7 research outputs found

    Polynomial-time sortable stacks of burnt pancakes

    Get PDF
    Pancake flipping, a famous open problem in computer science, can be formalised as the problem of sorting a permutation of positive integers using as few prefix reversals as possible. In that context, a prefix reversal of length k reverses the order of the first k elements of the permutation. The burnt variant of pancake flipping involves permutations of signed integers, and reversals in that case not only reverse the order of elements but also invert their signs. Although three decades have now passed since the first works on these problems, neither their computational complexity nor the maximal number of prefix reversals needed to sort a permutation is yet known. In this work, we prove a new lower bound for sorting burnt pancakes, and show that an important class of permutations, known as "simple permutations", can be optimally sorted in polynomial time.Comment: Accepted pending minor revisio

    Sorting by reversals, block interchanges, tandem duplications, and deletions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Finding sequences of evolutionary operations that transform one genome into another is a classic problem in comparative genomics. While most of the genome rearrangement algorithms assume that there is exactly one copy of each gene in both genomes, this does not reflect the biological reality very well – most of the studied genomes contain duplicated gene content, which has to be removed before applying those algorithms. However, dealing with unequal gene content is a very challenging task, and only few algorithms allow operations like duplications and deletions. Almost all of these algorithms restrict these operations to have a fixed size.</p> <p>Results</p> <p>In this paper, we present a heuristic algorithm to sort an ancestral genome (with unique gene content) into a genome of a descendant (with arbitrary gene content) by reversals, block interchanges, tandem duplications, and deletions, where tandem duplications and deletions are of arbitrary size.</p> <p>Conclusion</p> <p>Experimental results show that our algorithm finds sorting sequences that are close to an optimal sorting sequence when the ancestor and the descendant are closely related. The quality of the results decreases when the genomes get more diverged or the genome size increases. Nevertheless, the calculated distances give a good approximation of the true evolutionary distances.</p

    An asymmetric approach to preserve common intervals while sorting by reversals

    Get PDF
    Dias Vieira Braga M, Gautier C, Sagot M-F. An asymmetric approach to preserve common intervals while sorting by reversals. Algorithms for Molecular Biology. 2009;4(1):16.Background: The reversal distance and optimal sequences of reversals to transform a genome into another are useful tools to analyse evolutionary scenarios. However, the number of sequences is huge and some additional criteria should be used to obtain a more accurate analysis. One strategy is searching for sequences that respect constraints, such as the common intervals (clusters of co-localised genes). Another approach is to explore the whole space of sorting sequences, eventually grouping them into classes of equivalence. Recently both strategies started to be put together, to restrain the space to the sequences that respect constraints. In particular an algorithm has been proposed to list classes whose sorting sequences do not break the common intervals detected between the two inital genomes A and B. This approach may reduce the space of sequences and is symmetric (the result of the analysis sorting A into B can be obtained from the analysis sorting B into A). Results: We propose an alternative approach to restrain the space of sorting sequences, using progressive instead of initial detection of common intervals (the list of common intervals is updated after applying each reversal). This may reduce the space of sequences even more, but is shown to be asymmetric. Conclusions: We suggest that our method may be more realistic when the relation ancestor-descendant between the analysed genomes is clear and we apply it to do a better characterisation of the evolutionary scenario of the bacterium Rickettsia felis with respect to one of its ancestors

    O problema da ordenação de permutações usando rearranjos de prefixos e sufixos

    Get PDF
    Orientador: Zanoni DiasTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O Problema das Panquecas tem como objetivo ordenar uma pilha de panquecas que possuem tamanhos distintos realizando o menor número possível de operações. A operação permitida é chamada reversão de prefixo e, quando aplicada, inverte o topo da pilha de panquecas. Tal problema é interessante do ponto de vista combinatório por si só, mas ele também possui algumas aplicações em biologia computacional. Dados dois genomas que compartilham o mesmo número de genes, e assumindo que cada gene aparece apenas uma vez por genoma, podemos representá-los como permutações (pilhas de panquecas também são representadas por permutações). Então, podemos comparar os genomas tentando descobrir como um foi transformado no outro por meio da aplicação de rearranjos de genoma, que são eventos de mutação de grande escala. Reversões e transposições são os tipos mais comumente estudados de rearranjo de genomas e uma reversão de prefixo (ou transposição de prefixo) é um tipo de reversão (ou transposição) que é restrita ao início da permutação. Quando o rearranjo é restrito ao final da permutação, dizemos que ele é um rearranjo de sufixo. Um problema de ordenação de permutações por rearranjos é, portanto, o problema de encontrar uma sequência de rearranjos de custo mínimo que ordene a permutação dada. A abordagem tradicional considera que todos os rearranjos têm o mesmo custo unitário, de forma que o objetivo é tentar encontrar o menor número de rearranjos necessários para ordenar a permutação. Vários esforços foram feitos nos últimos anos considerando essa abordagem. Por outro lado, um rearranjo muito longo (que na verdade é uma mutação) tem mais probabilidade de perturbar o organismo. Portanto, pesos baseados no comprimento do segmento envolvido podem ter um papel importante no processo evolutivo. Dizemos que essa abordagem é ponderada por comprimento e o objetivo nela é tentar encontrar uma sequência de rearranjos cujo custo total (que é a soma do custo de cada rearranjo, que por sua vez depende de seu comprimento) seja mínimo. Nessa tese nós apresentamos os primeiros resultados que envolvem problemas de ordenação de permutações por reversões e transposições de prefixo e sufixo considerando ambas abordagens tradicional e ponderada por comprimento. Na abordagem tradicional, consideramos um total de 10 problemas e desenvolvemos novos resultados para 6 deles. Na abordagem ponderada por comprimento, consideramos um total de 13 problemas e desenvolvemos novos resultados para todos elesAbstract: The goal of the Pancake Flipping problem is to sort a stack of pancakes that have different sizes by performing as few operations as possible. The operation allowed is called prefix reversal and, when applied, flips the top of the stack of pancakes. Such problem is an interesting combinatorial problem by itself, but it has some applications in computational biology. Given two genomes that share the same genes and assuming that each gene appears only once per genome, we can represent them as permutations (stacks of pancakes are also represented by permutations). Then, we can compare the genomes by figuring out how one was transformed into the other through the application of genome rearrangements, which are large scale mutations. Reversals and transpositions are the most commonly studied types of genome rearrangements and a prefix reversal (or prefix transposition) is a type of reversal (or transposition) which is restricted to the beginning of the permutation. When the rearrangement is restricted to the end of the permutation, we say it is a suffix rearrangement. A problem of sorting permutations by rearrangements is, therefore, the problem to find a sequence of rearrangements with minimum cost that sorts a given permutation. The traditional approach considers that all rearrangements have the same unitary cost, in which case the goal is trying to find the minimum number of rearrangements that are needed to sort the permutation. Numerous efforts have been made over the past years regarding this approach. On the other hand, a long rearrangement (which is in fact a mutation) is more likely to disturb the organism. Therefore, weights based on the length of the segment involved may have an important role in the evolutionary process. We say this is the length-weighted approach and the goal is trying to find a sequence of rearrangements whose total cost (the sum of the cost of each rearrangement, which depends on its length) is minimum. In this thesis we present the first results regarding problems of sorting permutations by prefix and suffix reversals and transpositions considering both the traditional and the length-weighted approach. For the traditional approach, we considered a total of 10 problems and developed new results for 6 of them. For the length-weighted approach, we considered a total of 13 problems and developed new results for all of themDoutoradoCiência da ComputaçãoDoutora em Ciência da Computação140017/2013-52013/01172-0FAPESPCNP

    Improving the Efficiency of Sorting by Reversals ∗

    No full text
    Sorting signed permutations by reversals is a fundamental problem in computationial molecular biology. In this paper we present an improved algorithm for sorting by reversals. Our algorithm runs in O(n 3/2) times. This improves the best previous results which runs in O(n 3/2 √ log n) time
    corecore