5 research outputs found

    D6.1: Technologies and Tools for Lexical Acquisition

    Get PDF
    This report describes the technologies and tools to be used for Lexical Acquisition in PANACEA. It includes descriptions of existing technologies and tools which can be built on and improved within PANACEA, as well as of new technologies and tools to be developed and integrated in PANACEA platform. The report also specifies the Lexical Resources to be produced. Four main areas of lexical acquisition are included: Subcategorization frames (SCFs), Selectional Preferences (SPs), Lexical-semantic Classes (LCs), for both nouns and verbs, and Multi-Word Expressions (MWEs)

    A clustering approach to automatic verb classification incorporating selectional preferences: model, implementation, and user manual

    Get PDF
    This report presents two variations of an innovative, complex approach to semantic verb classes that relies on selectional preferences as verb properties. The underlying linguistic assumption for this verb class model is that verbs which agree on their selectional preferences belong to a common semantic class. The model is implemented as a soft-clustering approach, in order to capture the polysemy of the verbs. The training procedure uses the Expectation-Maximisation (EM) algorithm (Baum, 1972) to iteratively improve the probabilistic parameters of the model, and applies the Minimum Description Length (MDL) principle (Rissanen, 1978) to induce WordNet-based selectional preferences for arguments within subcategorisation frames. One variation of the MDL principle replicates a standard MDL approach by Li and Abe (1998), the other variation presents an improved pruning strategy that outperforms the standard implementation considerably. Our model is potentially useful for lexical induction (e.g., verb senses, subcategorisation and selectional preferences, collocations, and verb alternations), and for NLP applications in sparse data situations. We demonstrate the usefulness of the model by a standard evaluation (pseudo-word disambiguation), and three applications (selectional preference induction, verb sense disambiguation, and semi-supervised sense labelling)

    Learning of a multilingual bitaxonomy of Wikipedia and its application to semantic predicates

    Get PDF
    The ability to extract hypernymy information on a large scale is becoming increasingly important in natural language processing, an area of the artificial intelligence which deals with the processing and understanding of natural language. While initial studies extracted this type of information from textual corpora by means of lexico-syntactic patterns, over time researchers moved to alternative, more structured sources of knowledge, such as Wikipedia. After the first attempts to extract is-a information fromWikipedia categories, a full line of research gave birth to numerous knowledge bases containing information which, however, is either incomplete or irremediably bound to English. To this end we put forward MultiWiBi, the first approach to the construction of a multilingual bitaxonomy which exploits the inner connection between Wikipedia pages and Wikipedia categories to induce a wide-coverage and fine-grained integrated taxonomy. A series of experiments show state-of-the-art results against all the available taxonomic resources available in the literature, also with respect to two novel measures of comparison. Another dimension where existing resources usually fall short is their degree of multilingualism. While knowledge is typically language agnostic, currently resources are able to extract relevant information only in languages providing highquality tools. In contrast, MultiWiBi does not leave any language behind: we show how to taxonomize Wikipedia in an arbitrary language and in a way that is fully independent of additional resources. At the core of our approach lies, in fact, the idea that the English version of Wikipedia can be linguistically exploited as a pivot to project the taxonomic information extracted from English to any other Wikipedia language in order to have a bitaxonomy in a second, arbitrary language; as a result, not only concepts which have an English equivalent are covered, but also those concepts which are not lexicalized in the source language. We also present the impact of having the taxonomized encyclopedic knowledge offered by MultiWiBi embedded into a semantic model of predicates (SPred) which crucially leverages Wikipedia to generalize collections of related noun phrases to infer a probability distribution over expected semantic classes. We applied SPred to a word sense disambiguation task and show that, when MultiWiBi is plugged in to replace an internal component, SPred’s generalization power increases as well as its precision and recall. Finally, we also published MultiWiBi as linked data, a paradigm which fosters interoperability and interconnection among resources and tools through the publication of data on the Web, and developed a public interface which lets the users navigate through MultiWiBi’s taxonomic structure in a graphical, captivating manner
    corecore