of irrelevant attributes (e.g. the
workload attribute of the dialog state for the module handling turn order),
transforming an attribute to a coarser granularity by identifying certain at-
tributes with each other (e.g. by collapsing a 5-point scale to a 3-point scale)
and conditional mappings to preserve more details for certain critical states
or actions and remove them for the rest. A configuration file allows the
simple definition of which attributes and mapping rules belong to a certain
module, which reward rules apply and how the default learning parameters
are defined. Note that the modularization concept does not imply that indi-
vidual cognitive concepts are treated in isolation. For example, the module
which corresponds to the “information urge” retrieves user state information
on memory activation and on the workload level.

4.7.5 Utterance Selection

The action selection process for both system and simulated user consists of
two intertwined steps: An action is selected using the RL-based mechanism
(as described in the previous subsection) and in addition, a concrete realiza-
tion of the speech act to which the action belongs is selected in form of an
utterance (for example, “This restaurant serves affordable French cuisine” is
an utterance which realizes the speech act give_information). For a given
speech act, we define an optimality criterion that defines the best match-
ing utterance in the current context. For example, the optimality criterion
for utterances belonging to the give_information speech act is maximum
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importance of the memory items associated with the utterance. Evaluating
these criteria for all eligible utterances (see below for a definition of eligi-
bility) of a speech act, the optimal utterance is selected. The selection of
the speech act itself is then performed by the RL-based speech act selection,
which uses condensed information on the selected utterance for each speech
act (e.g. a score representing the goodness of the best utterance). This in-
formation is propagated by the utterance selection to the RL-based speech
act selection in form of state variables.

Before the speech act specific utterance selection process starts, we perform
a pre-selection to identify the eligible utterances for each agent (system or
user). We exclude those utterances that do not contain any item with context
activation® as those do not refer to any item that was part of the (subjective)
discourse of the agent. We further exclude utterances that do not have
context activation for memory items that are marked as mandatory context
referents for the given utterance (e.g. “tower” in the utterance “How high is
this tower?”). After this pre-selection, only utterances that are valid within
the current context are considered, which simplifies the later steps of the
selection process.

We now present the agent-specific methods of utterance selection for speech
acts in the tourguide domain for both system and simulated user.

System Utterance Selection

The primary goal of the utterance selection of the system is to find an ut-
terance that is both interesting to the user and relevant given the current
estimated configuration of the user’s memory model. This is exactly the
definition of interest and importance as given in Section 4.7.2. The system
therefore iterates over all utterances remaining after the pre-selection and
calculates the expected reduction of the information urge (see Section 4.7.4)
which would take place when the corresponding utterance is processed by
the user. This leads to selection of utterances that target relations that have
high spreading activation (because they are relevant in the current context),
low base activation (because they are new to the user) and a high interest
score. The utterance with highest reduction is selected. When multiple ut-
terances share the highest score, one of those utterances is selected randomly.
The information on information urge reduction is then stored in a state vari-

8i.e. base activation or spreading activation
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able which is used by the RL module which corresponds to the “information
urge”.

User Utterance Selection

For a simulated user, the goal of utterance selection is different from that of
the system: The user has to enable the system to derive the most relevant
and interesting information by sending cues on their own memory configu-
ration. Therefore, it is the user’s goal to reduce the mismatch between the
own memory and their belief on the model configuration the system has of
his memory. This corresponds to the “activation grounding urge” and the
“interest grounding urge”. In our implementation, the user has two speech
acts available to achieve this goal: ask most_important selects an utterance
that asks a question on one or more concepts in the domain and mainly con-
veys information on the importance of certain items. The utterances can be
generic (e.g. “What do you know about that tower?”) or specific in nature
(e.g. “Who is the architect of this tower?”) and are tagged with the chunks in
the knowledge base that are associated with this chunk. The second speech
act is give metainfo which yields information on the level of interest the
user has in a certain concept.

When the ask most_important speech act is selected, the simulation has to
determine the optimal utterance given the current memory configuration of
the user. The optimality criterion for the utterance selection of this speech
act is as follows: An utterance is optimal if it is associated to memory items
that are highly activated in the 0*'-order model but not in the 2"d-order
model. These items are witnesses for mismatch between user and system
memory model. Processing of an utterance which is associated to these
items will reduce this mismatch. This is because stimulating the items in the
0*-order model will increase activation from a low baseline, but stimulating
them in the 2"d-order model will increase activation only slightly from an
already high baseline. The reduction of mismatch is the essence of a ground-
ing process. Since the ask most_important utterances of the user do not
only convey information on importance but also on interest, the mismatch
reduction of each chunk is weighted by its interest score.

A similar principle applies to the give metainfo speech act. We select an
utterance that best fits the level of interest in the 0''-order model and for
which the difference between the actual interest and the expected interest in
the 2-order model is large. To break ties, the simulated user prefers positive
results, i.e. utterances that indicate strong interest.
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4.7.6 Evaluation

To demonstrate the feasibility of our approach, we resort to evaluation of
complete interactions by human judges. This idea has been introduced
by [ALO8] as an alternative to the prevalent family evaluation methods which
use similarity-based metrics to compare the generated interactions with ex-
isting corpora. The drawback of similarity-based approaches is that they
are very conservative in scenarios where many different interaction flows are
possible. Additionally, they require the existence of a data corpus in the
scenario which is identical to the simulated one. Using human judges for
evaluation circumvent both problems and target the goal of generating sub-
jectively plausible interactions.

Within the tourguide scenario, we generate interactions using the described
simulation framework, using a list of predefined timed context events (e.g.
POIls along the route or workload triggers). We use different setups of the
memory model and utterance generation to vary the interaction strategy for
comparison (see Table 4.19). The SM interaction was generated using a fully
trained strategy with activated memory model, corresponding to the setup
which would be applied for a cognitive interaction system. This interaction
is compared to two different baseline interactions. The first one, nSnM
was generated by using a completely random strategy and without memory
model. This resulted in an interaction with frequent barge-ins and chaotic
behavior. The second baseline, SnM, was generated by using a fully trained
strategy but also without memory model. This removed the ability for both
user and system to estimate whether additional information was useful and
which information was most relevant. The resulting interactions still have
a satisfying “surface structure”, but lack semantic coherence. The reason
for choosing two different baseline approaches was to differentiate between
effects by the interaction strategy and the memory model. The additional
baseline nSM was omitted because the use of a memory model would not
be beneficial without an optimized strategy: The memory model supports
optimal utterance selection but without optimal speech act selection, the
optimal utterances will not be propagated. As a gold standard, we use a
handcrafted “oracle” interaction HC that was designed specifically for the
scripted interaction context. Note that for better comparison, HC is limited
to the same set of utterances as the generated interactions but with manually
defined selection and timing.
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] Interaction Strategy \ Strategy \ Memory \
no strategy, no memory (nSnM) - -
strategy, no memory (SnM) + -
strategy, memory (SM) + +
handcrafted (HC) ++ ++

Table 4.19 — Characteristics of the different employed interaction strategies.

Example Interaction

Table 4.20 shows an example of a completely generated interaction using
the SM strategies for the system and the user trained in the described RL
framework. The example is set in the tourguide domain, where the simulated
driver rides through the fictional city Los Santos, passing several POIs. The
example lists the utterances generated by both agents as well as external
events that were triggered during the interaction and which influenced the
dialog flow. The example is translated from German so given timings are
only approximations.

The example demonstrates how a meaningful conversation emerges from
agents which start with no hardcoded knowledge on “adequate” interaction
behavior. With the help of the RL training and the implemented cogni-
tive models, they learned to take and finish their turns, respect a changing
workload level (e.g. when the user remains quiet during the difficult traf-
fic situation at time 28.0 to 58.0) and to produce utterances suited to the
context of the interaction.

Simulation Quality Assessment

The following list presents the (translated) questionnaire items for the evalu-
ation of the generated interactions. Many of the employed items relate to the
Gricean Maxims [Pau75]. Those maxims describe fundamental principles of
human communication based on the cooperative principle, regarding quality,
quantity, relevance and manner. Items marked with a star were added in a
second version of the questionnaire. They were included to cover for phe-
nomena which arise in the studied scenario but which are not handled by the
existing questions based on the Gricean Maxims. Each item was presented
with a 6-point scale ranging from 1 (=very poor) to 6 (=very good).

1. SYSTEM: Rating of the system’s interaction behavior:
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| Time (in s) |

Event/Utterance

6.0 Workload (caused by traffic)

8.5 Left!

16.0 POI (UFO restaurant)

16.0 Tell me something about this UFO!

19.5 This UFO actually contains
an exclusive restaurant.

22.5 Tell me something about this UFO!

25.5 The architect was inspired by an UFO,
which he saw crash in the nearby desert.

28.0 Steering (Left)

30.5 Workload (caused by traffic)

32.5 Please turn right.

40.0 Steering (Right)

40.0 Right!

42.0 POI (UFO restaurant)

55.0 The UFO restaurant was designed by
the famous architect Gonzales Sanchez.

58.0 Steering (Right)

60.0 How is this building called?

62.5 It is called the “Revolving UFO restaurant”.

64.0 Can I meet celebrities in the restaurant?

67.5 The singer Joe Brown is a regular guest here.

Table 4.20 — Excerpt of a generated interaction in the tourguide scenario
between simulated user and system. It contains external events (bold), user
utterances (italic) and system utterances (normal font).

(a) Appropriateness of the amount of presented information (e.g. as
much as necessary, as little as possible)

(b
(c
(

(e
(

Quality of the presented information

Relevance in context of the presented information

)
)

d) Manner of utterances and interaction behavior
) Respect to the changing workload of the user*
)

Intelligibility of the synthesized voice*

2. USER: Rating of the user’s interaction behavior:
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(a) Appropriateness of the amount of presented information (e.g. as
much as necessary, as little as possible)

(b) Quality of the presented information
(c¢) Relevance in context of the presented information
(d) Manner of utterances and interaction behavior
(e) Intelligibility of the synthesized voice*
3. OVERALL: Rating of the interaction overall:
(a) Coordination between system and user*
(b) Overall naturalness
(c) Overall quality

29 people (22 men and 7 women, all of them technical students of the Karls-
ruhe Institute of Technology) participated in the study as judges. Interac-
tions were generated in the simulation, then synthesized using Text-to-Speech
component with different voices for system and user. In the driving simulator
software?, we recorded a driving scene which corresponded to the scenario of
the interaction and which was synchronized with the triggered events. This
video was played to the judges in combination with the synthesized interac-
tion to create a realistic and multimodal experience for them.

Table 4.21 shows the scores for each of the interactions averaged for the
questions concerning the simulated driver, the system, the overall interac-
tion and for all questions. Multiple pairwise t-tests (corrected for multiple
testing) were performed to show that all four interactions differ in average
score significantly (p < 0.01). The order of the scores confirmed our expec-
tation that nSnM < SnM < SM < HC. It also demonstrates that while
SnM already performs significantly better than nSnM, SM is much closer
to HC in average score than to the baseline interactions. This shows that
our approach is able to generate meaningful and to some degree natural in-
teraction behavior. We also see that this result is accountable to both the
trained RL-based behavior used by SnM and SM and to the memory model
and the memory-based utterance selection which is only used by SM. A
correlation analysis between the scores for different items and the average
score shows that the mean correlation coefficient for the items concerning
the system (r = 0.72) is higher than the coefficient for items dealing with

9a modified version of Grand Theft Auto: San Andreas with the Multi Theft Auto
extension.
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the simulated user (r = 0.52). However, the strongest correlation (r = 0.84)
is for items that evaluate the interaction as a whole and rate naturalness
and coordination between both participants. This stresses the importance
of a joint development and evaluation of user simulation and system, as we
performed it in this section.

y | nSnM | SnM | SM | HC |

user 2.20 3.53 | 3.59 | 4.37
system 191 2.16 | 4.01 | 4.29
overall 1.14 1.86 | 3.45 | 3.79
average | 1.83 2.63 | 3.67 | 4.18

Table 4.21 — Averaged scores for 29 human judges, evaluating the different
simulation modes.

4.7.7 Conclusion

In this section, we saw how the systematic integration of computational cog-
nitive models can be employed for cognitive plausible dialog simulation. The
user simulation was evaluated in a tourguide scenario, which is character-
ized by a user’s dynamically changing cognitive state, for example caused by
external events which influence workload level and interaction context. The
user simulation includes 1) a model of memory activation and interest 2) a
multi-dimensional model of workload based on the Multiple-Resource-Model.
A hierarchy of model instances of different order was used to represent the
cognitive state of the simulated user as well as the indirect tracing of this cog-
nitive state by the interaction system. We showed how those cognitive models
can be used to generate system and user utterances which are plausible in the
context of interaction history and external events. The computational mod-
els where integrated in a joint strategy optimization based on Reinforcement
Learning for the system and the simulated user. The strategy optimization
uses the concept of cognitive urges to structure and reduce the state-action
space for optimization.

We demonstrated the plausibility of the simulation by having human judges
evaluate generated interactions by criteria of plausibility and well-formed
communication. To our best knowledge, this section presents the first result
to the research community on the usage of computational cognitive models in
statistical user simulation. It therefore provides to the research community
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a basis for the investigation of optimal adaptive system behavior in dynamic
interaction scenarios.

One limitation of the presented approach is that both the system and the
simulated user make use of the same memory model structure. While we
designed the simulation to maintain a hierarchy of separated models for user
and system, this design still introduces a bias for behavior which is tailored
towards the this specific model design. The focus of the presented evalua-
tion was on the plausibility of the generated interactions. This goal was not
jeopardized by the chosen design as the evaluation by human judges was com-
pletely oblique to the employed models. However, once the goal changes to
training strategies for optimal information throughput, the current approach
may be too optimistic regarding the grounding process between system and
user. To remedy this limitation, we suggest to perform an evaluation of the
trained systems with different user simulation approaches (following the idea
of [SSWYO05]) or to ultimately evaluate the trained strategies in a study with
real users.

The evaluation concentrated on the plausibility of the generated utterances
and while it addressed the appropriateness in reaction to changing workload
levels, it did not focus on the different aspects of the employed workload
model. This model bears much potential for future investigations. In sec-
tions 2.3 and 2.4, we showed empirical cognitive models for general workload
level and input modality discrimination. Both aspects of user state are re-
flected as dimensions in the workload model. Regarding both, the model
generates plausible and useful predictions, for example that it is beneficial to
resort to auditory system output when primarily visual secondary tasks are
executed (i.e. the resulting overall workload and the resulting failure prob-
abilities are lower). Still, the model guides us to more factors which are
relevant for the predicted behavior. For example, also the type of processing
code (i.e. spatial vs. verbal) influences the overall workload. This means,
for a complete model, not only the modality but also the type of processed
information should be available, to discriminate the visual processing of text
(verbal) from the visual processing of motion and position (spatial). We ex-
pect this differentiation to be challenging using EEG-based empirical models
only, as it requires information which is not clearly localized and easily acces-
sible. However, context information and other sensors might help to provide
this information.
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4.8 Discussion

In this chapter, we described the development of AIM, the adaptive inter-
action manager. The AIM integrates information from cognitive models to
adapt its interaction behavior to predictions on user states. To show the
versatility of this approach, we implemented and evaluated three different
applications regarding different aspects of adaptive interaction management:
adaptation of information presentation style, variable levels of intrusiveness,
and strategies for proactive recovery from recognition errors. As shown in
the related work section, adaptive interaction systems have been already in-
vestigated in the literature. However, most existing research concentrated
on traditional graphical user interfaces and investigated only task success
as quality metric. Our main focus and also our main contribution to the
research community is the extensive evaluation of multimodal adaptive sys-
tems by investigating both objective and subjective quality metrics. The
results from the conducted experiments show that with the methods de-
veloped in this thesis it is possible to create cognitive adaptive interaction
systems which provide a significant measurable benefit for the user compared
to non-adaptive interaction systems. However, we also saw that the impact
of an adaptation strategy strongly depends on its exact behavior. In Sec-
tions 4.5 and 4.6.2, we compared different adaptation strategies and showed
that even small differences in system behavior strongly influenced objective
and subjective performance measures. This implies that the development
of the adaptation strategy is a central research topic and not just an af-
terthought to cognitive modeling. This thesis provides fundamental findings
to this topic and lays an important foundation for future research.






CHAPTER 5

Conclusion

5.1 Discussion

In this thesis, we developed the general framework of adaptive cognitive in-
teraction systems. We showed the realization of such a system for several
user states, including mental workload, confusion, and memory. Every com-
ponent of an end-to-end implementation of an adaptive cognitive interaction
system was developed and thoroughly evaluated, in isolation and in combi-
nation with other components.

While some of the findings in this thesis are specific to the investigated sce-
narios and applications, we made a number of important and general findings
which will be relevant for future developments of adaptive cognitive interac-
tion systems. Many of the results of this thesis are to our best knowledge
completely new to the research community. In the following, we review the
key results:

Regarding empirical cognitive models, we explored several approaches to pro-
vide person-independent or person-adapted recognition of user states from
physiological sensors: We developed an empirical cognitive model for the
user state workload. We validated this on an exceptionally large data corpus
with multiple cognitive tasks which allowed us to test the model for differ-
ent definitions of workload, including task engagement, task count and task
difficulty. To classify the user state workload type, we developed and vali-
dated the first hybrid EEG-fNIRS passive BCI. For the user state confusion,
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we developed an EEG-based empirical model which reduced setup time by
training data selection and investigated transfer of classification models be-
tween tasks. All these contributions, which focus on short setup time and
evaluation in realistic scenarios, enable the application of empirical cognitive
models in the HCI context.

Regarding computational cognitive modeling, we provided and evaluated a
stand-alone dynamic memory model component for the prediction of associa-
tive memory processes in human-computer interaction. For the first time, we
demonstrated the successful modulation of computational models to different
workload levels. For this purpose, we compared two fundamentally different
approaches: The explicit overlay approach and the implicit dummy-model
approach. Each approach has its own advantages and drawbacks. Together,
both approaches form a toolbox to adapt the prediction of computational
cognitive models to different user states. To adapt the computational model,
real-time information on the user’s workload level is required. This informa-
tion can be provided by an empirical workload model. As another example
for the combination of a computational cognitive model with an empirical
cognitive model, we show how to predict a user state (learning situations)
which no single type of model was able to predict. The described contribu-
tions enable the application of computational cognitive models in the HCI
context which rich application domains and dynamically changing workload
levels.

Regarding interaction management, we implemented the light-weight adap-
tive interaction manager AIM which we used for the successful realization of
multiple adaptive cognitive interaction systems. Most of the developed com-
ponents — models and interaction systems — have been employed in several
different scenarios and provide important building blocks for rapid devel-
opment of end-to-end adaptive cognitive interaction systems. Using those
components, we were able to demonstrate significant, measurable benefit of
adaptive interaction behavior, considering system accuracy, efficiency and
user satisfaction. For the first time, we provided a systematic evaluation of
adaptive interfaces which does not only use objective quality criteria but also
of subjective quality criteria. When comparing strategies of different levels
of intrusiveness, we demonstrated that objective and subjective measures of
usability may be negatively correlated with regard to adaptive systems. We
also implemented the first error-aware gesture interface which compared dif-
ferent error recovery strategies. We showed that automatic error recovery
was able to reduce gesture recognition error rate and was preferred by the
users compared to manual correction.
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All those contributions show the importance of an integrated end-to-end per-
spective during the development of adaptive cognitive interaction systems:
For the development of empirical cognitive models, it was important to regard
the constraints which were imposed by the envisioned interactive application:
selection of relevant user states, required set-up time and computational com-
plexity, required classification accuracy to achieve a measurable benefit. For
the development of computational cognitive models, we had to regard the
implications by the HCI context: topic drifts in large application domains,
dynamically changing workload levels, existence of user states which could
not be captured by computational cognitive modeling alone. For the de-
velopment of adaptive interaction management, we had to investigate the
development of strategies which optimally map various detected user states
to system behavior. For all those reasons, we aimed for scientific contribu-
tions to all three aspects of adaptive cognitive interaction systems and our
results show that this endeavor was successful.

One major challenge of this work was the combination of methods and ter-
minology from machine learning, neuroscience, cognitive psychology and us-
ability research. We had to coin common terms for the components of an
adaptive cognitive interaction systems, define how the different user states
were represented within the various models, define the interactions between
those models and finally define the mappings of user states to behavior of an
interaction system. Another challenge of this work was the desired thorough
evaluation of the proposed methods in several user studies. For each building
block of an adaptive cognitive interaction system, we provided empirical data
and statistical analysis to investigate the reliability as well as the limitations
of the developed methods. Overall, recordings of more than 250 participants
have been conducted to collect data and to validate the created models. This
large number of participants indicates that we performed thorough testing
of the developed models and interaction systems with real users on large
corpora. We believe that this is an important feature of this thesis as it doc-
uments the high validity of the results and and shows that their dependency
on effects specific to certain individual recordings is small.

5.2 Future Work

While this work laid a solid foundation for the development of adaptive
cognitive interaction systems, there are still open research questions which
occurred during the creation of this thesis. The goal of this final section is
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to outline a number of directions for future research which naturally emerge
from the results of this thesis.

Regarding empirical cognitive models, one limitation of this work is that user
states and models were mostly investigated in isolation, i.e. there is for ex-
ample no interaction between the workload model and the confusion model.
However, we expect the combination of the already investigated user states
workload and confusion to to have a huge potential for improving the assess-
ment of the overall user state: On the one hand, high workload increases the
probability of errors (e.g. because input gestures are not executed as precisely
compared to low workload situations). On the other hand, high workload also
increases the probability of a user to miss the erroneous feedback caused by
misinterpreted input, which would result in the absence of an error potential
as marker for this error. A combined empirical model of those user states
could represent those dependencies and learn it from data.

One important future step regarding computational cognitive models would
be the development of additional models for certain executive functions for
the application in an HCI context. One crucial component would be a model
of visual perception. Information on user’s gaze is relevant for any task which
presents visual information to the user, for example for the myriad of graph-
ical user interfaces. There exist approaches for computational modeling of
gaze on a fine-grain level [DU07] as well as on a more strategically-abstract
level [BB11]. In [PHK'13], we showed how a combination of eyetracking
technology and EEG can be used for a completely automatic temporal-spatial
localization of attention of a person in a gaze-based attention task. As we
showed that the combination of empirical and computational cognitive mod-
eling can yield benefits which cannot achieved by either approach in isolation,
it seems both feasible and fruitful to also pursue this approach for models of
gaze and visual attention.

Regarding the evaluation of adaptive cognitive interaction systems, future
research should concentrate on extending the presented investigation in two
dimensions: Long-term evaluation of adaptive systems and investigation of
co-adaptation effects. First, the presented experiments were limited in time
during which the users were exposed to the system and the adaptive tech-
nology. Although each experiment contained training stages to help the user
familiarize with the system, learning effects are still likely to occur. More
importantly, user preferences regarding adaptive behavior could change over
time, because users get familiar with the effects of adaptation and learn to
better predict system behavior, which could lead to increased trust in the
decisions of the system. The second research direction we propose for inves-
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tigation is co-adaption [Mac00]. Co-adaptation occurs as a user’s reaction
to the changes in behavior of an adaptive system. Additionally, users do not
only react to the adaptive system, but also to the initial state which triggered
the adaptation. For example, in highly interactive HCI, a high workload state
will not only affect how the user processes the output of the system, but also
how the user generates input to the system. This has implications for the
optimal behavior of the system, which could for example involve switching
to a system initiative approach to reduce the user’s workload. The joint
strategy optimization in Section 4.7 is a first step in this direction and shows
how multi-agent learning can be used to simulate co-adaptation.
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