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Chapter 1

Introduction

In recent years, the computational linguistics community has developed an impressive number
of semantic verb classifications, i.e., classifications that generalise over verbs according to their
semantic properties. Intuitive examples of such classifications are the MOTION WITH A VEHI-
CLE class, including verbs such as drive, fly, row, etc., or the BREAK A SOLID SURFACE WITH
AN INSTRUMENT class, including verbs such as break, crush, fracture, smash, etc. Semantic
verb classifications are of great interest to computational linguistics, specifically regarding the
pervasive problem of data sparseness in the processing of natural language. Up to now, such clas-
sifications have been used in applications such as word sense disambiguation (Dorr and Jones,
1996; Kohomban and Lee, 2005), machine translation (Prescher et al., 2000; Koehn and Hoang,
2007), document classification (Klavans and Kan, 1998), and in statistical lexical acquisition in
general (Rooth et al., 1999; Merlo and Stevenson, 2001; Korhonen, 2002; Schulte im Walde,
20006).

Given that the creation of semantic verb classifications is not an end task in itself, but depends
on the application scenario of the classification, we find various approaches to an automatic in-
duction of semantic verb classifications. For example, Siegel and McKeown (2000) used several
machine learning algorithms to perform an automatic aspectual classification of English verbs
into event and stative verbs. Merlo and Stevenson (2001) presented an automatic classification of
three types of English intransitive verbs, based on argument structure and heuristics to thematic
relations. Pereira et al. (1993) and Rooth et al. (1999) relied on the Expectation-Maximisation
algorithm to induce soft clusters of verbs, based on the verbs’ direct object nouns. Similarly,
Korhonen et al. (2003) relied on the Information Bottleneck (Tishby et al., 1999) and subcate-
gorisation frame types to induce soft verb clusters.

This report presents two variations of an innovative, complex approach to semantic verb classes
that relies on selectional preferences as verb properties. The underlying linguistic assumption for
this verb class model is that verbs which agree on their selectional preferences belong to a com-
mon semantic class. The model is implemented as a soft-clustering approach, in order to capture
the polysemy of the verbs. The training procedure uses the Expectation-Maximisation (EM)
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algorithm (Baum, 1972) to iteratively improve the probabilistic parameters of the model, and
applies the Minimum Description Length (MDL) principle (Rissanen, 1978) to induce WordNet-
based selectional preferences for arguments within subcategorisation frames. One variation of
the MDL principle replicates a standard MDL approach by Li and Abe (1998), the other variation
presents an improved pruning strategy that outperforms the standard implementation consider-
ably. Our model is potentially useful for lexical induction (e.g., verb senses, subcategorisation
and selectional preferences, collocations, and verb alternations), and for NLP applications in
sparse data situations. We demonstrate the usefulness of the model by a standard evaluation
(pseudo-word disambiguation), and three applications (selectional preference induction, verb
sense disambiguation, and semi-supervised sense labelling).

The report is structured as follows. We first introduce the two versions of our clustering model,
accompanied by the evaluation and the applications (Chapter 2). The other main parts of the
report cover details of the implementation (Chapter 3), and a user manual (Chapter 4).



Chapter 2

Clustering Model

2.1 Verb Class Model

2.1.1 Probabilistic Model

Our probabilistic model of verb classes groups verbs into clusters with similar subcategorisa-
tion frames and similar selectional preferences. Verbs may be assigned to several clusters (soft
clustering) which allows the model to describe the subcategorisation properties of several verb
readings separately. The number of clusters is defined in advance, but the assignment of the
verbs to the clusters is learnt during training. It is assumed that all verb readings belonging to
one cluster have similar subcategorisation and selectional properties. The selectional preferences
are expressed in terms of semantic concepts from WordNet, rather than a set of individual words.
Finally, the model assumes that the different arguments are mutually independent for all subcate-
gorisation frames of a cluster. From the last assumption, it follows that any statistical dependency
between the arguments of a verb has to be explained by multiple readings.

The statistical model is characterised by the following equation which defines the probability of

a verb v with a subcategorisation frame f and arguments ay, ..., ay,:

p(v, fra, - ang) = D p(c) p(vle) p(fle) l_fll ZI;WIC; f1) plailr)

The model describes a stochastic process which generates a verb-argument tuple like (speak,
subj-pp.to, professor, audience) by

1. selecting some cluster c, e.g. ¢ (which might correspond to a set of communication verbs),
with probability p(cs3),

2. selecting a verb v, here the verb speak, from cluster c; with probability p(speak|cs),

3
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3. selecting a subcategorisation frame f, here subj-pp.to, with probability p(subj-pp.to|cs),
(Note that the frame probability only depends on the cluster, and not on the verb.)

4. selecting a WordNet concept r for each argument slot, e.g. person for the first slot with
probability p(person|cs, subj-pp.to, 1) and social group for the second slot with probability
p(social group|cs, subj-pp.to, 2),

5. selecting a word a; to instantiate each concept as argument 7; in our example, we might
choose professor for person with probability p(professor|person) and audience for social
group with probability p(audience|social group).

The model contains two hidden variables, namely the clusters c and the selectional preferences
r. In order to obtain the overall probability of a given verb-argument tuple, we have to sum over
all possible values of these hidden variables.

The assumption that the arguments are independent of the verb given the cluster is essential for
obtaining a clustering algorithm because it forces the EM algorithm to make the verbs within a
cluster as similar as possible.! The assumption that the different arguments of a verb are mutually
independent is important to reduce the parameter set to a tractable size.

The fact that verbs select for concepts rather than individual words also reduces the number of
parameters and helps to avoid sparse data problems. In order to find the right level of specifity for
the concepts used as selectional preferences, we apply the Minimum Description Length (MDL)
principle (Rissanen, 1978) , cf. Section 2.1.3.

The probabilities p(r|c, f, i) and p(a|r) mentioned above are not directly estimated. Instead, we
follow the approach by Abney and Light (1999) and turn WordNet into a Hidden Markov model
(HMM). We create a new pseudo-concept for each WordNet noun and add it as a hyponym
to each synset containing this word. In addition, we assign a probability to each hypernymy—
hyponymy transition, such that the probabilities of the hyponymy links of a synset sum up to 1.
The pseudo-concept nodes emit the respective word with a probability of 1, whereas the regular
concept nodes are non-emitting nodes. The probability of a path in such a WordNet HMM is
the product of the probabilities of the transitions within the path. The probability p(a|r) is then
defined as the sum of the probabilities of all paths from the concept r to the word a in the
“back-off” model. There is only one back-off model for these slot-independent argument head
probabilities p(a|r). Similarly, we create a separate partial WordNet HMM for each argument
slot (c, f,7) which encodes the selectional preferences of that slot. The HMM contains only
nodes for the WordNet concepts that the slot selects for, and the dominating concepts. The
probability p(r|c, f, i) is the total probability of all paths from the top-most WordNet concept
entity to the terminal node r.

'The EM algorithm adjusts the model parameters in such a way that the probability assigned to the training
tuples is maximised. Given the model constraints, the data probability can only be maximised by making the verbs
within a cluster as similar to each other as possible, regarding their required arguments.
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By combining slot-specific probability models p(r|c, f, ) for selectional preferences which are
expressed as WordNet concepts with a general probability model p(a|r) for the realisation of
concepts by nouns, we can exactly model the selectional preferences of each slot and — at the
same time — generalise over the individual words observed in the training data.

2.1.2 EM Training

The clustering model is trained on verb-argument tuples of the form described above, i.e., con-
sisting of a verb and a subcategorisation frame, plus the nominal® heads of the arguments. The
tuples may be extracted from parsed data, or from a treebank. Because of the hidden variables,
the model is trained iteratively with the Expectation-Maximisation algorithm (Baum, 1972). The
parameters are randomly initialised and then re-estimated with the Inside-Outside algorithm (Lari
and Young, 1990) which is an instance of the EM algorithm for training Probabilistic Context-
Free Grammars (PCFGs).

The PCFG training algorithm is applicable here because we can define a PCFG for each of our
models which generates the same verb-argument tuples with the same probability. The PCFG is
defined as follows:

(1) The start symbol is TOP.
(2) For each cluster ¢, we add a rule TOP — V. A, whose probability is p(c).
(3) For each verb v in cluster ¢, we add a rule V. — v with probability p(v|c).

(4) For each subcategorisation frame f of cluster c with length n, we add arule A, — fR. 11 entity
.. R, .n,entity With probability p( f|c).

(5) For each transition from a node r to a node 7’ in the selectional preference model for slot i of
the subcategorisation frame f of cluster ¢, we add arule R f; » — R. ;;,» whose probability
is the transition probability from r to ’ in the respective WordNet-HMM.

(6) For each terminal node r in the selectional preference model, we add a rule R, f;, — R,
whose probability is 1. With this rule, we “jump” from the selectional preference model to
the corresponding node in the a priori model.

(7) For each transition from a node 7 to a node r’ in the a priori model, we add a rule R, — R,
whose probability is the transition probability from 7 to 7’ in the a priori WordNet-HMM.

(8) For each word node a in the a priori model, we add a rule R, — a whose probability is 1.

Based on the above definitions, a partial “parse” for (speak subj-pp.to professor audience), re-
ferring to cluster 3 and one possible WordNet path, is shown in Figure 2.1. The connections
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'I'rs/mp\z-’ls
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Figure 2.1: Example parse tree.

within R3 (R3,...,entity_R3,...,person/g’r‘oup) and within R (Rperson/group_Rprofessor/audience) refer to
sequential applications of rule types (5) and (7), respectively.

The EM training algorithm maximises the likelihood of the training data.

2.1.3 MDL Principle

A model with a large number of fine-grained concepts as selectional preferences assigns a higher
likelihood to the training data than a model with a small number of more coarse-grained concepts,
because the larger number of parameters will better model idiosyncracies of the training data.
Consequently, the EM algorithm will prefer very fine-grained concepts and — due to sparse data
problems — will overfit the training data. In order to find selectional preferences with optimal
granularity, we apply the Minimum Description Length principle, an approach from Information
Theory. According to the MDL principle, the model with minimal description length should
be chosen. The description length itself is the sum of the model length and the data length.
The model length is the number of bits needed to encode the model and its parameters, and
the data length is the number of bits required to encode the training data with the given model.
According to coding theory, an optimal encoding uses —logsp bits, on average, to encode data
whose probability is p. Usually, the model length increases and the data length decreases as
more parameters are added to a model. The MDL principle finds a compromise between the
size of the model and the accuracy of the data description. Our selectional preference model
incorporates two variants of the MDL principle to determine selectional preferences of verbs and
their arguments, by means of a concept hierarchy ordered by hypernym/hyponym relations. The

%In principle, any word classes that are covered by WordNet could be included, but the taxonomy for the nouns is
the most elaborated, so arguments with lexical heads other than nouns (e.g., subcategorised clauses) are not included
in the selectional preference induction.
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two variants are described below. Both models use WordNet 3.0 as the concept hierarchy, and
comprise one (complete) back-off WordNet model for the lexical head probabilities p(a|r) and
one (partial) model for each selectional probability distribution p(r|c, f, ), cf. Section 2.1.1.

MDL Model 1: Node Pruning Strategy (NPS)

Our first selectional preference model relies on a standard approach by Li and Abe (1998). Given
a set of nouns within a specific argument slot as a sample, the approach finds the cut in a concept
hierarchy which minimises the sum of encoding both the model and the data. A cut is defined as
a set of concepts (nodes) in the concept hierarchy that defines a partition of the “leaf” concepts
(the lowest concepts in the hierarchy), viewing each concept in the cut as representing the set of
all leaf concepts it dominates. Because the cut represents a partition of the hierarchy, a concept
node that is decided to be expanded/pruned, can only be expanded/pruned by all of its hyponym:s.
This is the core difference to Model 2 (see below), where all hyponyms of a concept node are
considered individually when they are expanded or pruned.

The model length (ML) is defined as
k
ML= 5 * loga |S],

with & the number of concepts in the partial hierarchy between the top concept and the concepts
in the cut, and |S| the sample size, i.e., the total frequency of the data set. The data length (DL)
is defined as

DL = - logs p(n).

nes

The probability of a noun p(n) is determined by dividing the total probability of the concept class
the noun belongs to, p(concept), by the size of that class, |concept|, i.e., the number of nouns
that are dominated by that concept:

plconcept
p(n) = |< )
concept|
The higher the concept within the hierarchy, the more nouns receive an equal probability, and the
greater is the data length.

The probability of the concept class in turn is determined by dividing the frequency of the concept
class f(concept) by the sample size:

f(concept)

p(concept) = TS

where f(concept) is calculated by upward propagation of the frequencies of the nominal lexemes
from the data sample through the hierarchy. For example, if the nouns coffee, tea, milk appeared
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with frequencies 25, 50, 3 within a specific argument slot, then their hypernym concept beverage
would be assigned a frequency of 78, and these 78 would be propagated further upwards to the
next hypernyms, etc. As a result, each concept class is assigned a fraction of the frequency of the
whole data set (and the top concept receives the total frequency of the data set). For calculating
p(concept) and the overall data length, though, only the concept classes within the cut through
the hierarchy are relevant.

MDL Model 2: Edge Pruning Strategy (EPS)

The edge pruning strategy (EPS) differs from the node pruning strategy (NPS) in three ways:

e NPS either prunes all edges of a concept node or none, whereas EPS allows the different
edges of a concept node to its hyponyms to be pruned individually.

Take the GermaNet concept (Tier) (animal) as an example, which has 16 hyponyms,
among them (Futtertier) (food animal) and (Wildtier) (wild animal). With NPS, we
cannot have a transition from (T"ier) to (Wildtier) in the selectional preference model
without also having transitions to all the other hyponyms. With EPS, we can.

e NPS makes the simplifying assumption that all nouns covered by some selectional prefer-
ence concept have the same probability (i.e. p(dog|(animal)) = p(W eimaraner|{animal))).
EPS instead assumes (in accordance with the clustering model) that the nouns are dis-
tributed according to the back-off distribution p(a|r). This allows EPS to use more general
concepts as selectional preferences than NPS when the concept contains both frequent and
infrequent nouns. NPS overestimates in this case the data description length and prunes
too cautiously.

e NPS assumes that all transition probabilities are stored with the same precision (i.e. num-
ber of bits), which only depends on the size of the training corpus. EPS assumes that the
precision of the transition probabilities depends on the frequency of the respective hyper-
nym concept, i.e. the probabilities of transitions from frequent concepts are assumed to be
stored with a higher precision than the probabilities of transitions from infrequent nodes.?
This means that EPS prunes transitions from infrequent nodes less aggressively than NPS.

In the following, we describe how the model description length and the data description length
change when an additional transition (edge) from a hypernym to a hyponym is added.

Adding a new transition £ from hypernym s, to hyponym ?;, increases the model length by:

AY =1 +1log, M + 0.51og, N.

3Parameter estimates for edges originating from frequent nodes are more reliable and therefore it makes sense to
use a higher precision.
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log, M bits (where M is the number of hyponyms of sj) are needed to identify the hyponym to
which the transition leads*. 0.5log, N bits (where N is the frequency of s;) are used to store
the probability of the transition, and 1 bit is required to indicate that the (new) target node is a
terminal node.’

The new transition changes the probability of the transition s; — t;. When the transition £ is
missing in the selectional preference model, we use the probability p;' of this transition in the
back-off model instead. The back-off probability is scaled by the back-off factor « in order to
ensure that the probabilities of all transition from s; sum up to 1. After adding transition & to
the selectional preference model, we use a relative frequency estimate fﬁk instead of the back-off
probability.

Poid(Sk — th) = Qold p,‘?
E
N

fr 1s the estimated frequency of the transition according to the E step of the EM algorithm.

pnew(sk - tk) =

Adding transition k changes the back-off factor a and therefore the probabilities of the pruned
transitions as follows:

Poid(s; = ;) = Qoua pf
pnew(sj - t]) = Opew ij
Overall adding transition k decreases the data length by:
A];? = fk(logpnew(sj - tj) - 1ngold(3k — tk)) + Z fj(logpnew(sj - tj) - logpold(sj — tj))
JEE,
Jr

= frlog————5+ > fjlog

Olnew
Na : Q
old Py, JEE) old

where £y is the set of pruned transitions at sy.

The total change in description length caused by adding transition £ is the difference between the
change in model description length and the change in data description length A — AP Since
we use MDL for pruning, we remove a transition if the difference is positive.

2.14 Combining EM and MDL

The training procedure combines the EM training with the MDL principle. In the following, we
summarise the interaction with respect to the two MDL models.

“We have to store a number in the range 1...M which requires [logs M| bits. We ignore the ceiling operation in
our formula for simplicity.

3This extra bit is not needed if the target node is already part of the selectional preference model. We ignore this
for simplicity.
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MDL Model 1: Node Pruning Strategy (NPS)

1. The probabilities of a verb class model with c classes and a pre-defined set of verbs and
frames are initialised randomly. The selectional preference models start out with the most
general WordNet concept only, i.e., the partial WordNet hierarchies underlying the proba-
bilities p(r|c, f, ) initially only contain the concept r for entity.

2. The model is trained for a pre-defined number of iterations. In each iteration, not only
the model probabilities are re-estimated and maximised (as done by EM), but also the cuts
through the concept hierarchies that represent the various selectional preference models
are re-assessed. In each iteration, the following steps are performed.

(a)

(b)

(c)

(d)

The partial WordNet hierarchies that represent the selectional preference models are
expanded to include the hyponyms of the respective leaf concepts of the partial hier-
archies. lL.e., in the first iteration, all models are expanded towards the hyponyms of
entity, and in subsequent iterations each selectional preference model is expanded to
include the hyponyms of the leaf nodes in the partial hierarchies resulting from the
previous iteration. This expansion step allows the selection models to become more
and more detailed, as the training proceeds and the verb clusters (and their selectional
preferences) become increasingly specific.

The training tuples are processed: For each tuple, a PCFG parse forest as indicated
by Figure 2.1 is done, and the Inside-Outside algorithm is applied to estimate the
frequencies of the “’parse tree rules”, given the current model probabilities.

The MDL principle is applied to each selectional preference model: Starting from
the respective leaf concepts in the partial hierarchies, MDL is calculated to compare
each set of hyponym concepts that share a hypernym with the respective hypernym
concept. If the MDL is lower for the set of hyponyms than for the hypernym, the
hyponyms are left in the partial hierarchy. Otherwise the expansion of the hypernym
towards the hyponyms is undone and we continue recursively upwards the hierar-
chy, calculating MDL to compare the former hypernym and its co-hyponyms with
the next upper hypernym, etc. The recursion allows the training algorithm to remove
nodes which were added in earlier iterations and are no longer relevant. It stops if the
MDL is lower for the hyponyms than for the hypernym.

This step results in selectional preference models that minimally contain the top con-
cept entity, and maximally contain the partial WordNet hierarchy between entity and
the concept classes that have been expanded within this iteration.

The probabilities of the verb class model are maximised based on the frequency esti-
mates obtained in step (b).
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MDL Model 2: Edge Pruning Strategy (EPS)

The model using the edge pruning strategy (EPS) is basically trained in the same way as the
NPS model, with one important difference. The NPS model actually removes pruned transitions
during training and uses the back-off probability for pruned transitions in the next iteration.
This makes it difficult for the model to learn the selectional preferences because most of the
information learned about the differences between the selectional preferences of two clusters is
wiped out by the pruning at the end of each iteration.

There are two different EPS versions: EPS-a prunes in the same ways as NPS and replaces the
probabilities of pruned links with the respective back-off probabilities during training. EPS-b
preserves the probabilities of those pruned links which will be reinserted in the expansion step
of the next training iteration. These are links originating from nodes with at least one unpruned
incoming link.

2.1.5 Related Work

Our model is an extension of and thus most closely related to the latent semantic clustering
(LSC) model (Rooth et al., 1999) for verb-argument pairs (v, a) which defines their probability
as follows:

p(v,a) = p(c) p(v|c) p(alc)

In comparison to our model, the LSC model only considers a single argument (such as direct
objects), or a fixed number of arguments from one particular subcategorisation frame, whereas
our model defines a probability distribution over all subcategorisation frames. Furthermore, our
model specifies selectional preferences in terms of general WordNet concepts rather than sets of
individual words.

In a similar vein, our model is both similar and distinct in comparison to the soft clustering
approaches by Pereira et al. (1993) and Korhonen et al. (2003). Pereira et al. (1993) suggested
deterministic annealing to cluster verb-argument pairs into classes of verbs and nouns. On the
one hand, their model is asymmetric, thus not giving the same interpretation power to verbs and
arguments; on the other hand, the model provides a more fine-grained clustering for nouns, in
the form of an additional hierarchical structure of the noun clusters. Korhonen et al. (2003) used
verb-frame pairs (instead of verb-argument pairs) to cluster verbs relying on the Information
Bottleneck (Tishby et al., 1999). They had a focus on the interpretation of verbal polysemy as
represented by the soft clusters. The main difference of our model in comparison to the above
two models is, again, that we incorporate selectional preferences (rather than individual words,
or subcategorisation frames).

In addition to the above soft-clustering models, various approaches towards semantic verb clas-
sification have relied on hard-clustering models, thus simplifying the notion of verbal polysemy.
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Two large-scale approaches of this kind are Schulte im Walde (2006), who used k-Means on
verb subcategorisation frames and verbal arguments to cluster verbs semantically, and Joanis
et al. (2008?), who applied Support Vector Machines to a variety of verb features, including
subcategorisation slots, tense, voice, and an approximation to animacy. To the best of our knowl-
edge, Schulte im Walde (20006) is the only hard-clustering approach that previously incorporated
selectional preferences as verb features. However, her model was not soft-clustering, and she
only used a simple approach to represent selectional preferences by WordNet’s top-level con-
cepts, instead of making use of the whole hierarchy and more sophisticated methods, as in the
current paper.

Last but not least, there are other models of selectional preferences than the MDL model we used
in our paper. With a recent exception (Erk, 2007), whose selectional preference model exploits
similarity-based models, Most such models also rely on the WordNet hierarchy (Resnik, 1997,
Abney and Light, 1999; Ciaramita and Johnson, 2000; Clark and Weir, 2002). Brockmann and
Lapata (2003) compared some of the models against human judgements on the acceptability of
sentences, and demonstrated that the models were significantly correlated with human ratings,
and that no model performed best; rather, the different methods are suited for different argument
relations.

2.2 Evaluation

The clustering model in its two variants is generally applicable to all languages for which Word-
Net exists, and for which the WordNet functions provided by Princeton University are available.
In our first experiments, we choose English as a case study, and evaluate the model variants by
pseudo-word disambiguation. Within the applications of our model (cf. Section 2.3), we build
models for English and for German.

2.2.1 Experiment Setup

The first experiments were meant to explore the general potential of our approach, and to test
and compare the various parameters the models provide. All models in this experiment series
rely on corpus data from the British National Corpus (BNC, 1995). The training and test data
were obtained by parsing the BNC corpus with a simple PCFG grammar (Carroll and Rooth,
1998) and extracting tuples containing verbs, frames and argument nouns, consisting of the tuple
frequency, a verb, a frame, and a noun for each of the frame’s slots. Here are some example
tuples:

54 begin subj work
21 expect subj:to one find
22 hear subj:obj lord prayer
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21 occur subj:pp—-in message area
21 remain subj:ap question unanswered

We took only active clauses into account, and disregarded auxiliary and modal verbs as well as
particle verbs, leaving a total of 4,852,371 Viterbi parses. Those input tuples were then divided
into 90% training data and 10% test data, providing 4,367,130 training tuples (over 2,769,804
types), and 485,241 test tuples (over 368,103 types).

As we wanted to train and assess our verb class model under various conditions, we used different
fractions of the training data in different training regimes. Due to time and memory constraints,
we only used those training tuples that appeared at least twice, i.e., with at least two tokens.
But for comparison reasons we also trained a selection of models including input tuples with
a frequency of 1. Furthermore, we disregarded tuples with personal pronoun arguments; they
are not represented in WordNet, and even if they are added (e.g., to general concepts such as
person, entity) they have a rather destructive effect. We eliminated tuples with nouns which are
not represented in WordNet. Since we have no smoothing for unknown verbs, we restricted the
test data to verbs that also occurred in the training data.

Most importantly for the number of training tuples, we considered two subsets of 10 and 20
subcategorisation frames. The frame types were chosen according to their overall frequency in
the training data. Table 2.1 shows the 20 most frequent frames ordered by frequency. A frame
lists its arguments, separated by a colon ’:’.

When relying on theses 10/20 subcategorisation frames, plus including the above preferences,
we are left with 51,569/55,980 training tuples, respectively. The overall number of training tuple
types is therefore much smaller than the generally available data. The corresponding numbers
including tuples with a frequency of one are 671,461 and 815,553.

In addition to the above parameters, the experiments varied the number of clusters, using 20,
50, and in some non-memory-restricted cases also 100 clusters. Concerning the iterations over
the training tuples, we used up to 50 iterations, and output the model probabilities after each 5th
iteration, in order to check how the model developed within the training. The simplest model was
even trained over 200 iterations, to get a more complete picture. Furthermore, we tried different
seeds to initialise the random number generator for the initial probabilities in the EM training,
using 10 different seed values. Last but not least, EPS provides a variant called vp that assumes
for the sake of the computation of the model length that the probabilities (whose Maximum
Likelihood Estimate is given by %) are stored with —0.5 log N bits rather than a fixed 32 bit
precision (which is the default).

2.2.2 Pseudo-Word Disambiguation

Pseudo-word disambiguation is a popular evaluation method for selectional preference models.
Its origins trace back to word sense disambiguation (WSD) where an efficient evaluation method
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subj:obj

subj

subj:ap
subj:to
subj:obj:obj
subj:obj:pp-in
subj:adv
subj:pp-in
subj:vbase
subj:that
subj:pp-to
subj:vger
subj:s
subj:obj:to
subj:obj:adv
subj:pp-on
subj:obj:pp-for
subj:obj:pp-to
subj:pp-with
subj:pp-at

Table 2.1: 20 most frequent frames.
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was desired that does not rely on hand-annotated test data. Thus, Schiitze (1992) and Gale et al.
(1992) independently developed an evaluation where a WSD algorithm was presented with a
sentence in which all instances of a specific word are replaced by a confounder. The pair of the
original word and its replacement is called a pseudo-word. The method was later adapted for
selectional preferences by Dagan et al. (1999). Here, either the predicate or one of its arguments
are replaced with a confounder. For example, if eat/fly is a pseudo-word, all occurrences of eat
are replaced by fly. The verb-argument pairs

(2.1) eat apple and

(2.2) fly apple

are an example for such a replacement. Using this test set, a selectional preference model can
be evaluated by presenting it with both the original sequence and the sequence that contains the
confounder. The accuracy of an algorithm is the number of times the original is preferred by it
in relation to the size of the test set. We express this through the following equation:

A number of correct choices + 0.5 x number of ties
B number of tuples in test set

The main benefit of pseudo-word disambiguation is that no manual annotation is needed. The
test data can be generated automatically under the condition that a list of pseudo-words can can
be provided. Such a list can be obtained in various ways. As Chambers and Jurafsky (2010)
suggests, a nearest frequency approach is the fairest way of choosing them.

First, we count each verb’s occurrence in the corpus. We then sort the resulting list of verbs by
frequency. Finally, we generate pseudo-words by assigning each verb the next frequent one as its
confounder. The most frequent word does not receive a confounder that way and is thus excluded
from the experiment.

Chambers and Jurafsky (2010) additionally notes that the results of pseudo-word disambiguation
experiments vary depending on whether unseen data is used. For data that occurred in the training
set, a simple baseline of conditional probabilities can be sufficient to beat more complicated
selectional preference models. In our experiment, none of the test data was seen during training.
Also, as suggested by the authors, no verbs were excluded from the test set.

Experimental Setup

For our experiments, the BNC training and test data as described in Section 2.2.1 was used.



16 CHAPTER 2. CLUSTERING MODEL

The following parameters of the predicate argument clustering model are evaluated: (i) the num-
ber of iterations, (ii) the number of clusters, (iii) the MDL parameter w, (iv) the effect of the
exclusion of tuples with frequency 1 in the training data, (v) the exclusion of infrequent frames,
(vii) the use of the vp option, and (viii) the seed value for the random initialisation of the EM
training.

We compare some of our models with corresponding latent semantic clustering (LSC) models
and a simple frequency based baseline model. This models tries to identify the original tuple
by taking only the verb and its confounder (v and v’) and the subcategorisation frame (f) into
account. Based on this data, the original is identified according to the algorithm in Figure 2.2.

if ¢((v, f)) > 0orc((¢', f)) > 0 then
if ¢((v, f)) > c((¢', f)) then
return v
else
return v’
end if
else if ¢(v') > c(v) then
return v’
else
return v

end if

Figure 2.2: Baseline algorithm based on verbs subcategorisation frames.

Results

Our main experiments in which all available methods are compared, the following parameters
are tested:

e 10 and 20 frames
e 20, 50, and 100 clusters

the vp option for EPS
e MDL weights w =1 and w = 0.5

e minimum training data thresholds of 1 and 2

In the experiments with a frequency threshold of 1, the EPS-b model with 100 clusters outper-
forms all other models including the baseline when using 10 frames. With 20 frames, the baseline
is equal to the EPS models. When removing items with a frequency of 1 from the training data,
the baseline clearly outperforms all other models.
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| method | min_freq | frames | clusters [ vp || 5] 10] 15] 20 25] 30 35[ 40| 45] 50
LSC 2 10 20 - 59.89 | 60.90 | 60.35 | 60.41 | 60.22 | 59.91 | 60.22 | 59.97 | 59.94 | 59.86
NPS 2 10 20 - 51.45 | 51.80 | 51.45 | 53.22 | 52.21 | 52.24 | 54.42 | 54.13 | 54.16 | 54.79
EPS-a 2 10 20 no 48.58 | 57.25 | 5790 | 58.69 | 59.05 | 58.26 | 58.56 | 58.52 | 58.16 | 58.20
EPS-a 2 10 20 yes || 48.77 | 56.00 | 58.43 | 59.15 | 59.80 | 59.51 | 59.96 | 59.87 | 59.54 | 59.57
EPS-b 2 10 20 no 48.64 | 56.43 | 57.64 | 58.52 | 58.59 | 59.47 | 58.49 | 58.26 | 58.72 | 58.49
EPS-b 2 10 20 yes || 48.71 | 55.87 | 57.54 | 58.46 | 57.84 | 57.74 | 57.58 | 57.13 | 56.95 | 57.18
LSC 2 10 50 — 59.89 | 59.95 | 59.09 | 59.12 | 59.48 | 59.74 | 59.61 | 59.71 | 59.73 | 59.64
NPS 2 10 50 - 51.73 | 52.30 | 50.28 | 52.46 | 51.89 | 53.72 | 53.06 | 52.96 | 53.06 | 50.00
EPS-a 2 10 50 no 48.61 | 56.00 | 56.95 | 57.64 | 58.13 | 58.43 | 57.87 | 58.20 | 58.10 | 58.23
EPS-a 2 10 50 yes || 48.67 | 55.97 | 57.41 | 59.24 | 60.13 | 60.59 | 60.06 | 60.42 | 59.51 | 59.54
EPS-b 2 10 50 no 49.30 | 56.17 | 58.36 | 58.85 | 58.38 | 58.30 | 58.26 | 58.80 | 58.85 | 59.65
EPS-b 2 10 50 yes || 48.41 | 56.20 | 57.25 | 58.26 | 58.49 | 58.16 | 58.10 | 58.36 | 58.00 | 57.71
EPS-a 2 10 100 no 48.45 | 56.07 | 56.59 | 57.08 | 58.23 | 58.16 | 58.46 | 57.25 | 57.58 | 57.72
EPS-a 2 10 100 yes || 48.31 | 55.42 | 57.74 | 59.38 | 59.67 | 58.92 | 58.59 | 57.80 | 57.97 | 58.49
EPS-b 2 10 100 no 48.54 | 55.81 | 57.44 | 59.06 | 59.33 | 59.10 | 58.74 | 58.74 | 58.97 | 58.59
EPS-b 2 10 100 yes || 48.35 | 56.20 | 58.13 | 58.77 | 58.08 | 58.51 | 58.92 | 59.47 | 59.44 | 59.02
Baseline 64.08
LSC 2 20 20 - 60.03 | 59.29 | 59.14 | 59.35 | 59.16 | 59.03 | 58.96 | 58.87 | 58.80 | 58.84
NPS 2 20 20 — 50.19 | 49.58 | 51.17 | 50.37 | 50.43 | 50.69 | 50.12 | 49.88 | 49.88 | 50.00
EPS-a 2 20 20 no 48.93 | 55.31 | 55.59 | 54.04 | 54.37 | 53.25 | 52.59 | 52.44 | 52.29 | 53.28
EPS-a 2 20 20 yes || 49.41 | 54.50 | 54.71 | 53.83 | 53.65 | 52.74 | 52.80 | 53.16 | 52.98 | 52.80
EPS-b 2 20 20 no 48.93 | 54.86 | 55.53 | 55.77 | 55.36 | 54.89 | 54.16 | 54.47 | 53.86 | 53.72
EPS-b 2 20 20 yes || 49.11 | 54.59 | 54.30 | 53.57 | 53.41 | 53.53 | 53.38 | 53.16 | 53.04 | 53.04
EPS-a 2 20 50 no 4941 | 53.65 | 54.62 | 53.50 | 54.07 | 54.07 | 53.77 | 53.03 | 53.15 | 53.06
EPS-a 2 20 50 yes || 49.26 | 54.22 | 54.28 | 54.04 | 52.98 | 53.35 | 54.37 | 54.59 | 54.63 | 54.19
EPS-b 2 20 50 no 49.23 | 54.77 | 54.83 | 54.25 | 54.33 | 53.72 | 53.78 | 53.33 | 53.47 | 53.44
EPS-b 2 20 50 yes || 48.93 | 54.74 | 54.00 | 54.07 | 53.51 | 53.60 | 53.32 | 52.80 | 52.35 | 52.19
EPS-a 2 20 100 no 49.14 | 53.95 | 55.43 | 54.50 | 54.19 | 54.01 | 53.94 | 53.65 | 53.78 | 53.53
EPS-a 2 20 100 yes || 49.05 | 54.80 | 54.74 | 54.25 | 54.16 | 54.28 | 53.30 | 53.00 | 52.72 | 52.77
EPS-b 2 20 100 no 49.26 | 55.43 | 55.03 | 54.09 | 54.10 | 54.50 | 54.00 | 53.48 | 53.63 | 53.00
EPS-b 2 20 100 yes || 48.93 | 54.83 | 54.44 | 54.04 | 53.86 | 53.62 | 53.81 | 53.89 | 53.92 | 53.59
Baseline 65.55

Table 2.3: Accuracy for models excluding tuples with frequency one.
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Figure 2.3: Accuracy for models with 200 iterations.

vp option. Using the vp training variation (cf. Section 2.2.1), the accuracies differ by up to
about one percentile from the non-vp models. This effect has been observed across all experi-
ments.

Number of iterations. Our standard experiments were conducted with up to 50 training itera-
tions. In order to determine whether a higher number of iterations could improve the accuracy,
we trained one model (10 frames, 20 clusters) using 200 iterations. Figure 2.2.2 shows the results
for these models.

The accuracy for LSC peaks early at around 10 iterations, NPS performs best at around 45
iterations.

Number of clusters. We compared the performance of LSC, NPS, and EPS models with 20,
50, 100, 200, and 300 clusters to check whether a higher number of clusters which could theo-
retically lead to a better representation of the training data is beneficial for pseudo-word disam-
biguation. Figure 2.2.2 shows the maximum accuracies for each number of clusters. We can see
that accuracy of NPS/EPS decreases when using 200 or more clusters. This suggests that a high
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20 50 100 200 300

Figure 2.4: Best models for different numbers of clusters.

number of clusters leads to a bias towards the training data which has already been observed in
the pseudo-word disambiguation evaluation of LSC by Rooth et al. (1999). The accuracies of
LSC however still rise when using more clusters. We suspect that since we used a much larger
amount in our experiments, more clusters are necessary to fit it and thus overfitting of LSC might
only occur for an even higher number of clusters.

Data frequency.

MDL parameter. The MDL parameter w is responsible for the balance between the model
(ML) and the description length (DL). If the description length gets a higher weight, the selection
preference models grow to be more detailed during training since this leads to the training data
being represented better. In the following experiments we compare two settings for w. w = 1 is
the standard setting in which the model and description length are weighted equally, and w = 0.5
weights the description length higher. A lower value for w leads to slightly higher accuracy
(80.71%) when compared with the standard setting (79.31%). However, this change leads to
significantly higher training times which is why we did not use it for all experiments.

Set of frames. To test the model’s capability of handling sparse data, we included less frequent
subcategorisation frames in the model. As shown in Tables 2.2.2 and 2.2.2, there is no significant
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Figure 2.5: Accuracies of ten models with different seed values.

change in accuracy when using the 20 most frequent frames instead of using only 10.

Seed values. The seed value of the model determines the random initialisation values of its
parameters. Changing the seed value can give us insights about how stable the training process is.
As Table/Figure 2.2.2 shows, changing the seed value does not influence accuracy significantly.

Examples

We will investigate the experimental outcome more closely by looking at selected examples from
the test data. All example tuples will be presented in the following format:

Probability Verb Frame Fillers
5.33571e-14 pronounce subj:obj:0bj2 government sale success

As showed by Chambers and Jurafsky (2010), the results pseudo-word disambiguation depend
heavily on the choice of the pseudo-words. In our case, this problem can be illustrated by the
following example tuples, each pairs of real words and confounders:
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8.51234e-09 bend subj:adv head forward
4.36423e-16 accompany subj:adv head forward
4.02534e-12  glow subj:ap ruby red
4.62002e-15 protect subj:ap ruby red
1.23352e-12  contrast subj:obj pupil manuscript
5.84823e-13 park subj:obj pupil manuscript
8.79867e-09 debate subj consideration

2.44797e-09 contest subj consideration

3.88519e-10 gleam subj:pp-with eye hatred
1.46639e-10 groan subj:pp-with eye hatred
9.16453e-11 print subj:obj computer memory
2.57217e-11 feed subj:obj computer memory

While many pseudo-words consist of words that are semantically distant (e.g. bend/accompany,
glow/protect, and contrast/park), there are examples in the test data for when the selection
method produces pairs where the semantic differences are small, for example debate/contest.
In this pseudo-word, two verbs with equivalent senses are combined. print and feed both can
be used as technical terms from the printing domain which makes it more difficult to distinguish
their correct uses. The two verbs in gleam/groan are related as well because they both describe
actions where either sound or light is emitted from a source.

The strong influence of subcategorisation frames has been shown by the application of a frequency-
based baseline method. When examining the data manually, cases like

1.4533e-11  assemble subj:pp-in audience hall
4.65715e-14 contrast  subj:pp-in audience hall

make it clear that the correct use of some verbs can be easily determined by the frame chosen.
contrast requires a pp-with instead of a pp-in and is thus unlikely to be the correct verb in this
tuple.

3.40161e-15 charge subj:obj:pp-for farmer premium produce
1.45518e-20 flourish subj:obj:pp-for farmer premium produce

The less information is available, the less accurate the method becomes. This often is the case
for intransitive verbs where only subject information is available:

1.16396e-08 confuse subj shadow
1.26925e-08 signify  subj shadow
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Conclusion

Our experiments show that pseudo-disambiguation is possible with our clustering approach.
However, the simple baseline approach we introduced was still superior in most cases. This
is a common outcome when using this evaluation method.

We are able to draw multiple conclusions from our experiments. In our overall experiments EPS
is most effective when data that includes items with a frequency of 1 is used in training. Changes
of the model parameters have an effect on the disambiguation accuracy. Increasing the number
of clusters leads to small improvements of accuracy, using more iterations than about 50 however
does not significantly change the results. Using the vp version of the model and producing more
detailed selection preference models by changing the MDL parameter leads to sightly higher
accuracies as well.

2.3 Applications

This section applies our clustering model in its variations to three tasks, selectional preference
acquisition (Section 2.3.1), verb sense disambiguation (Section 2.3.2), and semi-supervised sense
labelling (Section 2.3.3). Next to exploiting the general potential of the clustering model per se,
the applications allow to compare the variations of the model, as well as to compare the model
with LSC, the clustering model that is most similar to ours but does not incorporate selectional
preferences (cf. Section 2.1.5). Model 1 (NPS) is henceforth refered to as LSCpref, model
2.1 (EPS-a) as PAC-1, and model 2.2 (EPS-b) as PAC-2, as these are the actual names of the
implemented tools, cf. Chapter 3.

2.3.1 Selectional Preference Acquisition
Introduction

Predicates impose selectional restrictions on the realisation of their complements, as first illus-
trated by Chomsky (1957) through his famous example ”Colorless green ideas sleep furiously”.
Though the sentence is syntactically well-formed, it is not semantically meaningful, unless inter-
preted metaphorically. Compare also examples (1) and (2), where most people would agree that
a chocolate cake is highly acceptable as the patient of the verb bake, but a stone is less typical
(though, again, it might be subsumed by the context, e.g., as metaphorical when the baking result
was unenjoyably hard).

(2.3) Elsa baked a chocolate cake.

(2.4) ?Elsa baked a stone.
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Selectional preference acquisition is probably one of the most direct applications of our cluster-
ing approaches, which aim to model selectional preferences as part of the clustering information.
In the following, we compare our clustering model 2 (EPS) to its simpler predecessor LSC as
well as a distributional approach. The core part of the work has been published as Schulte im
Walde (2010). All experiments were carried out for German, but can be transferred to other lan-
guages, given that sufficient corpus data is available to extract predicate—complement pairs, plus
assuming a WordNet for our model.

Selectional Preference Models

Existing approaches to the automatic induction of selectional preferences have briefly been men-
tioned in Section 2.1.5. They fall into three categories. The majority of the approaches models
selectional preferences by exploiting the hypernym/hyponym hierarchy in WordNet (Fellbaum,
1998). Relying on corpus-based predicate—relation-noun frequencies, they aim to find the op-
timal generalisation of the nouns as selectional preference characterisation with respect to the
predicate and the predicate—noun relation. As the result, the selectional restrictions are expressed
by WordNet classes, or sets over WordNet classes (most commonly a disjunctive set of classes
represented by a cut through the hierarchy). Referring to the above example, having seen coffee,
tea, beer and wine as direct objects of the verb drink, the hypernym beverage generalises over
the seen nouns and thus represents a suitable WordNet label for the verb—object selectional pref-
erence. Approaches that fall into this category are Resnik (1997), Li and Abe (1998), Abney and
Light (1999), Ciaramita and Johnson (2000), and Clark and Weir (2002).

An alternative to WordNet-based models are cluster-based models such as Pereira et al. (1993)
and LSC (Rooth et al., 1999). Also relying on corpus-based predicate—relation—noun frequen-
cies, cluster-based approaches represent selectional preferences by noun clusters that generalise
over the seen nouns, without specific generalisation labels other than the cluster numbers. Two of
our models (LSC and ESP) fall into this category, with the more complex one (i.e., EPS) refining
the selectional preference description by WordNet categories.

Last but not least, Erk (2007) suggested a distributional, similarity-based model for selectional
preferences that uses the corpus-based input data to first define a selectional preference represen-
tation, and then use vector-based similarity metrics to determine selectional preference scores for
unseen nouns. Our second-order co-occurrence model is an instance of a distributional model,
in many respects similar to Erk’s model.

While WordNet-based approaches are attractive models of selectional preferences in that they
explicitly provide preference categories, cluster-based and similarity-based approaches are at-
tractive in that they are independent of such a manual resource which is not available for all
languages and is costly to build.

In the following, we introduce our three selectional preference models.
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A Second-Order Distributional Model According to the distributional hypothesis, the sum
of contexts of a linguistic unit is a crucial indicator of the meaning of the linguistic unit (Firth,
1957; Harris, 1968). In this vein, we define a distributional approach to selectional preference
induction that is both intuitive and cheap. The underlying idea is that selectional preferences
of a predicate’s complement are defined by the properties of the complement realisations. For
example, a typical direct object of the verb drink is usually fluid, might be hot or cold, can be
bought, might be bottled, etc. So —referring to this example— are adjectives that modify nouns,
or verbs that subcategorise nouns salient properties to describe the selectional preferences of
direct objects? The general question we ask is: what characterises the realisations of selectional
preferences? We thus suggest a second-order co-occurrence model for selectional preferences: a
predicate’s restrictions to the semantic realisation of its complements are expressed through the
properties of the complements.

The basis of the distributional approach are corpus-based co-occurrences of triples
(predicate, relation, complement),

i.e., joint frequencies of predicate—complement pairs with respect to a specific functional rela-
tion. Being of second-order co-occurrence, the model combines two types of co-occurrences: (1)
Corpus-based joint frequencies freq(p,r1,n) of predicates p and nouns n with respect to some
functional relationship 1. These co-occurrences refer to the functional relationships whose se-
lectional preferences we address. We concentrate on German verb—noun relationships 1, namely
subjects, direct object, and pp objects. This choice was motivated by the language we work on
(German), plus the available data for evaluation, cf. Section 3. The approach can easily be
expanded to other predicates and relations, but in order to incorporate the latent semantic class
model with WordNet generalisations, the complement choice is necessarily nouns. (2) Corpus-
based joint frequencies freq(n,r2, prop) of nouns n and noun properties prop with respect to
some functional relationship 2. These co-occurrences refer to the properties of the selectional
preferences we address. We concentrate on modifying adjectives, subcategorising verbs (for
direct object and pp object), and subcategorising prepositions, because these properties were ex-
pected to shed light on complementary semantic properties of the nouns (and thus the selectional
preference descriptions). We tested the properties by themselves, and also in combinations. The
set of properties can easily be enlarged, as the experiments will demonstrate. The joint frequen-
cies were estimated on approx. 560 million words from the German web corpus deWaC (Baroni
and Kilgarriff, 2006), after the corpus was preprocessed by the Tree Tagger (Schmid, 1994) and
by a dependency parser (Schiehlen, 2003).

The distributional model comprises two parts: (1) the selectional preference description with re-
spect to a specific verb—noun relationship, i.e., the second-order properties of the relationships,
and (2) the selectional preference fit of a specific noun with respect to the verb—noun relation-
ship. Part (1) is a simple scoring that combines the two types of corpus-based joint frequencies,
freq(p,r1,n) and freq(n,r2,prop), cf. Equations (2.5) to (2.8). The second-order selectional
preference of the verb—noun relationship 1 is represented by the joint noun—property corpus fre-
quencies across the nominal complements, cf. Equation (2.5) for the most basic version. L.e., the
feature vector of the predicate is a union of the properties of the nouns. For example, if the pred-
icate is the verb drink, the verb—noun relation is a direct object, and the property is adjectives
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that modify nouns; then, the verb’s selectional restrictions are defined by an adjective feature
vector, where the set of adjectives is the union of the adjectives modifying the nouns subcate-
gorised by drink. The feature values score; (drink, dir_obj, adj) thus rely on the frequencies of
all nouns that appeared as direct objects of drink, freq(drink, dir_obj,n), and on the frequencies
of the adjectives those nouns appeared with (not necessarily in the same context with the verb,
freq(n,n_mod, adyj)). For example, if coffee appeared 50 times as direct object of drink, and tea
appeared 5 times, and if coffee was modified by the adjective hot 100 times and by fluid 30 times,
and if fea was modified by hot 60 times and by fluid 15 times, then score; (drink, dir__obj, hot) =
50 % 100 + 5% 60 = 5,300, and score;(drink, dir_obj, fluid) = 50 * 30 + 5% 15 = 1,575.
The scoring provided in Equation (2.5) is the most simplest, using raw corpus frequencies.
Alternative versions rely on log-transformed frequencies (Equation (2.6)), probabilities (Equa-
tion (2.7)), and tf-idf values (Equation (2.8), where ¢ f_idf (triple) = tf(triple) * idf (triple),
with t f (triple) = prob(triple), and idf (triple) = log% for r1, and idf (triple) = log%
for r2, i.e., determining the “inverse document frequency” of nouns (r1) or properties (72) by
incorporating the number of different predicates (1) or nouns (r2) a noun (r1) or property (r2)
occurred with).

Tables 2.4 to 2.6 present examples of second-order properties, for the direct objects of the verb
backen *bake’ with adjective properties, anbraten ’fry’ with verb properties, and abschmecken
"taste’ with preposition properties, respectively. The tables list the eight most probable properties
and also the eight most probable nominal realisations, according to some of the most successful
distributional models. The information is rather for intuitive purposes; therefore, the system
scores are omitted. The prepositions in Table 2.6 are the most difficult to grasp intuitively, but at
the same time the most successful system features, as the results will demonstrate.

(2.5) scorey(p,rl, prop) = Z freq(p,r1,n) x freq(n,r2,prop)
ne(p,rl)

(2.6) scorey(p,rl, prop) = Z log(freq(p,r1,n)) * log(freq(n,r2, prop))

ne(p,rl)
2.7 scores(p,rl, prop) = Z prob(p,r1,n) * prob(n,r2, prop)
ne(p,rl)
(2.8) scorey(p,rl, prop) = Z tfadf(p,rl,n) x tf_idf(n,r2, prop)
ne(p,rl)

Figure 2.6: Second-order selectional preference description.

As mentioned before, the resulting selectional preference descriptions are predicate vectors over
complement properties. In part (2), the natural fit of a specific noun can then be specified by stan-
dard distributional similarity measures, comparing a specific noun’s contribution to the overall
preference: In order to determine the selectional preference for a specific (seen or unseen) noun,
we calculate the vector-based similarity between the predicate’s preference vector and the spe-
cific noun’s vector. The measures to calculate the similarities and thus the natural fit of a specific
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noun to a selectional preference description can be varied. We experimented with four standard
measures that were expected to provide different perspectives on the selectional preference fit,
due to their mathematical nature: the cosine of the vector’s angle (a standard measure in linear
algebra), the skew divergence, an information-theoretic measure and variant of the Kullback-
Leibler divergence (Lee, 2001), Kendall’s 7, a measure for rank correlation (Hatzivassiloglou
and McKeown, 1993), and jaccard, a binary distance measure (Manning and Schiitze, 1999).

Our method is similar to Erk’s approach who also used complements’ corpus-based properties to
describe selectional preferences. We addressed the task from a different direction, though, and
the result is a simplified version of her approach. The models with a single nominal property
are specific cases of her model, and only the models with combined nominal properties come
close to a general distributional description. Furthermore, our goal is different from hers in that
we were interested in the contributions of the various properties, in addition to determining the
natural fit of nouns to selectional preferences.

Properties: adjectives Example realisations
frisch “fresh’ Keks "cookie’
lecker "delicious’ | Brotchen roll’
klein “small’ Torte ‘tart’
trocken “dry’ Kuchen "cake’
st} sweet’ Brot "bread’
warm ‘warm’ Pizza ‘pizza’
fett “fat’ Waffel ‘waffle’
eingeweicht ’soaked’ Pfannkuchen ’pancake’

Table 2.4: Direct objects of backen *bake’.

Properties: verbsy paec Example realisations
schilen ‘peel’ Champignon ’mushroom’
schneiden cut’ Zwiebel ’onion’

essen ‘eat’ Kartoffel "potato’
zugeben ‘add’ Gemiise ‘vegetable’
anschwitzen ’sweat’ | Knoblauch “garlic’

pellen ‘peel’ Hackfleisch ~ ’minced meat’
riechen ’smell” | Roulade ‘roulade’
waschen clean’ | Keule ’haunch’

Table 2.5: Direct objects of anbraten *fry’.
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Properties: prepositions
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Example realisations

mit with’
in ’in’
fiir “for’
Zu "for’

von from’
unter ’under’

2 2

auf on

b b

als as

Sof3e ’sauce’
Salat ’salad’
Briihe ’stock’
Gemiise ’vegetables’
Eintopf ’stew’

Suppe ’soup’
Piiree ‘puree’
Essen "food’

Table 2.6: Direct objects of abschmecken taste’.
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Latent Semantic Classes The Latent Semantic approach has previously been applied to model
the selectional dependencies between two sets of words participating in a grammatical relation-
ship (Rooth et al., 1999). LSC was chosen because the clusters can be considered as generalisa-
tions over the members of the two inter-dependent dimensions. The LSC approach therefore fits
selectional preferences, by generalising over seen and unseen lexical items.

Our experiments with LSC rely on the same corpus data as the distributional model; we used the
same verb—subject, verb—direct-object, and verb—pp-object data. We trained three LSC models,
one for each functional relation, and a forth model that contained all relations, using a relation
marker at the verb (e.g., replacing the verb backen with backen-subj) to distinguish between the
relations. The resulting analyses were used to calculate the probabilities of verb—noun pairs as
the natural fit of the nouns to the selectional preferences the clusters incorporate. The training
parameters were varied, producing cluster analyses with 20, 50, 100, 200, and 500 clusters, over
50 and 100 iterations.

Table 2.7 presents an LSC example of a cluster containing verbs and their direct objects, as
taken from a 100-cluster analysis. The left-hand column contains the most probable predicates
within this cluster; the right-hand column contains the most probable nouns within this cluster.
The nouns are assumed to represent the selectional preferences of the direct objects of the verb
dimension.

cluster, prob(c) = 0.015 (range: 0.004-0.035)

entwickeln  ’develop’ Konzept ’concept’
vorstellen “introduce’ Angebot “offer’
erarbeiten "work out’ Vorschlag  ’suggestion’
geben ‘give’ Idee “idea’
umsetzen ‘realise’ Projekt “project’
ansehen "look at’ Plan ‘plan’
erstellen "create’ Programm ’program’
priasentieren ’present’ Strategie  ’strategy’
diskutieren  ’discuss’ Modell "model’
darstellen "demonstrate’ | Losung “solution’

Table 2.7: Example LSC cluster.

Latent Semantic Classes integrating Selectional Preferences Our experiments with PAC
rely on the same corpus data as the other two models. We used and compared both clustering
model 2.1 (EPS-a) and 2.2 (EPS-b). In both cases, we used the same verb—subject, verb—direct-
object, and verb—pp-object data, and we trained four PAC models, one for each functional rela-
tion, and one for all data in one model (as PAC incorporates frame types and thus distinguishes
between functional relations). As for LSC, we used the resulting analyses to calculate the proba-
bilities of verb—noun pairs as the natural fit of the nouns to the selectional preferences the clusters
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incorporate. The training parameters were varied as for LSC, producing cluster analyses with 20,
50, 100, 200, and 500 clusters, over 50 and 100 iterations.

Table 2.8 presents a PAC example of a cluster containing verbs and their direct objects, as taken
from a 20-cluster analysis. The left-hand column contains the most probable predicates within
this cluster; the right-hand column contains a selection of the most probably WordNet classes
from different hierarchical levels. The extensive WordNet hierarchical structure that is part of
the second cluster dimension is omitted for space and clarity reasons.

cluster, prob(c) = 0.069 (range: 0.014-0.085)

leisten ‘perform’ Geschehen ‘event’

geben ‘give’ Aktivitit “activity’

fordern "demand’ Veridnderung "change’
bedeuten ‘mean’ Handlungssequenz ’action sequence’
ermoglichen ’enable’ Realisierung ‘realisation’
verhindern  ’prevent’ Anschlag “attack’

feiern "celebrate’ Straftat “criminal act’
darstellen "demonstrate’ | Gerichtsverfahren  ’lawsuit’

bringen “bring’ Verbesserung ‘improvement’
vornehmen  ’carry out’ Optimierung ’optimisation’

Table 2.8: Example PAC cluster.

Evaluation

The three selectional preference approaches were evaluated against human judgements on Ger-
man verb—noun pairs. The judgements had been collected by Brockmann and Lapata (2003)°
whose study compared the WordNet-based selectional preference approaches by Resnik (1997),
Li and Abe (1998), and Clark and Weir (2002), plus two distributional models relying on co-
occurrence frequency and conditional probability. The human data contains 90 verb—noun pairs,
with 30 pairs each for subjects, direct objects and pp objects, and each of the 30 pairs contains
10 different verbs with 3 different nouns. Verbs and nouns were chosen randomly; furthermore,
the noun choice was done in accordance with three frequency bands of the verb-relation—noun
triples. The participants in the study were asked to provide selectional preference scores for the
90 verb—noun pairs; the scores were then normalised to a common scale, and transformed by
taking the decadic logarithm [og10.

Brockmann and Lapata used the human judgements to compare the above-mentioned selectional
preference approaches. Each model provided selectional preference scores for the 90 verb—noun
pairs, the system scores were transformed by taking the decadic logarithm and then correlated

Thanks to Carsten Brockmann for providing the judgement scores to us.



2.3. APPLICATIONS 31

against the human judgement scores by linear regression. Brockmann and Lapata found that all
five models were significantly correlated with the human judgements, but inter-subject agreement
was consistently higher than the correlations. Furthermore, no model performed best; different
methods were suited for different functional relations. A combination of the models by multiple
linear regression outperformed the individual models.

By using the same gold standard data and the same computations as Brockmann and Lapata,
we can compare not only our models against each other, but also compare our results to theirs.
We therefore calculated system scores for the 90 verb—noun pairs (which had previously been
removed from the training data) with respect to our three approaches. As Brockmann and Lapata,
we also transformed the system scores by taking the decadic logarithm, before performing the
linear regression with their log10 human judgements. In comparison, however, we also correlated
the original system scores against the human judgements back-transformed by the [og10 reverse
function. The latter procedure seemed reasonable, as we did not agree with a general log10
transformation without knowledge about the underlying data distribution.’

Furthermore, we added a second type of evaluation, and compared the approaches using the
Spearman rank-order correlation coefficient (henceforth: ranking). This correlation is a non-
parametric statistical test that measures the association between two variables that are ranked in
two ordered series. The ranking seemed reasonable, as it looked at the evaluation from a different
perspective, assessing how well the systems can distinguish fine-grained rank-order differences
across the gold standard pairs.

The baselines of the experiments were calculated by correlating the joint corpus-based predicate—
noun frequencies of the subjects, direct objects and pp-objects with the human judgements (also
by linear regression, and by ranking). The upper bound of the approaches is referred to as the
inter-subject agreement (isa) on the selectional preference judgements, as calculated by Brock-
mann and Lapata, henceforth BL.

Results

Tables 2.9 to 2.12 present an extract of the results of the distributional approach, and the LSC and
PAC experiments. All of the results refer to the evaluation by linear regression, where the system
scores were not transformed by the decadic logarithm (and, accordingly, correlated with the back-
transformed judgements); the results with respect to ranking will be described below. In each
table, our best results per column are printed in bold font. The overall best results per relation
are in addition printed in blue, and marked by the significance levels *p < .05, **p < .01, and
#*k%p < .001, if applicable. The BL results in Table 2.9 refer to the best results achieved in the
Brockmann/Lapata comparison, and provide the respective system in brackets.

7If the data is normally distributed without transformation, then it needs no transformation to go into a linear
regression; if the data is normally distributed after the transformation, then a transformation is reasonable. In
any case, the transformation will change the linear regression, as a logarithm imposes a shape on the scores that
influences the linearity. The degree of the change depends on the scale of the scores.
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The baseline and upper bound values are only listed in Table 2.9 but refer to all linear regres-
sion experiments in the three tables. The frequency baseline correlated the joint predicate—noun
frequencies against the back-transformed human judgement scores; the log10(f) baseline cor-
related the frequencies transformed by the decadic logarithm against the BL judgement scores;
the BL baseline is taken from their paper and refers to log10-transformed frequencies correlated
against the log10 BL judgement scores.

The distributional results list the cosine scores as the measure of selectional preference fit, be-
cause it provided the overall best scores. The rows refer to the second-order properties, and the
columns to the second-order selectional preference description, cf. Figure 2.6. As mentioned
before, we used adjectives, verbs, and prepositions as second-order properties; furthermore, we
enlarged and unified the property sets: v + vp adds verb—preposition pairs (subcategorising for
the respective nouns), v+vp+adj adds adjectives to this set, and v+vp+adj + prep further adds
the prepositions. A number of things are striking in Table 2.9: (1) Not only with respect to the
cosine results but also in more general, the prepositions by themselves, or the union of second-
order properties v + vp + adj + prep are in many cases the most successful properties. On the
one hand, we can conclude that prepositions are a powerful indicator of selectional preference
properties; on the other hand, our largest set of properties comes close to a general distributional
description without strong restrictions on the selection of properties, in the vein of Erk (2007),
and the question is whether a less careful choice than the properties we provided would be as suc-
cessful or even more successful. One could try, e.g., window information as a very crude choice.
(2) The best results vary quite strongly with respect to the functional relation. Direct objects are
modelled best, subjects are modelled worst. (3) Not only with respect to this table but in more
general, the probability and tf-idf scores tended to outperform the frequency- and log(f)-based
scores. Note that the best overall result in Table 2.9 is achieved by frequency, though. (4) Quite
striking in the table are the large values of the baseline using the log-transformed predicate—
noun frequencies, .652/.559/.565/.574 for subj, dir obj, pp-obj, overall with an upper bound
for isa of .790/.810/.820/.810, cf. BL. The baseline is so high that it beats some of the best
system (and system combination results) in BL (.408/.611/.597/.400), and some of our results
(.494/.713/.602/.517). Furthermore, our baseline is much higher than BL’s baseline (calculated
identically, as far as we know): .386/.360/.168/.301. The only explanation for this is that the
results differ because of the different underlying corpora, 560 million words of the deWaC vs.
179 million words of the German Siiddeutsche Zeitung newspaper corpus. To be sure whether
the size or the domain differences are the crucial ingredients, one would have to replicate our
experiments on a portion of the deWaC comparable to BL’s portion. We hypothesise, though,
that the difference is rather due to the corpus domains, which should arguably provide different
frequency counts for verb—noun pairs such as reward a child, or clean the pavement, whose Ger-
man translations are among the gold standard pairs. The same reason applies to the fact that our
results are all above those of BL's comparison. One would have to re-run the various systems on
our data, in order to have a fair comparison. (5) As mentioned above, the cosine measure was
the most useful for our purposes. The skew divergence and the jaccard binary measures were
always clearly below the cosine-based scores. Only the results with Kendall’s 7 were in some
cases similar to the cosine results; for subjects, 7 could even beat the cosine, with a correlation of
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*% 532, using v+ vp. (6) The cosine results when correlating the [og10 system scores against the
log10 judgements were quite below the ones in Table 2.9, confirming our intuition that a general
log10 transformation and linear regression do not necessarily fit.

Table 2.10 presents the results for the LSC experiments. The first column for each relation refers
to a linear regression of the probabilities of the verb—noun pairs and the back-transformed judge-
ments; the second column refers to the correlation between the [0og10-transformed probabilities
against the [og10-transformed judgements. Although the best LSC correlations are also signifi-
cant, all of them are below those of the simpler distributional model. Interestingly, though, the
correlations based on the log10-transformed scores were in most cases above those without trans-
formation. Concerning the number of clusters and training iterations, there is no clear tendency
towards an optimal settings. The number of training iterations did not consistently improve the
results, and neither did a smaller or larger number of clusters. When training used all relation
information at the same time (all func), relying on relation markers at the verb (cf. Section 2.2),
LSC performed better than after individual training on the relation data.

Tables 2.11 and 2.12 presents the results for the PAC experiments. Again, the first column for
each relation refers to a linear correlation between the probabilities of the verb—noun pairs against
the back-transformed judgements, and the second column refers to the correlation between the
log10-transformed probabilities against the [og10-transformed judgements. The PAC results vary
quite strongly with respect to the underlying MDL approach: The EPS-b results are much better
than the EPS-a results. The former even outperform most of the distributional results (i.e., all
but the pp object preferences), while the latter are very poor with respect to pp objects, and
otherwise similar or slightly worse than the distributional results. All PAC results (except for
ESP-a on direct object preferences) are better than the LSC results. IL.e., the generalisation over
nouns in the verb—noun data by PAC in comparison to LSC obviously improves on selectional
preference prediction. As for LSC, the correlations based on the [og10-transformed scores were
in most cases above those without transformation. Also similar is the fact that the number of
clusters and iterations does not have a clear tendency towards selectional preference prediction.

The evaluation by the Spearman rank-order correlation coefficient provides similar results as
the linear regression evaluation. The tables are omitted for space reasons. Again, the dis-
tributional model using the cosine is identified as the most successful selectional preference
approach. In comparison to a baseline of .903/.863/.928/.884 (where the ranking according
to the joint predicate—noun frequencies is correlated against the gold standard ranking), the
cosine reaches best correlations of .880/.938/.947/.879 for subject, direct object, pp object
and across relation selectional preferences. It thus beats the baseline in all cases but the sub-
ject. In comparison, the distributional model using the skew divergence achieves only correla-
tions of .758/.739/.773/.772. LSC and PAC reach correlations of .872/.872/.896/.873 (LSC),
.882/.877./.795/.850 (EPS-a) and .904/.904/.880/.879 (EPS-b). The results of LSC and EPS-a
are therefore in most cases below those of the distributional model, and the results of EPS-b are
similar to those of the distributional model.

The properties of the most successful distributional models, and the number of clusters and
training iterations of the most successful cluster models are not the same as those in the linear
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regression evaluation. Therefore, we cannot conclude about any general optimal settings of the
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models.
y \ SUBJ \ DIR-OBJ \ PP-OBJ all
f  log(f) f log(f) f log(f) f log(f)
adj 416 373 417 261 | 113 220 244 156
verb 456 412 271 222 | 176 278 201 .178
prep 461 .345 .681 263 | 318 .393 391 272
VHVP 468 425 345 295 | 344 369 295 235
v+vp+adj 420 411 .388 287 | 235 345 285 222
v+vp+adj+prep 459 465 | *** 713 328 | .380 476 422 359
prob  tf-idf prob tf-idf | prob tf-idf prob  tf-idf
adj 430 420 352 301 | .339 373 309 311
verb ** 494 406 285 325 | 242 487 273 .386
prep 443 487 .625 680 | .554 **% 602 481 516
VHVp 479 387 333 290 | 476 564 345 401
v+vp+adj 435 383 402 307 | .401 478 345 364
v+vp+adj+prep 465 437 705 428 | 599 581 | *** 517 455
BL | *.408 (Resnik) [ ***.611 (Clark/Weir) | *** 597 (Clark/Weir) | ***400 (comb) |
baselines & upper bound
baseline: 274 .343 384 313
baseline: log10(f) .652 .559 .565 574
baseline: BL 386 .360 .168 301
isa 790 810 .820 810

Conclusions

We compared our clustering model against the simpler LSC, and a distributional model. Quan-
titative and qualitative analyses of the approaches demonstrated that the latest version of our
clustering model is the most successful model, outperforming an earlier version as well as LSC,
and in most cases also the distributional results. Even the best models, though, did not always

Table 2.9: Distributional results.

beat the powerful frequency baseline.
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y | SuBl] | DIR-OBJ [ PP-OBJ | all | allfunc |

50 training iterations

20 | 253 *.450 | .016 282 | .181 295 | .033 338 | 118 .383

50 | 332 382 | .074 424 | 117 061 | 172 240 | 185  *#*453
100 | 202 222 | .313 483 | 234 .141 | .203 .235 | .081 379
200 | 310  .308 | .285 469 | 243 189 | .216 275 | 226 332
500 | 261 210 | .258 393 | 318 189 | 157 242 | 155 .339
100 training iterations

20 | 249  .165 | .061 386 | .149 352 | .064 .266 | .096 .362

50 | 320 317 | .184 420 | .069 .042 | .194 241 | .181 439
100 | .199 306 | .300 ***.569 | .232 276 | .198 264 | .082 245
200 | .286  .386 | .300 505 | 366  **.562 | 209 ***.407 | .220 .363
500 | 302 .389 | .285 315 | 325 396 | .185 315 | 146 244

Table 2.10: LSC results.

y | SUBJ | DIR-OB] [ PP-OBJ | all
50 training iterations
20 | .189 503 | 209 *#%509 | .062 .045 | .121 377
50 | .094 208 | .258 360 | .062 .045 | .070 444
100 | .094 208 | .041 074 | .062 .045 | .134 400
200 | .094 208 | .041 074 | .062 .045 | .060 367
500 | .094 208 | .041 074 | 062 .045 | .094 405
100 training iterations
20 | .185 **.507 | .229 495 | 062 .045 | .114 429
50 | .094 208 | .222 478 | 062 .045 | .107 ***.465
100 | .094 208 | .041 074 | .062 .045 | .141 .385
200 | .094 208 | .041 074 | .062 .045 | .081 442
500 | .094 208 | .041 074 | .062 .045 | .099 343

Table 2.11: PAC (EPS-a) results.

y \ SUBJ | DIR-OB] | PP-OBJ | all
50 training iterations
20 | .213 570 | .150 502 | .065 .356 | .070 358
50 | 214 513 | .160 719 | 113 .243 | .099 425
100 | .244 463 | .047 .626 | 222 401 | 085  *#*.543
200 | .255 510 | 258 .676 | .206 347 | 210 432
500 | .272 597 | 198 155 | 238 **481 | 174 489
100 training iterations
20 | .201  ***,651 | .160 450 | .065 247 | .083 345
50 | .237 S13 | 172 709 | 113 .098 | .105 373
100 | .222 443 | 165 .692 | .288 .379 | .095 439
200 | 222 .090 | .265 498 | 179 359 | 217 142
500 | .233 497 | 305 **ET795 | 257 323 | .189 .249

Table 2.12: PAC (EPS-b) results.



36 CHAPTER 2. CLUSTERING MODEL
2.3.2 Verb Sense Disambiguation
Introduction

Word sense disambiguation has a long history (see Agirre and Edmonds (2006) for an overview)
but still remains a core problem to many NLP applications such as message understanding, ma-
chine translation, and question answering. Especially the disambiguation of highly polysemous
verbs with subtle meaning distinctions is difficult. The definition of sense inventories is also
challenging, controversial, and not equally appropriate across NLP domains (Ide and Wilks,
2006).

In the following, we describe experiments on Verb Sense Disambiguation (VSD). The VSD relies
on the EPS model whose clusters are interpreted as ‘sense labels’. As these labels are unlikely to
exactly match the senses of some independently defined sense inventory, the cluster labels must
be mapped to the existing senses in order to use the clustering model for their disambiguation.
The mapping is done by a statistical classifier which is trained on manually sense tagged text.
The classifier computes the probability of each possible verb sense given the cluster labels.

As introduced earlier, the verb clustering model is based on the assumption that verbs which
agree on their selectional preferences belong to a common semantic class. For example, the two
verbs sit and lie in Example 2.9 belong to a class of verbs which describe an entity placed on top
of another entity.

(2.9) The cat sits/lies on the sofa.

Different readings of a verb usually differ in argument preferences. Example 2.10 shows two
readings of the verb roll with different subcategorisation frames.

(2.10) The thunder rolls. — Peter rolls the ton off the road.

Example 2.11 demonstrates that also the class of arguments (weaponry vs. employee) can differ-
entiate between verb meanings.

(2.11) fire a gun — fire a manager

These differences in subcategorisation and selectional preferences allow the clustering model to
assign the readings of a verb to different clusters, which can then be used as evidence for verb
sense disambiguation. We implemented a VSD system based on these ideas and evaluated it on
Senseval-28 data.

8http:// 193.133.140.102/senseval2/, last visited June 2009
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The Senseval-2 Data

The Senseval-2 shared task was a word sense disambiguation (WSD) competition for nouns,
verbs and adjectives. In our experiments, only the disambiguation of verbs is considered. We
tested our system on the English Lexical Sample task of the Senseval-2 data set, which contains
3,565 verb instances in the training set and 1,806 in the test set. These data comprise 29 different
target verbs with 16.76 senses on average. This high polysemy rate is due to the fact that particle
verb constructions such as carry on are considered senses of the base verb. Particle verbs are
explicitly marked in the corpus, which facilitated disambiguation because it allowed the elimina-
tion of inappropriate readings. The Senseval-2 data are hand-tagged with one (sometimes two)
WordNet sense keys of the pre-release WordNet version 1.7. The inter-tagger agreement (ITA)
of the task was only 71.3% which can be taken as an upper bound for this task.

Preprocessing of the Data We parsed the Reuters corpus with the BitPar parser (Schmid,
2006) and extracted the verbs and their arguments. With the extracted tuples (cf. Section 2.2.1),
we trained the verb clustering models.

The Senseval-2 corpus was also parsed with the BitPar parser but only with respect to the verbs
to be disambiguated and their arguments. For each tuple, we calculated the cluster probabilities
according to the verb clustering model, cf. Equation 2.12. Cluster probabilities below a threshold
of 0.1 were ignored.

p(c, tuple)
2.12 =
(2.12) plcftuple) > p(c, tuple)

Training of the Classifier Next we used the Senseval-2 training set to train a classifier that
estimated the probability of senses within a cluster. If ¢ is a cluster and s is a sense, we first
summed over the probabilities of ¢ for any tuple that was labeled with s. This gave us the
frequency of the joint occurrence of s and c.

(2.13) f(s,c) = > p(c|tuple)

tuple:sense(tuple)=s

To get the probability of s given ¢, we calculated the relative frequency. The probabilities of all
different senses within ¢ therefore sum up to 1.

(2.14) plsle) = LB

2s f(s,¢)

Sense Classification The classifier assigns a sense to each tuple based on the verb, the cluster
probabilities, and the sense probabilities. The most probable clusters of a tuple are obtained
from the clustering model, and the sense probabilities for these clusters were estimated in the
training. The classifier multiplies the probability of each cluster with the probability of each
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sense of the cluster. The total probability of a sense for a given tuple is computed by summing
over all clusters:

(2.15) p(sltuple) =Y p(cltuple)p(s|c)

For example, assume that the cluster probabilities for the verb-argument tuple

(carry, subj:obj, man, suitcase)
are c1=0.94, c2=0.05. The classifier would provide for cl: sensel=0.18 and sense2=0.81,
whereas c¢2 would hold sensel=1 as a single sense. In this case, the most probable sense would
be p(sa|tuple) = p(ci|tuple)p(sa|cr) + pealtuple)p(salca) = 0.94 % 0.81 + 0.05 % 0 = 0.76.

In accordance with the Senseval scoring we counted each verb with an identical sense tag as a
match (Kilgarriff, 2000). If no sense was found,® the most frequent sense (MFS) of the verb was
assigned. If no MFS existed because the verb was not in the training data, we randomly chose
one of the senses of the verb in WordNetl.7 and took 1 divided by the number of senses as the
estimated correctness of this random decision.

Evaluation

The system was optimised on the training set of the English Lexical Sample task. All experi-
ments that follow in this section are done on this data set with a tenfold cross-evaluation. We
experimented with different settings of the model and the preprocessing to find the best features.

We established a base system to explore the performance of our features. The base system uses
a PAC clustering model with 50 clusters, and 100 training iterations. In addition, we compared
the results to the MFS baseline which assigns all verbs to their most frequent sense.

If nouns from the verb-argument tuple were not in WordNet, we replaced them by a placeholder
(UNKNOW N). Additionally we used the placeholder (NON E) when the parser failed to find
the head of an argument (e.g. the subject in subject-less sentences).

For significance testing, we applied a Binomial test and considered only tuples that where clas-
sified correctly either in the base system or in the experiment system but not in both. We chose
an significance threshold of 5%.

Experiments on the Data Since the variable frame size and the conceptualisation of the ar-
guments were an extension from LSC to PAC we aimed to discover to what extend the frames
and arguments helped in the classification process. We tried to gradually increase the amount of
information provided by the arguments. First we replaced the arguments in the Senseval2 and
the Reuters tuples by the placeholder ‘x’ to use only information given from the frames. A tuple
extracted from the sentence “He began a battle” is represented as (begin, subj:obj, x, ).

9This can be due to parsing errors or because the assigned clusters did not appear in the training data with that
verb
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In a second experiment we eliminated the generalisation to concepts in PAC. This means that the
probability p(a;|c, f, i) in Equation 2.1 is directly estimated from data. A mapping of WordNet-
unknown words is not required here. The above tuple would look as follows: (begin, subj:obj, he, battle)

In a third experiment, we replaced pronouns that are likely to refer to humans such as I, he, us
etc. by the WordNet concept ‘person’. Other arguments not covered by WordNet were again
mapped to (UNKNOW N). Our example tuple turns into: (begin, subj:obj, person, battle).

Table 2.13 shows that the difference between no arguments at all and the base system amounts
to only 2%. That means that the classification is mostly done by the subcategorisation frame.
Selectional preferences improved performance just slightly. The data set where pronouns were
mapped to ‘person’ shows the best results.

In the version without WordNet the arguments caused more damage than they helped. This was
a problem of data sparseness. A given tuple with an argument a could only be assigned to a
cluster if the model contained a in the same cluster, the same frame and the same slot. Because
the corpus was not large enough it happened quite often that a tuple with a rare frame did not
fit into any cluster. For comparison: in our ‘no wordnet’ data set 107 tuples out of 356 did not
belong to any cluster. In the base system this happened only 21 times. This means that if we use
detailed information about frames we have to generalise the nouns or we need much more data.

no arguments 53.40
no wordnet generalisation 50.23
base system 55.68
pronouns to ‘person’ 56.88

Table 2.13: Manipulating the arguments.

Experiments on the Model

1. Number of Clusters In this experiment we trained clustering models with different numbers
of clusters (see table 2.14)'°. If the number of clusters was rather small, more senses were united
in one cluster causing mis-classifications. An inspection of the cluster parameters of a model with
20 and 160 clusters!! for the verb begin showed that the average number of begin-senses in the
20 cluster model was 4.0 senses per cluster, where 13 clusters contained the verb begin. The 160
cluster model had 72 clusters that contained this verb with an average number of begin-senses of
2.72. The total ambiguity rate of the verb begin was 8.

10Significance testing yielded values over 0.05%. Values that got close to the threshold are nominated.
"1Only clusters with a probability over 0.01 were considered.
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c 20 54.72 (significance: 0.07)
c 40 55.90
¢ 50 (base system) 55.68
c 60 55.28
c 80 55.52 (significance: 0.05)
c 100 55.85
c 120 56.01
c 140 56.04
c 160 56.58 (significance: 0.07)
c 180 56.69 (significance: 0.05)
¢ 200 55.96

Table 2.14: Variation in the number of clusters.

Although the results were not significant, a tendency towards an improvement at higher cluster
numbers was visible. It seems that the more clusters we defined the more consistent the clusters
were and the better the sense classification turned out. If the number of clusters is too high, we
would expect a data sparseness problem because the number of tuples per cluster decreases and
the probability estimates become unreliable. Maybe this point is reached with 200 clusters.

2. Number of Iterations It was often observed that the performance of systems which are
trained with the EM algorithm improves over a couple of iterations and then starts to decrease
again. Our experiments on the number of iterations show that further training iterations did not
make a significant difference after the 30th iteration (see table 2.15'%). After 30 iterations the
results bounced up and down randomly. However, even after 100 iterations we did not reach a
turning point where results got noticeably worse.

Comparing LSC and PAC Since the LSC model does not include the frame in its parameters
and since the number of arguments must be fixed, we used a different tuple representation for
LSC. We created a pseudo argument containing the frame and we chose only subject and object
arguments (which are undefined if not contained in the frame): (begin, subj:obj:p:np, it, visit)

If we applied LSC to a data set without arguments, the result was similar to the corresponding
PAC result (see table 2.16). If we added arguments as described above, we got 50.65%. In
this experiment the model was losing out because it was trained on a rather small data set'® and
had similar data sparseness problems as the PAC version without WordNet. If we used a larger

12Values marked with an asterisk are significant results compared to the base system.
3The small data set contains only tuples with words existent in WordNet (2.4 million Tuple).
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c 20 ¢ 50 c100 ¢ 180
110  51.05*% 52.45* 53.38*% 53.63*
120 54.25*% 54.05*% 55.06 55.06
130 54.50% 55.25 55.62 55.09
140 54.13*% 55.82 5559 56.24
150 54.19*% 5579 5551 55.76
160 54.05% 55.68 5542 56.01
170 54.38* 5595 55.68 56.32
180 54.55% 55.65 5593 56.60
190 54.41*% 5570 5559 56.80*
1100 54.72 55.68 5585 56.69

Table 2.15: Variation of the number of iterations.

training set'*, performance improved considerably (see the last row of table 2.16). The result
shows that LSC suffers more from data sparseness than PAC which indicates that the argument
generalisation helps.

LSC PAC
no arguments 53.07 53.40
arguments, small corpus  50.65 55.68 (base system)
arguments, large corpus  55.03 56.45

Table 2.16: Comparing LSC and PAC.

Results

The final evaluation was carried out on the test data of the English Lexical Sample task with the
best combination of features according to the previous experiments. That was the data set where
the pronouns were partially mapped to the WordNet concept ‘person’. The model was trained
on a large data set with 180 clusters and 90 iterations. Table 2.17 compares our results to the
accuracy scores of other WSD systems on this task for verbs'®.

The performance of our system is close to that of the best system in the Senseval-2 evaluation
(Seo et al., 2001) but somewhat behind current state of the art (Chen and Palmer, 2009). How-
ever, it must be pointed out that we used very few features — only subcategorisation frames and

14In the large data set all tuples provided from the Reuters corpus were taken. Words not included in WordNet
were replaced by a placeholder (4.9 million tuple).
ISListings of the English Lexical Sample results of verbs can be found in Dang and Palmer (2002)
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MFS 46.1
Seo/Lee 57.6
Dang/Palmer 59.6
Chen/Palmer 64.6
PAC 57.06

Table 2.17: Results on the evaluation data set.

arguments provided from the clustering model—, and that our results are likely to improve with
additional features. Seo et al. (2001)'¢ used no linguistic information at all, but took into account
local contexts, topical contexts and bigram contexts. These features seem to be quite different
from ours. Incorporating them into our system would probably improve the performance.

Error Analysis and Future Work We had to deal with errors on different levels. Besides of
parser errors — in the Senseval-2 training set 4.1% of the target verbs were not returned — we
had the problem that the information in the tuples was often incomplete. Our Senseval-2 data
set contained in 2,669 out of 3,565 tuples one or more placeholders corresponding to arguments
missing in WordNet or to unrecognised objects. If we mapped pronouns that referred to humans
to the concept ‘person’, still 2,169 tuples contained a placeholder, but results got better. This
indicates that future work should concentrate on data preprocessing with anaphora resolution
and named entity tagging.

To avoid the bottleneck of manually annotated training data, we would like to turn our supervised
system into an unsupervised system by taking the ID of the most probable cluster as the ‘verb
sense’. To get an intuition of how well our system covers the senses with the clusters, we chose
the most frequent clusters for the verb begin in a 160-cluster model and looked up the most
probable senses included in these clusters. In the following, clusters and senses are listed in
descending order according to the frequency or probability respectively. The verb begin has
eight senses in the Senseval-2 data. The MFS begin%2:30:00:: was covered in several clusters
(c110, c14, c21, c26, c128), which all selected for the frame subj:s'’. It was interesting to see
that the clusters listed above chose different arguments. ¢110 selected for a location as a subject,
where as c14 selected for a process, c21 for a physical object — which seems to be a very general
cluster — ¢26 for a person and c128 for an abstraction. This means that this model fractions the
sense into finer grained sense distinctions than WordNet does. The sense begin%2:42:04:: was
included in c¢119 and c¢75 both holding the intransitive frame and again selecting for different
argument concepts: ‘process’ and ‘person’. The sense begin%?2:30:01:: is modeled about as well
as the described ones.

16http://www.informatics.susx.ac.uk/research/groups/nlp/
mccarthy/SEVALsystems.html#kunlp, last visited June 2009
17¢5> is a sentence slot.
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It was more difficult to model the sense begin%2:42:00:: which occurs only 24 times out of 508
begin-instances. Besides its sparseness it is very similar to sense begin%?2:42:04::. The WordNet
description for the former is: ‘have a beginning, of a temporal event’ and for the latter: ‘have a
beginning, in a temporal, spatial, or evaluative sense’.

Sense begin%?2:42:03:: shows that our system has problems if a sense occurs with different
subcategorisation frames. This sense was only tagged correctly if it occurred with the frame
subj:p:np. It must be pointed out though that we had only 17 instances of this sense in the
Senseval-2 corpus. The remaining three senses were never chosen by the system because they
occurred very rarely (seven times or less).

Verb Sense Disambiguation with Named Entity Recognition

In the shown experiments the selectional preferences did not improve results as much as we
expected. That is why we had a closer look at the data. Table 2.18 gives some examples of
Senseval-2 tuples, where the first column specifies the sense, the second the subject, and the last
one the object of the highly ambiguous verb carry. It shows that the nouns selected by the verb,
group well on a higher abstraction level.

carry subject object

42:01 Mr. Baker (person) weapon (artifact)
42:01 he (person) glass (artifact)

42:02 dept (abstract) guarantee (abstract)
42:02 bill (abstract) ban (abstract)

42:12 woman (person) significance (abstract)
42:12  man (person) stigma (abstract)

42:03 plane (artifact) bomb (instrumentality)

42:03 she (= a ship) (artifact) rigging (instrumentality)

Table 2.18: Selectional Preferences for carry.

These examples encouraged us to perform more experiments where we tried to collect more
detailed information for the arguments. The experiment settings were the same as explained
above. Changes were done in the pac-train version — we used the improved version pac-train-
2.1 implementing ESP-b in contrast to the earlier version implementing ESP-a — and in the
preparation of the data. We used the Stanford Named Entity Tagger!'® for each target sentence
of the Senseval-2 data set and for the Reuters corpus and extracted the verb-argument tuples. In
the resulting tuple set (NER data set), entities labelled as ‘person’ were replaced by the pseudo-
word ‘<PERSON>’, organisations were replaced with ‘<ORGANISATION>’, and locations

8http://nlp.stanford.edu/software/CRF-NER.shtml, last visited 9/25/2010
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turned to ‘<LOCATION>’. In addition, all pronouns referring to humans were also replaced
with the pseudo-word <PERSON>. In comparison, we used a data set where only pronouns
that referred to humans were replaced with the pseudo-word <PERSON> (PRON data set), but
named entities were left untouched, similar to the above described experiments.

We trained 50 cluster models with the modified Reuters corpus!®. Before training, we had to
adopt our WordNet (WN) version to the new data set. We inserted the pseudo-words into the ac-
cording WN synsets: (PERSON) is inserted into synset 17 (person, individual, someone, some-
body, mortal, soul), (ORGANISATION) is located in synset 44511 (administration, governance,
organisation amongst others) and (LOCATION) occurs in synset 35 with the synonym location.

The experiments were carried out on the training set of the Senseval-2 English Lexical Sample
task with a tenfold cross-evaluation. The results, however, turned out to be worse with Named
Entity Recognition (NER) as shown in Table 2.19. The difference between the systems had a
significance value of 0.07.

PRON data NER data MFS
c50 54.84 53.69 46.42

Table 2.19: Comparing NER system with PRON system.

In another experiment, we modified our WN file. Instead of integrating the pseudo-words into
synsets, we created new synsets for each pseudo-word and placed the synset rather high in the
WN hierarchy. The results did not change a lot (see Table 2.20).

NER data
pseudo-words deep in WN tree  53.93
pseudo-words high in WN tree  53.82

Table 2.20: Comparing different WN versions (models were trained in 80 iterations).

To find reasons for this result is difficult. On the one hand, results get clearly better because of
the replacement of pronouns. This suggests that further improvements in the argument extraction
process would help. On the other hand performance gets significantly worse when in addition
to the pronouns, the named entities are replaced. Possibly the named entities provided by the
NER tool are qualitatively not correct enough to help in the VSD task. The NER process inserts
some systematic errors. For example, the tuple: (begin, subj:obj, Europe, crusade) of the PRON
data set correspond to the tuple (begin, subj:obj, (LOCATION), crusade) of the NER data set.
Though in this context Europe is rather an organisation than a location.

YThe models are very large, because hardly any filtering of the training tuples was done. However, the models
return better results with smaller, less noisy training data.
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PAC-1.0 vs. PAC-2.1 for VSD

In these experiments we wanted to find out whether the new PAC-2.1 Model (ESP-b) outperforms
the PAC-1.0 Model (ESP-a) in the Senseval-2 task. Our hypothesis was that results would be
better, because of better modeling of the arguments.

We used the PRON data set as described in 2.3.2 which is trained with PAC-2.1 and trained an
equivalent model with PAC-1.0. For significance testing, we used the same method as in the
former VSD-experiments: a Binomial test with a significance threshold of 5%. As shown in
table 2.21 our expectations came true with a significance value of 0.35.

PAC-1.0 PAC-2.1 MFS
c50 54.39 54.95 46.42

Table 2.21: Comparing PAC-1.0 and PAC-2.1.

To get an intuition of what had changed, we had a closer look at some begin-tuples, that were
annotated according to the gold standard (GS) using the new system but had failed previously.
Almost all corrected tuples of the sense begin%2:30:00:: were formerly annotated with sense be-
gin%2:42:04::, like for example the intransitive tuple: (begin, subj, life) (GS: begin%2:30:00::).
In addition, we selected a very similar example tuple, with the GS-sense begin%2:42:04:::
(begin, subj, strike). The latter was labelled correctly in both systems. The two example tu-
ples differ only in their argument selection. But even the arguments refer both to an abstraction
in terms of the WordNet hierarchy.

Table 2.22 shows the clusters that were selected by the PAC model, and the classification result
of the two example tuples. The very dominant subcat frame of the begin%?2:30:00::-sense is
SUBJ:S where the most frequent frame of begin%2:42:04:: is the intransitive frame. This is
probably the reason, why the PAC-1.0 model selected the same cluster for both examples and
therefore chose the same sense, which was incorrect. In contrast, the PAC-2.1 model was able
to distinguish that the concept strike was an event and life was a state even though both were
abstract entities. Probably it was this fine difference that caused the selection of the GS sense.
This might be a sign that the subcat frame in the new model was less dominant than in the old
system (see 2.3.2) and that the arguments gained more importance in the classification process.

2.3.3 Semi-Supervised Sense Labelling for German
Introduction

We present a semi-supervized verb sense disambiguation technique for German data which is
based on PAC.
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PAC-1.0 PAC-2.1
argument strike life strike life
sense labelling | begin%?2:42:04:: begin%?2:42:04:: | begin%?2:42:04:: begin%2:30:00::
cluster c17(0.99) c 17 (0.99) c30 (0.54) cl6(0.32)
c48 (0.38) c41 (0.30)
c48 (0.22)
c30 (0.15)

Table 2.22: Cluster selection of two example tuples in PAC-1.0 and PAC-2.1 models

The application we have in mind is a text mining task as performed by SemTrack?® where com-
munication verbs — in a wider sense — need to be retrieved. So far, the project uses a list of
communication verbs for their analyses. This list is the result of a theoretical linguistic project
from the Institut fiir Deutsche Sprache Mannheim (Harras et al., 2004), which is very detailed
and therefore very ambiguous.

The goal is, to label a verb in context as either a communication verb or a non-communication
verb. For example the verb anfiihren/lead, cite in the context Truppen anfiihren/lead troups
would not be of interest, whereas ein Beispiel anfiihren/cite as an example would be considered
as a communication verb.

Method

We tried to influence the clustering algorithm such that it forces a labelled tuple into a predefined
cluster and then group similar tuples with the labeled tuple. For example: the tuple: <erzihlen,
SUBJ:OBJ, Lehrer, Geschichte> (<tell, SUBJ:OBJ, teacher, story>) is labelled with the sense
Telling and would be forced to be in cluster 1. During training the labeled tuple stays in cluster
1 with a high probability, and is joined by similar tuples. After the training, cluster 1 can be
considered as a ’Telling’-cluster and the verbs within the cluster as communication or ’7elling’
verbs.

Data

So far, there is very little work done on the field of WSD for German. That is why hardly any
annotated data is available. The only resource known to the authors is the Salsa corpus?!, where
verbs (and other predicates) are labelled with frames in the sense of FrameNet. In this work, the
Salsa frames are taken as word senses.

laboratory for computer based meaning research, http://www.semtracks.org/web/, last visited 09/25/2010
2 http://www.coli.uni-saarland.de/projects/salsa/page.php?id=index, last visited 09/25/2010
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There are quite a few Salsa frames that could be subsumed in a wider sense as communication
frames: Telling, Communication, Communication_response, Communication_manner to name a
few. However, except of Telling all of these senses occur less than 20 times in the corpus. That
is why we decided to only use tuples with the sense 7elling as targets for a start, since they are
very frequent in the corpus (1,479 Targets).

The Salsa corpus is used as a source for manually annotated data. In addition, the HGC corpus
is used to obtain enough training data for PAC. Both corpora are parsed by BitPar, and the tuples
are automatically extracted. We could have used the manually annotated syntactic information of
the Salsa corpus. Thus to make sure, that the tuples of both data sets are equivalent, we extracted
the Salsa tuples just like the HGC tuples, by means of the parser.

The Salsa corpus is randomly split into a training set (9,460 tuples) and an evaluation set (3,153
tuples with 372 Telling tuples). The training set was merged as labelled tuples with the HGC
tuples. The labelled target-tuples in the training set are marked with a cluster number which after
training will be the cluster with 7elling verbs, e.g. <erzdhlen, SUBJ:OBJ, Lehrer, Geschichte,
1> (<tell, SUBJ:OBJ, teacher, story, 1>).

Sense Classification and Evaluation

For the classification of the verbs, we trained a classifier in the same manner as in the former
VSD experiments using the Salsa training data. If c is a cluster and s is a sense, we first summed
over the probabilities of c for any tuple that was labeled with s. This gave us the frequency of
the joint occurrence of s and c.

(2.16) f(s,c) = > p(c|tuple)

tuple:sense(tuple)=s

To get the probability of s given ¢, we calculated the relative frequency. The probabilities of all
different senses within ¢ therefore sum up to 1.

f(s,¢)
2.17) p(s|lc) = =—————
The only difference to the former approach is, that in the former experiments each verb is treated
separately in the training process, i.e. the probability p(s|c) is calculated for each verb and not
for all verbs in total.

Sense classification is accomplished exactly like in the Senseval-2 experiments:

(2.18) p(sltuple) =Y p(cltuple)p(s|c)

For evaluating the results, we calculated the f-score and compared our results with the most
frequent sense (MFS) baseline. If a tuple could not be classified, it was considered to be a non-
Telling tuple.
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Experiments and Results

We accomplished experiments with several models and data sets. We varied the amount of slots
and fillers within the tuples. The standard data set contained no modifier-PPs. In another data set
the tuples contained all PPs that were extracted by BitPar. Finally we created a data set where all
PPs within a tuple were eliminated.

We chose different granularity levels in terms of the classification of the labelled data. We trained
models where all labelled tuples were forced into one cluster (coarse grained model).

In other models, the 7elling tuples were allocated to several clusters according to the subcat
frame. All 7elling tuples that shared the same subcat frame were grouped into one cluster (fine
grained model).

The results are listed in Table 2.23 and 2.24. Unfortunately, the MFS baseline is unbeatable high

model precision recall f-score

c30 032 097 048
c50 032 094 048
c100 0.36 094 0.53
c150 0.38 094 0.54

Table 2.23: Variation in the number of clusters in a fine-grained model.

(0.97 f-score), such that the results did not even come close to the baseline (see Table 2.24).

model precision recall f-score
fine grained 0.32 0.94 0.48
coarse grained 0.53 098 0.68
all PPs considered, fine grained 0.41 091 0.56
no PPs considered, fine grained 0.32 0.97 0.47
unsupervised model 0.49 0.98 0.65
MES baseline 0.94 098 0.97

Table 2.24: Different 50 cluster models in comparison.

Still the experiments show the following.

e The semi-supervised model outperforms the purely unsupervised model.

e Higher numbers of clusters seem to be better, which confirms the results of the Senseval-
experiments.
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e Performance of the coarse grained model are more accurate than fine grained models.
Probably the fine grained models are far too differentiated to be successful.

e Detailed PP information seems to be helpful. Here, the fine grained model is quite suc-
cessful.

Cluster Analysis and Discussion The 7elling cluster, generated by the coarse grained c50
model, looks quite encouraging. The cluster is the most probable cluster of the model and con-
tains verbs and subcat frames as shown in Table 2.25. The last column gives information if
the verb occurred as a labelled verb in the training corpus. Quite a few communication verbs

Clusterl 0.089902 labelled
verbs

sagen 0.251515 +
erkliaren 0.092334 +
meinen 0.064200 -
berichten 0.050434 +
mitteilen 0.048037 +
betonen 0.030940 -
wissen 0.021287 -
weillen 0.014975 (probably a lemmatisation error) -
schreiben 0.013983 -
ankiindigen 0.012152 -
erzdhlen 0.011936 -
glauben 0.011220 -
fordern 0.010654 -
bestdtigen 0.010318 -
feststellen 0.010299 -

subcat frames

SUBJ:S-OC (12) 0.674082
SUBJ (1) 0.202031
SUBJ:OBJ (2) 0.071516

Table 2.25: *Telling’-cluster of a coarse grained c50 model.

group to the labelled verbs due to the clustering process like meinen/mean, betonen/emphasise,
erzdhlen/tell and others. Non-communication verbs like wissen/know probably occur in the clus-
ter, because of the very prominent subcat frame SUBJ:S-OC, that fits wissen/know as well. It is
interesting that the subcat frame with Dative (in: Er sagt ihm .../He told him ...) did not occur
in the model with a probability above the standard threshold. This indicates that a more fine-
grained distinction of the Telling tuples would be helpful. Possibly performance gets better, if
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two clusters are selected as Telling clusters: one cluster for tuples with the very frequent slot
S-OC (dass/that sentence) and a second cluster for tuples with a Dative slot.

Mainly the precision values turned out to be problematic, because quite a few non-7elling verbs
were allocated in the 7elling cluster. These were verbs with rather low probabilities. Better
results were achieved when only verbs with a probability of at least 0.25 where taken (0.71
f-score with the coarse grained ¢50 model). Another way to improve precision could be a post-
processing step, with a list of (ambiguous) communication verbs like the above mentioned list
of (Harras et al., 2004). Non-communication verbs with very similar selectional preferences like
wissen/know and glauben/believe could be this how excluded from the 7elling cluster.

So far the system is in the early stages of development. Many parameters like number of clusters,
probability threshold, granularity level etc. could be optimised. However, the main problem of
the system is the very high MFS baseline for our example sense 7Telling. The Telling verbs of
the Salsa corpus are (i) not very ambiguous and (ii) Zelling verbs that have another MFS like
bedeuten/mean hardly occurred.

Besides the problem that communication verbs are very diverse and unspecific in terms of se-
lectional preferences, the Salsa data don’t provide optimal information for the task. The manual
labelling of the data is done verb by verb and not sentence by sentence which means that sel-
dom verbs tend to have no annotation yet. This approach fits quite well to a classical WSD task
where certain verbs are to be disambiguated. Yet, when verbs with a certain sense need to be
retrieved, it is important to have the rather inconsiderable verbs that rarely occur in text as well,
besides the very common ones. Otherwise no realistic distribution over all communication and
non-communication verbs is given. These rather uncommon verbs are the examples which need
to be generalised, thus these are the examples where clustering could improve results.

Future Work It would be interesting to see, if results get better when using different seeds for
the model training. One option might be to get training material from Harras et al. (2004) instead
of using the Salsa data. Harras et al. (2004) make extensive use of examples taken from written
German corpora. These examples would provide enough material for training. In addition, all
communication verbs would be covered.



Chapter 3

Implementation

Section 3.1 describes the implementation of the node pruning strategy (NPS) model, and Sec-
tion 3.2 describes the implementation of the edge pruning strategy (EPS) model.

3.1 Model 1 (NPS): LSCpref

The NPS model is called LSCpref, as it represents an extension of the LSC approach (Rooth et al.,
1999).

3.1.1 Overview

The stochastic process underlying the probabilistic model in Section 2.1.1 on page 3 is imple-
mented as a graph that captures all possible ways of analysing or generating a particular tuple
(v, f,a1,...,an,). The graph is implemented as a directed acyclic graph. Transitions of the
stochastic process are modelled by edges which are annotated with the transition probabilities.
States of the stochastic process are modelled by nodes. Nodes are either of the type AND-node or
OR-node. AND-nodes force the stochastic process to follow all edges from the node with probability 1.0.
In OR-nodes the stochastic process follows exactly one edge from that node with the annotated probability.
The graph directly corresponds to the PCFG defined in Section 2.1.2.

NB: The principal aim of our implementation is to analyse tuples (v, f, a1, ..., an f> by computing a prob-
ability, an inside probability to be precise, for them. Therefore, we decided to build the directed graph by
starting with the elements of the tuple and ending in a unique state (viz TOP-node or TOP-state) which
represents the whole tuple. The shape of the graph is thus a reversed tree; the TOP state corresponds to
the start symbol of the PCFG, the start states correspond to the terminal symbols of the PCFG.

For every PCFG rule A — Bj...B,, associated with the probability p 4 the following nodes and edges are
added to the graph in the following way.

51
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1. If the graph does not contain a node corresponding to the non-terminal A then add a new OR-node.
2. If n =1 then

(a) add a new OR-node for By,
(b) add an edge from Bj to A, and

(c) associate that edge with p4.
3. If n > 1 then

(a) add a new unique AND-node that corresponds to (B, ..., By);
(b) add an edge from (B4, ..., By,) to A, and

(c) associate that edge with p4;

(d) add n new OR-nodes By, ..., By,

(e) add an edge from each of these new nodes to (B, ..., By,), and

(f) add an associate each edge with the probability 1.0.

The principal data structures of the implementation are the classes mdl_emgraph and subgraph.
mdl_emgraph implements the complete stochastic model which is to be trained. It consists of all relevant
states, transitions and transition probabilities.

add expected frequencies

MDL based pruning

mdl_emgraph

EM training
(Maximisation)

EM training
(Expectation)

subgraph

symbolic analysis

Figure 3.1: Overview of the MDL-EM training.

subgraph stores the part of the mdl_emgraph which provides part of the analysis of a certain data
tuple. It comprises all states and transitions from the states corresponding to the elements of the tuple to the
TOP-state. The iterative training process is briefly sketched in Figure 3.1. For each data tuple, the process
symbolic analysis produces a subgraph consisting of all states and transitions of the md1_emgraph
that are visited with a probability greater than 0.0 when that tuple is analysed by the stochastic model. For
each subgraph the inside-outside algorithm computes the expected frequency for each transition. These
expected frequencies are added to the expected frequencies of the md1l_emgraph. After all tuples have
been processed, a certain set of states and transitions in the md1_emgraph is pruned according to some
heuristics that are based on the MDL principle. After pruning, new probabilities are computed from the
expected frequencies for all transitions of the md1l_emgraph. This step is called maximisation. Before
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starting a new training iteration certain parts of the md1l_emgraph are expanded — these new parts are
subject to pruning in the next iteration.

The implementation uses the following external resources:

1. WordNet which is a lexical resource from Princeton University and can be obtained from
http://wordnet.princeton.edu;

2. the Boost graph library which is a free open source library that is developed at the site
http://www.boost.org.

3. Online documentation of the files can be generated with the tool doxygen. It is called with the
command make doc in the source directory. The files are generated in the relative directory doc.

3.1.2 Data Structures
Graph Implementation

The graph classes are based on the Boost Graph package'. The class hierarchy is shown in Figure 3.2.

‘ graph_extension_and_or ‘ ‘ graph_extension_mapping ‘

‘ subgraph ‘ ‘ wnsubgraph ‘

mdl_emgraph
JAN

mdl|_cut_emgraph mdl_node_emgraph

Figure 3.2: Class hierarchy of the graph classes.

The following classes are used in this implementation:

graph The graph class specifies a set of states and a set of transitions. Both entities are identified uniquely
by integers between 0 and the number of states and transitions, respectively, in the graph minus one.

A graph object can be changed only by adding states and transitions, but note, that it is not possible
to remove neither states nor transitions. States are added by the method
ensure_states (unsigned int).
Transitions are added by the method
connect (STATE, STATE).
If connect () is called with a state that is not a member of this graph, then it returns the constant

'See www.boost.org for detailed documentation.
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no_state. There are no double connections between two states, that means, there are no two
transitions in a graph with the same start and end states.

After changing a graph object the method compute_first_and_final_states () should be
called. It analyses the whole graph and determines all start states of the graph, i.e. all states which
don’t have any incoming transitions, and all terminal states of the graph, i.e. all states which do not
have any outgoing transitions.

This graph class supports the standard stream operators << and >>. Furthermore, it provides
methods that output graphs in GraphViz format?. These methods can be parametrised with property
maps or keymaps, see below, that hold properties of the states or transitions.

graph_extension_and _or This class is an extension to the graph class and it can only be used together
with the graph class. It adds types to states, so that each state is either of type AND-state or OR-state.
The default type is OR-state.

graph_extension_mapping This class is an extension to the graph class and it can only be used in com-
bination with the graph class. This class adds the subgraph functionality. It provides mappings
from the (local) states and transitions of this extended graph to the (global) states of another graph
object.

Classes that are derived from this class have to override the following methods: connect (STATE,
STATE), is_.connected (STATE, STATE),ensure_states (unsigned int),
get_num_states ().

emgraph Graph for modelling the stochastic process that can be trained with the EM algorithm. States are
of type AND-state or OR-state because emgraph is derived from graph_extension_and_ or.
Transitions are associated with the following two properties: (i) the transition probability encodes
the probability that this transition is selected by the stochastic process given that the process is in
the state where this transition starts; (ii) the transition frequency is used for EM training. It stores
the total estimated frequency assigned by the training with all data tuple. This frequency is used in
the maximisation step to compute a new transition probability.

The emgraph can be changed by adding states and transitions with the corresponding methods from
the graph class.

Before starting EM training the emgraph has to be initialised, see for example
initializeProbs_random(int, unsigned int) andinitializeProbs_uniform().

EM training of this emgraph requires the classes subgraph and inside_outside. A precon-
dition of the whole training process implemented here is that the emgraph has one unique topmost
state (end state) and that there is a path from all other states in this emgraph to this topmost state.

mdl_emgraph This class is used as an abstract class which provides the functionality of pruning within
the EM training algorithm. The pruning is guided by a heuristic that is based on miminimal de-
scription length (MDL).

This class specifically implements MDL-EM-training for hierarchies that are directed-acyclic-graph
structures which have a unique topmost state.

The actual heuristics are defined in the subclasses md1 _node_emgraph and mdl_cut_emgraph

Zsee www.graphviz.org.
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mdl node_emgraph This class implements the abstract class mdl_emgraph. Pruning is node-wise.
That means, for every leaf-node and the corresponding transitions in the selectional preference
model the algorithm decides whether it should be pruned.

mdl_cut_emgraph This class implements the abstract class mdl_emgraph with a cut-wise pruning
heuristics.

subgraph This class is derived from graph and graph_extension_mapping and implements sub-
graphs of emgraph objects. A subgraph is a graph which is associated with an emgraph object.
And every state and every transition of this subgraph is associated with exactly one state or tran-
sition, respectively, from the associated emgraph. The transition probablities of this subgraph
are directly taken from the corresponding transitions of the associated emgraph.

In EM training the inside-outside algorithm is applied to subgraphs.

Subgraphs are constructed by the procedures

e emgraph: :findNewSubgraph_special (),
e graph::add_to_subgraph (), and

e mdl emgraph::add upper_states_recursively.

This subgraph class provide methods that output graphs in GraphViz format’. These methods
can be parametrised with property maps or keymaps, see below, that hold properties of the states or
transitions.

wnsubgraph This class is derived from graph and graph_extension_mapping. It is an auxiliary
class that is used to filter the nodes and edges of a WordNet hierarchy which are relevant with
respect to the given data.

Map Implementation

Properties of states and transitions can be efficiently handled by containers which are built upon vectors,
because in every graph object all states and all transitions are identifiable by a continuous sequence of
integers starting from O and ending at the number of states or transitions, respectively, minus 1.

These maps support the standard stream operators << and >> to provide easy storing functionality.

property map The property_map class template is a map implementation that is based on a vector.
States and transitions directly correspond to the position in the underlying vector.

keymap The keymap class template is a the implementation of a bidirectional map or of an index.
It assigns every object which is put into this keymap an integer number starting from 0. If this
keymap already contains this object, then it simply returns the integer which it has already assigned
to it.

Internally, properties are stored in a vector to model that every state or transition, respectively, is
associated with a property, and properties are stored in a map, in order to model that every property
is associated with exactly one state or transition, respectively.

3see www.graphviz.org.
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Interface to WordNet

The class wngraph is the interface to the WordNet database using the princeton WordNet API in C. Every
synset from WordNet and every noun from the lexicon is associated with a unique positive integer as a
key.

e The method getState (std::string) returns the key of the lexical entry that matches the
given string according to the WordNet APL

e The method toString (unsigned int) returns the string that is associated with the given
key by the Wordnet API.

The actual graph object that stores the WordNet hypernym hierarchy can be retrieved with the method
getGraph ().

The location of the database has to be specified by environment variables. It is either in SWNHOME /dict
or in the directory specified by SWNSEARCHDIR. Since the WordNet API uses global state variables we
apply the singleton-pattern which ensures that there is only one instance of this class for one process. A
reference to the instance is retrieved with the static method wngraph: :getInstance ().

3.1.3 EM Algorithm

The implementation of the expectation-maximisation (EM) algorithm has been briefly described on page
52 and Figure 3.1 illustrates the process schematically. The functionality of the EM training is imple-
mented by the following classes:

emgraph see above.
subgraph see above.

inside_outside This class implements the inside/outside algorithm which computes the exptected fre-
quencies for all transitions of a subgraph. Every inside_outside object is associated with a
subgraph.

e The method inside () computes the inside probabilities of all states of the subgraph.
A reference to the property_map with all inside probabilites is returned by the method
get_state_iprobs.

— If s is an AND-state with n incomming transitions from n lower states [;...[,, then
inside(s) is computed as follows:

inside(s) = H inside(l;)
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— If s is an OR-state with n incomming transitions ;. ..t, from the lower states [y...[,,
then inside(s) is computed as follows given that p(t) is the transition probability of ¢:

inside(s) = Zp(ti) x inside(l;)

e The method outside (FREQ) computes the outside probabilities of all states of the sub-
graph. Then it computes the expected frequencies for every transition and stores them in the
subgraph with the method subgraph: : setTransFreq (TRANS, FREQ) . A reference
to the property_map with all outside probabilites is returned by the method get _state_iprobs.

— Let [ be a state and ¢; . . . ¢,, be the transitions from [ to the upper states s ... S,:
n
outside(l) = Z outside(ty)
i

where outside(ty,) is defined as follows:

— If s is an AND-state with n incomming transitions from n lower states [;...[,, then
outside(t,) with x < n is computed as follows:

n
outside(t,) = outside(s) * H inside(l;)
iFx
— If s is an OR-state with n incomming transitions %;...t, from the lower states Iy...[,,
then outside(l,) with x < n is computed as follows given that p(¢) is the transition
probability of ¢:
outside(t,) = outside(s) * p(ty)

em_analysis This class is intended to provide the methods that produce a subgraph of a givenmdl_emgraph
from a given data tuple.
So far this class does not exist. The functionality is spread over the classes graph, emgraph, and
md1_emgraph. The methods are
e emgraph::find_subgraph_special(...),
e graph::add_to_subgraph(...),and

e mdl emgraph: :add_upper_states_recursively(...).

3.1.4 MDL Model

The MDL model is implemented by the class md1_emgraph that manages all data structures and meth-
ods. It also integrates the specific MDL methods for both models as virtual methods.

The only property map that belongs to an md1l_emgraph is my_state_item, managing the number of
nominal concepts that are below a certain state within the graph. This property is relevant for the mdl
calculations, as we need to know how many nouns are below a certain WordNet synset. (The property
map, however, manages this property for all states (and not only for WordNet states), as this is easier to
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compute.) An md1l_emgraph is initiated by its number of states and transitions, and the above described
property map.

In what follows, we provide a brief overview of the main classes and methods that are implemented for
mdl_emgraph:

putting and getting the number of lexical items in the graph (— property map my_state_item);

mappings between a priori and selectional preference WordNet states (in both directions, for states,
transitions, etc.);

checks on the activity of members and transitions within MDL models;
auxiliary methods for MDL computations;

calculation of selectional preferences (based on a comparison between probability paths in selec-
tional preference models and the a priori model);

printing routines for whole active graph; note that only “active” parts are printed (cf. details in the
model descriptions below);

eading routines for whole active graph: reads output of printing routines (and adds interpretation to
induce all relevant data structures, cf. model descriptions below)

classes for comparing/sorting probabilities/selprefs.

The class mdl_cut_emgraph is an mdl_emgraph for an MDL model that works cut-wise, cf. Sec-
tion 2.1.3. It is implemented within three main steps, (1) the initialisation of the data structures, (2) an
expansion of the current (i.e., from the last iteration) model towards its hyponyms, and (3) a pruning step.
The pruning takes place after estimation but before maximisation, i.e., it works on frequencies as obtained
in the very same iteration.

The model relies on three central data structures:

e a map of strings and sets of states std: :map<std::string, std::set<STATE>> called

cfs_wn_map: for each selectional preference model, there is a list of member states (with a priori
model state numbers) that are part of the current cut;

a map of strings and sets of states std: :map<std::string, std::set<STATE>> called
cfs_graph_member that are “active” members in the current selpref model, including the cut
itself and hypernyms of the cut members up to the global wordnet top state; cfs_wn_map is a
subset of cfs_graph_member;

a map of strings and sets of transitions std: :map<std::string, std::set<STATE>>
called cfs_graph_trans: for each selectional preference model, there is a list of active tran-
sitions (with a priori model transition numbers), i.e. transitions that exist within the selectional
preference model that are “active” and thus not pruned.

In what follows we provide an overview of the implementation of the three main steps within the MDL
model.
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(1) mdl_init wn_concepts

initialises lists of WordNet concepts and transitions, for each selectional preference model: it uses the
WordNet top state as only starting state for the cut members and all members (in cfs_wn_map and
cfs_graph member), and an empty list for the transitions (in cfs_graph_trans);

(2) mdl_activate_new_wn_concepts

expands the members in the current cut (unless they are terminal states) towards their hyponyms,
for each selectional preference model; the expansion keeps cfs_wn_map as it was (i.e., in the later
pruning step, the just expanded cut states are checked first); the member list cfs_graph_member
and the transition list cfs_graph_trans are updated according to the hyponyms;

the transition probability between the new hyponym and its a priori concept is set to 1, and the transi-
tion probability between the cut member and its a priori concept is set to zero; the probability between
the member and its hyponym within the selectional preference model is activated by the respective
probability within the a priori model;

(3) mdl _update_wn _concepts

checks for each cut state and based on MDL calculations whether the expansion in the current itera-
tion is kept or pruned back; if the hyponyms are pruned, the respective transition frequencies of in the
selectional preference model are used to increase the frequency of the transition between the hyper-
nym state in the a priori and the selectional preference model, and also to increase the frequency of
the respective transition in the a priori model; the frequency transfer is propagated recursively down-
wards through the selectional preference model in the same way (as there might be hyponyms to the
pruned hyponyms even if one of its transitions to a hypernym is pruned; member and transition lists
are adjusted.

3.1.5 Tests

All above classes are tested with respect to their data structures and methods. Le., for each class there is
at least one C++ test script that artifically sets up the data structured required by the specific class, and
defines test cases that check on the various conditions of the class. The tests are used to ensure that —in
case one has changed parts of the implementation— there was no change in the specific cases (and thus in
the central meaning of the implementation). The tests are executed by make testall.

3.2 Model 2 (EPS): PAC

3.2.1 Data Structures
The main class of the PAC implementation is called PAC. A PAC object comprises

e a WordNet object for the noun hierarchy

e an array of Cluster objects for the model
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e a back-off model and a prior model
e a set of tables (verbtable, frametable, slottable, argtable, frameslot) for mapping strings to indices
and vice versa.
A WordNet object stores a noun hierarchy as a bidirectional graph by means of four arrays:
e first_hyponym: Position n of this array holds the position of the first hyponym of synset n in the
array hyponym.

o first_hypernym: Position n of this array holds the position of the first hypernym of synset n in the
array hypernym.

e hyponym: contains the sequence of hyponyms of all synsets starting with the hyponyms of synset
0, followed by the hyponyms of synset 1 and so on. The hyponyms of synset n are found at the
positions ranging from first_hyponym[n] to first_hyponym[n+1]-1.

e hypernym: contains the sequence of hypernyms of all synsets. The hypernyms of synset n are
found at the positions ranging from first_hyponym[n] to first_hyponym[n+1]-1.

A Cluster object comprises

o the cluster probability prob
e an object of class SimpleSlotInfo for the verb probabilities

e an array of Framelnfo objects for storing the selectional probability submodels.
A Framelnfo object comprises

e the index of the frame
e its probability

e an array of SlotInfo objects

A SlotInfo object stores the selectional preferences for one particular slot and comprises a SimpleSlot-
Info and a WNSlotInfo object. Only one of the two subobjects is actually used. Which one is used is
determined by the value of the variable uses_wordnet.

A SimpleSlotInfo object comprises a set of IDProbFreq objects. Each IDProbFreq object stores the
index and the probability for one of the possible slot fillers. The submodel for the predicate probabilities
is also represented with this data structure.

A WNSlotInfo object comprises a hash table which contains an entry for each WordNet link contained in
the selectional preference model of the current slot. The has table maps the index of the WordNet link to
an object of class WNLinkInfo. The index of a WordNet link is its position in the array hyponym (see
above).
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A WNLinkInfo object holds the probability of a link.

Each probability of a PAC model is associated with a variable called freq which is used to accumulate
estimated frequencies from which the probability is later reestimated.

The other important data structure is the EMGraph class which implements the inside-outside algorithm.
The data structure for the inside-outside computation is stored as an and-or-graph by means of five arrays:

o first_expansion Position n of this array contains the position in the array first_subnode where the
first “or”’-subnode of the current node is stored.

o first_subnode Each element of this array contains the position in the array subnode where the first
“and”’-subnode of the current “or”’-subnode is stored.

e subnode Index of the respective child node

The child nodes of the first “analysis” of the node with index n are found at subnode[first_subnode[first_analysis[n]]]
... subnodel[first_subnode[first_analysis[n]+1]-1]. There are six more arrays:

e expansion_prob holds the probabilities of the expansion of the “or”’-nodes to the corresponding
“and”-subnodes

o expansion_freq holds a pointer to frequency accumulator for the corresponding expansion proba-
bility

e node_iprob is used to store the inside probability of the (“and”-)nodes

e expansion_iprob stores the inside probabilities of the “or”’-nodes

e node_efreq stores the estimated frequency of the nodes

e expansion_efreq stores the estimated frequency of the “or”-nodes

Finally there are two data structures for the representation of data tuples: VATuple comprises a verb index,
a frame index, and an array of argument head indices. FVATuple additionally comprise a tuple frequency.

3.2.2 Training

The training program reads the training tuples one by one and creates an FVATuple object. An EM-
Graph object is built from the FVATuple object (EMGraph::build), and the inside-outside algorithm
(EMGraph::estimate_freqs) is run to compute estimated frequencies for all links of the EM graph.
The estimated frequencies are accumulated (EMGraph::increment freqs) in the freq values of the PAC
model.

After all training tuples have been processed, the model parameters are reestimated (PAC::estimate_probs)
from the accumulated frequency estimates. The selectional restrictions models are pruned and then ex-
tended again (PAC::extend selpref). Then the next training iteration starts. After a given number of
training iterations has been completed, the resulting model is stored (PAC::store) in the output file.
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EMGtraph::build builds the top-level of the EMGraph with the cluster nodes and the predicate nodes, and
then recursively calls EMGraph::add_frame to build the lower levels of the graph. EMGraph::add _frame
builds nodes for the frame expansions and the expansion of “simple” slots (which do not use WordNet).
EMGraph::add_wngraph is called to build the subgraphs forwith the WordNet synset expansions. EM-
Graph::add_wngraph in turn calls EMGraph::add_hyponyms.

EMGraph::estimate _freqs first calls EMGraph::inside_probs to compute the inside probabilities bottom-
up and then computes the estimated frequencies top-down.

PAC::estimate_probs computes the cluster probability estimates, calls Cluster::estimate_probs to com-
pute the frame probabilities, and SimpleSlotInfo::estimate_probs to compute the argument probabili-
ties for “simple” argument slots whose selectional preferences are not generalised based on WordNet.
PAC::prune slot is called to prune the selectional restriction models of slots which do use WordNet, and
to reestimate their parameters.
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User Manual

4.1 Model 1 (NPS): LSCpref

LSCpref outputs a probabilistic model (Section 4.1.1) that can be transformed into a reader-friendly rep-
resentation by params2cluster (Section 4.1.2) and then visualised by a GUI called ClusterViewer
(Section 4.1.3).

4.1.1 LSCpref

LSCpref is a command-line tool that expects

e a parameter file (as only parameter), and

e a WordNet for the language to be used, in a format that allows access to the information by the
WordNet functions, cf. http://wordnet.princeton.edu/doc, Section 3 (Library Func-
tions).

The parameter file defines all parameters that are necessary to run LSCpref. The first three lines of the
file are irrelevant (i.e., not read by LSCpref); the subsequent 11 lines match the following pattern:
<parameter name>TAB<parameter value>

The parameters are defined as follows.

e input_file: file with input training tuples

Each input tuple must be organised according to a specific pattern:
column 1: frequency of the tuple;

column 2: verb;

column 3: frame type (with the frame arguments separated by “:”);
column 4...n: lexical heads of the n — 3 arguments in the frame.
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An example tuple with respect to this pattern is the following:
100 drink subj:o0bjD girl tea

In addition to this format, the tuple definitions underlie further restrictions:
— The frame is not allowed to contain multiple identical arguments, e.g., subj:ob7j:0b7j.
— The number of lexical heads must be identical to the number of arguments in the frame.
— All (nominal) lexical heads must be defined in WordNet (if they are “relevant” arguments,
see below).
If a tuple is not defined according to the above restrictions, it is filtered from the input data.
#clusters: number of clusters

#iterations: number of training iterations

init probs: type of probability estimation
The following four parameter values are allowed as types of probability estimation:
— random: All probabilities in the EMgraph are initialised randomly.

- random_only verbs: Only the probabilities of the verbs in the clusters p(v|c) are ini-
tialised randomly; all other probabilities are initialised uniformly.

- random but_cluster: All probabilities but the cluster probabilities p(c) (which are ini-
tialised uniformly), are initialised randomly.

- random_items: The probabilities of the verbs and the frames in the clusters, p(v|c) and
p(f|c), are initialised randomly. All other probabilities are initialised uniformly.

seed: seed for pseudo-random initialisation of probabilities, with 1 <= seed <= 1,000

const: constant for pseudo-random initialisation of probabilities, with 1 <= const <= RAND_MAX;

for RAND_MAX, use const=999

function file: file with list of “relevant” argument types in frames, e.g., subj, obj,
pPp—1in, etc.

If the parameter value is #, there is no restriction on the types of arguments. Otherwise each line in
the file contains an argument type that is taken into account.

This definition of argument types allows the user to explicitly exclude arguments that are not rel-
evant as nominal selectional preferences, e.g., adverbs, adjectives, particles, etc. Only arguments
that are explicitly defined as “relevant” are used from the input file.

freq_cut_off: minimum frequency for input tuples to be used in training

wn_directory: directory that contains the WordNet files

The WordNet files that are relevant for LSCpref are only data.noun and index.noun. How-
ever, the WordNet library functions also expect the following files (which might be empty to use
LSCpref,though): data.adj, data.adv, data.verb, index.adj, index.adv,
index.verb, adv.exc, noun.exc, verb.exc, sents.vrb, sentidx.vrb.
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e mdl _type: type of MDL model, i.e., cut or node; NB: This manual only describes the cut
mode, because the node mode has been re-implemented by PAC.

e result_file: name of file for output parameters of trained models

The parameter names are not relevant for LSCpref (i.e., column 1 in the parameter file is not read); what
is relevant are the parameter values in column 2. An example parameter file (starting with line four) looks
as follows.

input_file: test-tuples
#clusters: 20

fiterations: 50

init_probs: random_only_verbs
seed: 1

const: 5000000
function_file: args-test.txt
freq cut_off: 10
wn_directory: WN-pref-files/EN-3.0
mdl_type: node

result_file: test-output

An example call using the above parameter file test-params could be
LSCpref test-params >& test-output.log.

During training, a log is written to standard output. In addition, the model parameters are written into
test-output.params_#iteration

after each 5th iteration, i.e., test—output .params_5, test—output .params_10, etc. The final
parameter output is called test-output .params. The output parameters encode the transitions of
the graph, using four columns per transition: start state of transition in column 1, end state of transition
in column 2, transition probability in column 3, and transition frequency in column 4. This output can
be transfered to an output format that is input to the GUI (described in Section 4.1.3) with the script
params2cluster (described in Section 4.1.2).

4.1.2 params2cluster

params2cluster is a command-line tool that reads the parameter output from LSCpref (described
in Section 4.1.1) and outputs probabilities of clusters, verbs and frames in clusters, and selectional prefer-
ences, in a format that can be used as input to the GUI (described in Section 4.1.3).

The tool requires two parameters:

e a parameter output file from LSCpref, cf. Section 4.1.1



66 CHAPTER 4. USER MANUAL

e a method for how to calculate the selectional preferences:

The selectional preferences for WordNet synsets in the trained models cannot directly be read from
the model parameters. To calculate the selectional preferences for a specific cluster-frame-argument
combination, for each WordNet synset that has been identified as relevant for this combination we
compare the path probability of the path between the WordNet synset and the WordNet top state in
the selectional preference model with the path probability of the path between the same WordNet
synset and the WordNet top state in the a priori model. This comparison is done in three different
ways:

— diff calculates the difference between the two path probabilities,
— div calculates the division between the two path probabilities, and

— skew calculates the skew divergence between the two path probabiliites.

The output of the tool is automatically named <params_file>_cluster_method, with <params_file>
the name of the parameter output file. For example, if the parameter output file was test-output . params_5
and the method to calculate the selectional preferences was di f £, the output of the parameter transfer is
called test-output.params_5_cluster_diff.

An example call for params2cluster could be
params2cluster test-output.params. 5 diff.

4.1.3 GUI: ClusterViewer

The GUI currently has to be started via command line specifying the file that will be displayed:

java ClusterViewer <name of cluster file>

4.2 Model 2 (EPS): PAC

The PAC implementation of the clustering models comprises the following set of programs:

e pac-train trains the model on verb-argument tuples and stores it in a binary format.
e pac-print prints the model in a human-readable form.
e pac-prob computes the probability of a tuple according to the clustering model

e pac-clusterprob computes the conditional probability of each cluster given the tuple and prints the
most likely clusters and their probabilities.

e pac-test checks whether all probability distributions of a model sum up to 1 (with some tolerance
for rounding errors).
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e pac-resume-training can be used to continue a training run which was started with pac-train. This
program has not been heavily used so far. The result of the resumed training cannot be expected
to be exactly the same as the result of uninterrupted training because the probabilities of pruned
transitions are replaced by back-off probabilities in the printed model.

The usage of the different programs and the file formats are documented in man pages of the programs.
Run “man pac-train” for instance.

A typical call of the training program looks as follows:

> pac-train -vp -o 10 -c 50 —-i 100 -s simple-slots wordnet tuples model

This command will train a PAC model with 50 clusters (-c 50) for 100 iterations (-i 100) using an MDL
measure with variable precision (-vp) on the tuples stored in the file tuples. The resulting model
is stored in the file model. Every ten iterations (-o 10), the current model is stored in a file called
model . tmpN where N is the current iteration. The noun hierarchy for generalising selectional prefer-
ences is read from the file wordnet. The file simple-slots contains a list of slots whose heads are
not nouns (such as SBAR or ADJ) and therefore cannot be generalised using WordNet.

The noun hierarchy is stored as follows:

0 GNROOT
6998 7091 25455 32308 41234
1 Artefakt Werk
2 3 10 16 41 61 100 110
2 Teil
3 Werkstck
4 5 6 7

Each entry consists of two lines. The first line contains the synset index and the list of nouns contained in
the synset, all of them separated by tab characters. The second line starts with a tab character and contains
the list of hyponym indices.

The tuples file contains the tuples:
60 zunehmen SUBJ Wettbewerb

2 brauchen SUBJ:OBJ Staat Waffe
12 helfen SUBJ:VP-0C Trick <NONE>
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Each line contains a frequency, a predicate (verb), a subcat frame, and a list or argument heads. All
elements are separated by tab characters. The different frame slots are separated by colons (:). If some
slot (such as VP—0C) is not associated with a head, the pseudo head <NONE> has to used instead.

The model is stored in a binary format. The pac-print program can be used to print it in human-
readable form.

The size of the model grows with the number of different frames and the number of predicates (verbs). If
the model training is too slow, it can help to reduce the number of different subcat frames and predicates
by filtering the tuples.
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