2,306 research outputs found

    Are all wetland models the same? Comparing wetland models and streamflow regulation of catchment-scale hydrological modelling tools under a changing climate

    Get PDF
    Comparing how wetlands are simulated in different hydrological modelling tools is needed to identify their suitability in different contexts. A simulated wetland will result in predictions of streamflow regulation, e.g., storing flood water and reducing high flows and releasing water in drier periods, which may or may not be realistic for a given area. Evaluating wetland models is critical for navigating the different types of physical wetlands with variable influences on streamflow, and the different simulated wetlands conceived in the plethora of modelling tools (i.e. software) available for use. A recent study found that sometimes wetlands are excluded from hydrological models used to inform water resource decisions. When wetlands are included in a hydrological model, few studies identify process similarities between the actual and modelled wetland or the realism of the modelled impacts of the wetland on streamflow before applying the model's output to water resource decisions. This research aims to identify and evaluate wetland characteristics, processes and impacts on catchment streamflow in different modelling tools and models (i.e. setups in a tool). Evaluating wetland models supports wetland-inclusive modelling and ensures that a wetland model is hydrologically sound and suitable. An unchannelled valley-bottom wetland located in the upper Kromme catchment, Eastern Cape, South Africa, was used. Wetland models were compared as independent units conceptually and as functional units within the catchment by modelling. First, using qualitative analysis, a conceptual assessment of wetland model structures in ACRU, WRSM-Pitman, MIKE SHE coupled with Hydro River and SWAT were considered in the context of the case study wetland. Second, using quantitative analysis, model outputs from wetland models in ACRU and WRSM-Pitman were assessed for model performance, behaviour and streamflow regulation during droughts and floods. The predicted impact of the wetland on catchment hydrology was determined from scenarios with and without a wetland and modelled wetland storage fluxes over the whole simulation period, four severe floods and three drought periods. The results from the qualitative and quantitative comparisons suggest that similarities between the physical and simulated wetland improves the likelihood of model suitability, good model performance and streamflow regulation predictions. Additionally, models setup for the same wetland with the same input data simulated potentially acceptable but different streamflow totals: for an observed total of 9.13 Mm3 ; WRSM-Pitman's comprehensive wetland simulated 10.64 Mm3 ; and from ACRU's riparian zone and wetland HRU's simulated 11.31 Mm3 and 8.89 Mm3 , respectively. Modelled actual evapotranspiration was underestimated by the riparian zone wetland (946.08 mm), overestimated in the comprehensive wetland model (2 054.80 mm) and moderately similar in the wetland HRU when compared with remotely-sensed data (1 520.30 mm). During extreme events, all models simulated flood attenuation while drought responses were variable (two wetland models predicted streamflow attenuation). By implication, the results suggest that good model performance does not guarantee the simulation of expected streamflow regulation roles recorded in literature. Furthermore, variable water yields and wetland impacts from the models demonstrated the possibility for different modelling efforts to result in different water supply, use and conservation measures. The study highlights the importance of contextualising model output for catchments with wetlands before applying the simulations to impact assessments or future climate scenarios

    The agricultural impact of the 2015–2016 floods in Ireland as mapped through Sentinel 1 satellite imagery

    Get PDF
    peer-reviewedIrish Journal of Agricultural and Food Research | Volume 58: Issue 1 The agricultural impact of the 2015–2016 floods in Ireland as mapped through Sentinel 1 satellite imagery R. O’Haraemail , S. Green and T. McCarthy DOI: https://doi.org/10.2478/ijafr-2019-0006 | Published online: 11 Oct 2019 PDF Abstract Article PDF References Recommendations Abstract The capability of Sentinel 1 C-band (5 cm wavelength) synthetic aperture radio detection and ranging (RADAR) (abbreviated as SAR) for flood mapping is demonstrated, and this approach is used to map the extent of the extensive floods that occurred throughout the Republic of Ireland in the winter of 2015–2016. Thirty-three Sentinel 1 images were used to map the area and duration of floods over a 6-mo period from November 2015 to April 2016. Flood maps for 11 separate dates charted the development and persistence of floods nationally. The maximum flood extent during this period was estimated to be ~24,356 ha. The depth of rainfall influenced the magnitude of flood in the preceding 5 d and over more extended periods to a lesser degree. Reduced photosynthetic activity on farms affected by flooding was observed in Landsat 8 vegetation index difference images compared to the previous spring. The accuracy of the flood map was assessed against reports of flooding from affected farms, as well as other satellite-derived maps from Copernicus Emergency Management Service and Sentinel 2. Monte Carlo simulated elevation data (20 m resolution, 2.5 m root mean square error [RMSE]) were used to estimate the flood’s depth and volume. Although the modelled flood height showed a strong correlation with the measured river heights, differences of several metres were observed. Future mapping strategies are discussed, which include high–temporal-resolution soil moisture data, as part of an integrated multisensor approach to flood response over a range of spatial scales

    Adaptive Water Management-land Use Practice for Improving Ecosystem Services – a Hungarian Modelling Case Study

    Get PDF
    During the 20th century in the Hungarian lowlands the emphasis was put on maximizing provisioning ecosystem services (ES), which caused the weakening of regulating and other services. With the growing environmental pressures, it is crucial to apply a more adaptive landscape management. This, however, leads to territorial conflicts, as large areas with water-tolerant land cover (i.e., wetlands, meadows, riparian forests) are needed to buffer extreme hydrological events.We present some findings of the WateRisk project, a research that focused on the possible solutions of these conflicts. In a scenario-based case study, we analyze the outlined issue for the Szamos-Kraszna Interfluve, a 510 km2 lowland catchment heavily affected by excess water. Scenarios were evaluated with an integrated methodology that focuses on the water budget and the total values of ES. The efficiency of the drainage network was found to be minor/moderate as it provided only -1–5% reduction in the spatial extents of inundations, and it contributed only ~20% to the elimination of water coverage. Furthermore, comparing the present (defense-focused) and the alternative (water retention focused) scenarios, the latter turned out to provide higher monetary value for the summed individual and social benefits of ES. This underlines the need for extensive adaptive measures in both water management and landscape planning to create resilience and the ability to cope with contemporary environmental challenges

    The integration of remotely sensed data into a watershed modeling approach to characterize winter cover crop nitrate uptake function and wetland inundation at the landscape scale

    Get PDF
    The Chesapeake Bay (CB) is the largest and most productive estuary in the United States (US), supporting more than 3,600 species of plants and animals (CEC, 2000). Degrading water quality of the CB estuaries requires implementing conservation practices to reduce excessive nutrients loads from agricultural lands. The role of both winter cover crops (WCCs) and wetland restoration and enhancement in reducing agricultural nutrient loads on the Coastal Plain of the Chesapeake Bay Watershed (CBW) has been widely recognized. In order to effectively reduce nutrient loads using two conservation practices, it is important to understand their long-term, cumulative impacts at the watershed scale. A watershed modeling approach has been recommended to simulate the cumulative effects of conservation practices on nutrient loads at the watershed scale. When using a watershed modeling approach, accurate characterization of physical processes of conservation practices within a modeling context and consideration of multiple stressors (e.g., climate change and human activities) are critical for obtaining reliable information. This dissertation has sought to characterize and evaluate the long-term impacts of WCCs and wetlands on hydrology and water quality at the watershed scale, using a watershed modeling approach in conjunction with remotely sensed data. The WCCs are planted during winter fallow seasons to absorb residual soil nitrate. The WCC nitrate uptake capacity is dependent on its biomass as soil nitrate is being converted to WCC biomass. The WCC growth was first estimated using landscape-level biomass observations derived from remotely sensed data and field measurements to accurately represent WCC nitrate uptake efficiency. Then, the long-term effect of WCC on nitrate loads was evaluated at the watershed scale by considering WCC planting methods, soil properties, and crop rotations. The simulation results represent the typical growth pattern of WCCs observed in this region, and demonstrate the most effective WCC implementation method for enhanced WCC water quality benefits, regarding local characteristics. Inundation is a key abiotic factor characterizing wetland ecosystem functions including water purification. Thus, the accurate prediction of the spatial distribution of inundation can indicate the capacity of wetlands to remove nutrient loads at the local landscape scale. An integrated wetland-watershed modeling approach is presented to show how remotely sensed data can be used to improve spatial prediction of wetland inundation while reducing prediction uncertainty. The simulation results demonstrate that the model prediction with wetland parameters derived from remotely sensed data accurately replicates the observed spatial inundation pattern. These findings provide useful information for identifying the locations in need of wetland restoration and enhancement. A watershed modeling approach that incorporated remotely sensed data accurately demonstrates the effective way to implement WCCs and wetland restoration and enhancement for reducing agricultural nutrient loads. Therefore, this dissertation would contribute to achieving nutrient reduction goals of the CB

    Distributed hydrological modelling and application of remote sensing data

    Get PDF

    Soil erosion in the Alps : causes and risk assessment

    Get PDF
    The issue of soil erosion in the Alps has long been neglected due to the low economic value of the agricultural land. However, soil stability is a key parameter which affects ecosystem services like slope stability, water budgets (drinking water reservoirs as well as flood prevention), vegetation productivity, ecosystem biodiversity and nutrient production. In alpine regions, spatial estimates on soil erosion are difficult to derive because the highly heterogeneous biogeophysical structure impedes measurement of soil erosion and the applicability of soil erosion models. However, remote sensing and geographic information system (GIS) methods allow for spatial estimation of soil erosion by direct detection of erosion features and supply of input data for soil erosion models. Thus, the main objective of this work is to address the problem of soil erosion risk assessment in the Alps on catchment scale with remote sensing and GIS tools. Regarding soil erosion processes the focus is on soil erosion by water (here sheet erosion) and gravity (here landslides). For these two processes we address i) the monitoring and mapping of the erosion features and related causal factors ii) soil erosion risk assessment with special emphasis on iii) the validation of existing models for alpine areas. All investigations were accomplished in the Urseren Valley (Central Swiss Alps) where the valley slopes are dramatically affected by sheet erosion and landslides. For landslides, a natural susceptibility of the catchment has been indicated by bivariate and multivariate statistical analysis. Geology, slope and stream density are the most significant static landslide causal factors. Static factors are here defined as factors that do not change their attributes during the considered time span of the study (45 years), e.g. geology, stream network. The occurrence of landslides might be significantly increased by the combined effects of global climate and land use change. Thus, our hypothesis is that more recent changes in land use and climate affected the spatial and temporal occurrence of landslides. The increase of the landslide area of 92% within 45 years in the study site confirmed our hypothesis. In order to identify the cause for the trend in landslide occurrence time-series of landslide causal factors were analysed. The analysis revealed increasing trends in the frequency and intensity of extreme rainfall events and stocking of pasture animals. These developments presumably enhanced landslide hazard. Moreover, changes in land-cover and land use were shown to have affected landslide occurrence. For instance, abandoned areas and areas with recently emerging shrub vegetation show very low landslide densities. Detailed spatial analysis of the land use with GIS and interviews with farmers confirmed the strong influence of the land use management practises on slope stability. The definite identification and quantification of the impact of these non-stationary landslide causal factors (dynamic factors) on the landslide trend was not possible due to the simultaneous change of several factors. The consideration of dynamic factors in statistical landslide susceptibility assessments is still unsolved. The latter may lead to erroneous model predictions, especially in times of dramatic environmental change. Thus, we evaluated the effect of dynamic landslide causal factors on the validity of landslide susceptibility maps for spatial and temporal predictions. For this purpose, a logistic regression model based on data of the year 2000 was set up. The resulting landslide susceptibility map was valid for spatial predictions. However, the model failed to predict the landslides that occurred in a subsequent event. In order to handle this weakness of statistic landslide modelling a multitemporal approach was developed. It is based on establishing logistic regression models for two points in time (here 1959 and 2000). Both models could correctly classify >70% of the independent spatial validation dataset. By subtracting the 1959 susceptibility map from the 2000 susceptibility map a deviation susceptibility map was obtained. Our interpretation was that these susceptibility deviations indicate the effect of dynamic causal factors on the landslide probability. The deviation map explained 85% of new independent landslides occurring after 2000. Thus, we believe it to be a suitable tool to add a time element to a susceptibility map pointing to areas with changing susceptibility due to recently changing environmental conditions or human interactions. In contrast to landslides that are a direct threat to buildings and infrastructure, sheet erosion attracts less attention because it is often an unseen process. Nonetheless, sheet erosion may account for a major proportion of soil loss. Soil loss by sheet erosion is related to high spatial variability, however, in contrast to arable fields for alpine grasslands erosion damages are long lasting and visible over longer time periods. A crucial erosion triggering parameter that can be derived from satellite imagery is fractional vegetation cover (FVC). Measurements of the radiogenic isotope Cs-137, which is a common tracer for soil erosion, confirm the importance of FVC for soil erosion yield in alpine areas. Linear spectral unmixing (LSU), mixture tuned matched filtering (MTMF) and the spectral index NDVI are applied for estimating fractional abundance of vegetation and bare soil. To account for the small scale heterogeneity of the alpine landscape very high resolved multispectral QuickBird imagery is used. The performance of LSU and MTMF for estimating percent vegetation cover is good (r²=0.85, r²=0.71 respectively). A poorer performance is achieved for bare soil (r²=0.28, r²=0.39 respectively) because compared to vegetation, bare soil has a less characteristic spectral signature in the wavelength domain detected by the QuickBird sensor. Apart from monitoring erosion controlling factors, quantification of soil erosion by applying soil erosion risk models is done. The performance of the two established models Universal Soil Loss Equation (USLE) and Pan-European Soil Erosion Risk Assessment (PESERA) for their suitability to model erosion for mountain environments is tested. Cs-137 is used to verify the resulting erosion rates from USLE and PESERA. PESERA yields no correlation to measured Cs-137 long term erosion rates and shows lower sensitivity to FVC. Thus, USLE is used to model the entire study site. The LSU-derived FVC map is used to adapt the C factor of the USLE. Compared to the low erosion rates computed with the former available low resolution dataset (1:25000) the satellite supported USLE map shows “hotspots” of soil erosion of up to 16 t ha-1 a-1. In general, Cs-137 in combination with the USLE is a very suitable method to assess soil erosion for larger areas, as both give estimates on long-term soil erosion. Especially for inaccessible alpine areas, GIS and remote sensing proved to be powerful tools that can be used for repetitive measurements of erosion features and causal factors. In times of global change it is of crucial importance to account for temporal developments. However, the evaluation of the applied soil erosion risk models revealed that the implementation of temporal aspects, such as varying climate, land use and vegetation cover is still insufficient. Thus, the proposed validation strategies (spatial, temporal and via Cs-137) are essential. Further case studies in alpine regions are needed to test the methods elaborated for the Urseren Valley. However, the presented approaches are promising with respect to improve the monitoring and identification of soil erosion risk areas in alpine regions

    Remote sensing based assessment of land cover and soil moisture in the Kilombero floodplain in Tanzania

    Get PDF
    Wetlands provide important ecological, biological, and social-economic services that are critical for human existence. The increasing demand for food, arable land shortage and changing climate conditions in East Africa have created a paradigm shift from upland cultivation to wetland use due to their year-round soil water availability. However, there is need to control and manage the activities within the wetlands to ensure sustainable use while negating any negative effects caused by these activities. This is implemented through the decisions made by the land managers within the wetlands. Providing the users of the wetlands with scientific knowledge acts as a support tool for policy-making geared towards the sustainable use of the wetlands. The overall research contains two main components: First, the need for timely land cover maps at a reasonable scale, and secondly, the assessment of soil moisture as a major contributor to agricultural production. The objectives of the study were to generate land cover maps from multi-sensor optical datasets and to assess the performance of single-polarized Sentinel-1 Gray Level Co-occurrence Matrix (GLCM) texture and Principal Component Analysis (PCA) features by applying multiple classification algorithms in a floodplain in the Kilombero catchment. Furthermore, soil moisture spatial-temporal patterns over three hydrological zones was assessed, estimation of soil moisture from radar data and generation of soil moisture products from global products was investigated. The correlation of the merged products to Normalized Difference Vegetation Index (NDVI) measures was also investigated. RapidEye, Sentinel-2 and Landsat images were used in determining the areal extents of four major land cover classes namely vegetated, bare, water and built up. The acquisition period of the images ranges from August 2013 to June 2015 for the RapidEye images, December 2015 to August 2016 for the Sentinel-2 images and 2013 to 2016 Landsat-8 images were included in the land cover time series dynamic study. However, the major challenge arising was cloud coverage and hence Sentinel-1 images were tested in the application of Synthetic Aperture Radar (SAR) in wetland mapping. Variograms were used in spatial-temporal assessment of soil moisture data collected from three hydrological zones, riparian, middle and fringe. A roughness parameter was derived from a semi-empirical model. Soil moisture was retrieved from TerraSAR-X and RadarSAT-2 with the retrieved roughness parameter as an input in a linear regression equation. Triple collocation was applied in error assessment of the global soil moisture products prior to development of a merged product. Cross-correlation was applied in relating NDVI to soil moisture. Optical data (RapidEye, Landsat-8, and Sentinel-2) generated land cover maps used in assessing the land cover dynamics over time. The land cover ratios were related to depth to groundwater. As the depth to groundwater reduced in June the bare land coverage was 45-57% while that of vegetation was 34-47%. In December when the depth to groundwater was highest, bare land coverage was 62-69% while that of the vegetated area was 27-25%. This indicates that depth of groundwater and vegetation coverage responds to seasonality. During the dry season, 68-81% of the total vegetation class is within the riparian zone. In the classification of the SAR images, the overall accuracies for the single polarized VV images ranged from 54-76%, 60-81% and 61-80% for Random Forest (RF), Neural Network (NN) and Support Vector Machine (SVM) respectively. GLCM features had overall accuracies of 64-86%, 65-88% and 65-86% for RF, NN, and SVM respectively. PCA derived images had similar overall accuracies of 68-92% for NN, RF, and SVM respectively. The PCA images had the highest overall accuracy for the entire time series indicating that reduction in the number of texture features to layers containing the maximum variance improves the accuracy. The standard deviation of soil moisture was noted to increase with increasing soil moisture. Soil texture plays a key role in soil moisture retention. The riparian fields had a high water content explained by the high clay and organic matter content. A roughness parameter was derived and utilized in the retrieval of soil moisture from SAR resulting to R2 of 0.88- 0.92 between observed and simulated soil moisture values from co-polarized RadarSAT-2 HH and TerraSAR-X HH and VV. Merged soil moisture product from FEWSNET Land Data Assimilation System_NOAH (FLDAS_NOAH), ECMWF Re-Analysis Interim (ERA-Interim) and Soil Moisture and Ocean Salinity (SMOS) and FLDAS_Variable Infiltration Capacity (VIC), ERA-Interim and SMOS had similar patterns attributed to FLDAS_NOAH and FLDAS_VIC forced by the same precipitation product (RFE). Cross-correlation of Moderate-resolution Imaging Spectrometer (MODIS) NDVI and the merged soil moisture products revealed a 2-month lag of NDVI. Hence, the relationship is useful in determining the Start of Season from soil moisture products. In conclusion, the successful land cover mapping of the study area demonstrated the use of satellite imagery for wetland characterization. The vast coverage and frequent acquisitions of optical and microwave remotely sensed data additionally make the approaches transferable to other locations and allow for mapping at larger scales. Soil moisture assessment from point data revealed varied soil moisture patterns whereas global remotely sensed and modeled products rather provide complementary information about growing conditions, and hence a situational assessment tool of potential of physical availability dimension of food security. This study forms a baseline upon which additional monitoring and assessment of the Kilombero wetland ecosystem can be performed with the current results marked as a reference. Moreover, the study serves as a demonstration case of remote sensing based approaches for land cover and soil moisture mapping, whose results are useful to stakeholders to aid in the implementation of adapted production techniques for yield optimization while minimizing the unsustainable use of the natural resources.Feuchtgebiete erbringen wichtige ökologische, biologische und sozial-ökonomische Dienstleistungen, welche entscheidend für das menschliche Dasein sind. Der steigende Bedarf an Nahrung, der Mangel an landwirtschaftlichen Nutzflächen und die Veränderung der klimatischen Bedingungen in Ostafrika haben zu einem Paradigmenwechsel vom Anbau im Hochland hin zur Nutzung von Feuchtgebieten geführt. Allerdings sind Kontrolle und Management der Aktivitäten in Feuchtgebieten notwendig, um die nachhaltige Nutzung zu sichern und negative Effekte dieser Aktivitäten zu vermeiden. Die Implementierung erfolgt durch die Landverwalter in den Feuchtgebieten. Den Nutzern von Feuchtgebieten wissenschaftliche Erkenntnisse bereitzustellen dient als Hilfsmittel zur politischen Entscheidungsfindung für die nachhaltige Feuchtgebietsnutzung. Die Forschung im Rahmen der Dissertation beinhaltet zwei Hauptkomponenten: erstens den Bedarf an aktuellen Landbedeckungskarten auf einer angemessenen Skalenebene und zweitens die Erfassung der Bodenfeuchte als wichtiger Einflussfaktor auf die landwirtschaftliche Produktion. Das Ziel der Untersuchung war, Landbedeckungskarten auf Grundlage von multisensorischen optischen Daten zu erstellen und die Eignung der Textur der einfach polarisierten Sentinel-1 Grauwertmatrix (GLCM) sowie der einer Hauptkomponentenanalyse (PCA) bei Anwendung unterschiedlicher Klassifikationsalgorithmen zu beurteilen. Des Weiteren wurden raum-zeitliche Bodenfeuchtemuster über drei hydrologische Zonen hinweg modelliert, die Bodenfeuchte aus Radardaten abgeleitet sowie die Erstellung von Bodenfeuchteprodukten auf Basis von globalen Produkten untersucht. Die Korrelation der Bodenfeuchteprodukte mit dem Normalisierten Differenzierten Vegetationsindex (NDVI) wurde ebenfalls analysiert. RapidEye, Sentinel-2 und Landsat Bilder wurden genutzt um die räumliche Ausdehnung der vier Hauptklassen (Vegetation, freiliegender Boden, Wasser und Bebauung) der Landbedeckung zu ermitteln. Für die Zeitreihenanalyse der der Landbedeckungsdynamik wurden RapidEye-Daten von August 2013 bis Juni 2015, Sentinel-2-Bilder von Dezember 2015 bis August 2016 und Landsat-8-Bilder von 2013 bis 2016 verwendet. Die größte Herausforderung war jedoch die Wolkenbedeckung, weshalb die Anwendung von Synthetic Aperture Radar (SAR) für die Feuchtgebietskartierung getestet wurde. Die gemessene Bodenfeuchte wurde mittels Variogrammen für die drei hydrologischen Zonen (Uferzone, Mitte und Randgebiete) raum-zeitlich interpoliert. Ein Rauhigkeitsparameter wurde aus einem semi-empirischen Modell hergeleitet. Die Bodenfeuchte wurde aus TerraSAR-X und RadarSAT-2- Bildern unter Verwendung des Rauhigkeitsparameters als Eingangsgröße in einer linearen Regression abgeleitet. Vor der Zusammenführung der Produkte wurde das globale Bodenfeuchteprodukt mithilfe von dreifacher Kollokation auf Fehler überprüft. Die Kreuzkorrelation zwischen NDVI und Bodenfeuchte wurde berechnet. Optische Daten (RapidEye, Landsat-8 und Sentinel-2) wurden genutzt, um die zeitliche Dynamik der Landbedeckung zu bestimmen. Die Landbedeckungsverhältnisse wurde mit der Höhe des Grundwasserspiegels korreliert. Ein hoher Grundwasserstand im Juni resultierte in 45-57% unbedecktem Boden, während der Anteil der Vegetation 34-47% betrug. Im Dezember, als der Grundwasserspiegel seinen Tiefststand hatte, erhöhte sich der Anteil des freiliegenden Bodens auf 62-69% und der Anteil der Vegetation verringerte sich auf 27-25%. Das zeigt, dass Grundwasserspiegel und Vegetation saisonalen Schwankungen unterworfen sind. Während der Trockenzeit liegen 68-81% der gesamten als Vegetation klassifizierten Fläche innerhalb der Uferzone. In der Klassifikation der SAR-Bilder liegt die Gesamtgenauigkeit der einfach polarisierten VV-Bilder im Rahmen von 54-76%, 60-81% und 61-80%, entsprechend für Random Forest (RF), Neuronale Netze (NN) und Support Vector Machine (SVM). Die GLCM ergab eine Gesamtgenauigkeit von 64-86%, 65-88% und 65-86% für RF, NN und SVM. Die über eine PCA abgeleiteten Bilder erreichten eine ähnliche Genauigkeit von 68-92% für NN, RF und SVM. Die PCA-Bilder weisen die höchste Gesamtgenauigkeit der gesamten Zeitreihe auf, was darauf hinweist, dass eine Reduktion von Textureigenschaften auf Layer der maximalen Varianz enthalten, die Genauigkeit erhöht. Die Standardabweichung der Bodenfeuchte stieg mit zunehmender Bodenfeuchte. Die Bodentextur spielt dabei eine Schlüsselrolle für das Wasserhaltevermögen des Bodens. Die Uferzone wies einen hohen Wassergehalt auf, was durch den hohen Anteil von Ton und Humus zu erklären ist. Die beobachteten und simulierten Bodenfeuchtewerte von co-polarisierten RadarSAT-2 HH, TerraSAR-X HH und VV Daten korrelieren mit einem R2 von 0.88 - 0.92. Die zusammengesetzten globalen Bodenfeuchteprodukte von FLDAS_NOAH, ERA-Interim sowie SMOS und FLDAS_VIC, ERA-Interim und SMOS zeigen ähnliche Muster wie FLDAS_NOAH und FLDAS_VIC, was über die Verwendung desselben Niederschlagsproduktes (RFE) zu erklären ist. Die Kreuzkorrelation von MODIS NDVI und den zusammengeführten Bodenfeuchteprodukten ergab eine zeitliche Verzögerung des NDVI von zwei Monaten. Dieser Zusammenhang kann daher bei der Bestimmung des Saisonbeginns aus Bodenfeuchtigkeitsprodukten nützlich sein. Zusammengefasst hat die Studie gezeigt, wie Satellitenbilder zur Charakterisierung von Wetlands genutzt werden können. Die große Abdeckung und häufige Aufnahme der optischen und Mikrowellen-Fernerkundungsdaten ermöglichen darüber hinaus die Übertragung der Ansätze auf weitere Gebiete und Kartierung auf größeren Skalen. Die Punktmessungen zeigen kleinräumige Muster der Bodenfeuchte, während globale Fernerkundungsprodukte und Modelle Informationen über die Wachstumsbedingungen liefern und somit ein Bewertungsinstrument der Ernährungssicherheit darstellen können. Weiterhin bildet die Studie eine Basis, auf der ein weitergehendes Monitoring und eine Bewertung des Feuchtgebietsökosystems durchgeführt werden kann. Sie ist ein Beispiel für fernerkundungsbasierte Ansätze zur Landbedeckungs- und Bodenfeuchtekartierung; ihre Ergebnisse sind nützlich, um Akteuren bei der Implementierung von Produktionstechniken zu unterstützen, welche die Erträge maximieren und gleichzeitig die nicht nachhaltige Nutzung der natürlichen Ressourcen minimieren

    Improving spatial resolution in soil and drainage data to combine natural and anthropogenic water functions at catchment scale in agricultural landscapes

    Get PDF
    Discrepancies in time-space representation of indata and calibration/validation data obstructs analysis of hydrological processes thatlink natural and anthropogenic water infrastructure in catchments and landscapes. To improve indata for hydrological- and modelling of the soil-plant-atmosphere-continuum, this paper presents a high-resolution dataset of hydrological functions in the agricultural landscape of Tidan, Sw Sweden. We firstly address spatial representation of soil physical parameters, describing soil water flows and storage. Secondly, we derive tile drainage datasets from historical maps. Lastly, we explore delineation and spatial location of streams, ditches and waterbodies to improve description of water connectivity. The new soil datasets with top- and subsoil descriptions varied in depicting the sensitivity of saturated hydraulic conductivity and water holding capacity. The most representative soil map showed moderate (34%) - to very rapid (21%) saturated hydraulic conductivity, water holding capacity below 40 mm 10 cm−1 (94%) and a dry bulk density ranging between 1.2 and 1.8 g cm−3 (71%). The digitalization of drained fields suggests that 69% of the arable fields are under tile drainage, dominated by sandy loam, loam and clay loam. The combined stream network resulted in 5350 km of streams and ditches, + 14% km and + 129%, respectively, compared to available best resolution datasets. Landscape surface water storage increased with a small addition (+ 6439 m3 storage potential) compared to previously available datasets. The improved descriptors of natural and anthropogenic flow and storage can potentially serve to improve water quantity and quality modelling under current and future climate- and hydrological changes
    corecore