5,031 research outputs found

    A review on massive e-learning (MOOC) design, delivery and assessment

    Get PDF
    MOOCs or Massive Online Open Courses based on Open Educational Resources (OER) might be one of the most versatile ways to offer access to quality education, especially for those residing in far or disadvantaged areas. This article analyzes the state of the art on MOOCs, exploring open research questions and setting interesting topics and goals for further research. Finally, it proposes a framework that includes the use of software agents with the aim to improve and personalize management, delivery, efficiency and evaluation of massive online courses on an individual level basis.Peer ReviewedPostprint (author's final draft

    Adaptive Intelligent Tutoring System for learning Computer Theory

    Get PDF
    In this paper, we present an intelligent tutoring system developed to help students in learning Computer Theory. The Intelligent tutoring system was built using ITSB authoring tool. The system helps students to learn finite automata, pushdown automata, Turing machines and examines the relationship between these automata and formal languages, deterministic and nondeterministic machines, regular expressions, context free grammars, undecidability, and complexity. During the process the intelligent tutoring system gives assistance and feedback of many types in an intelligent manner according to the behavior of the student. An evaluation of the intelligent tutoring system has revealed reasonably acceptable results in terms of its usability and learning abilities are concerned

    On Recommendation of Learning Objects using Felder-Silverman Learning Style Model

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The e-learning recommender system in learning institutions is increasingly becoming the preferred mode of delivery, as it enables learning anytime, anywhere. However, delivering personalised course learning objects based on learner preferences is still a challenge. Current mainstream recommendation algorithms, such as the Collaborative Filtering (CF) and Content-Based Filtering (CBF), deal with only two types of entities, namely users and items with their ratings. However, these methods do not pay attention to student preferences, such as learning styles, which are especially important for the accuracy of course learning objects prediction or recommendation. Moreover, several recommendation techniques experience cold-start and rating sparsity problems. To address the challenge of improving the quality of recommender systems, in this paper a novel recommender algorithm for machine learning is proposed, which combines students actual rating with their learning styles to recommend Top-N course learning objects (LOs). Various recommendation techniques are considered in an experimental study investigating the best technique to use in predicting student ratings for e-learning recommender systems. We use the Felder-Silverman Learning Styles Model (FSLSM) to represent both the student learning styles and the learning object profiles. The predicted rating has been compared with the actual student rating. This approach has been experimented on 80 students for an online course created in the MOODLE Learning Management System, while the evaluation of the experiments has been performed with the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The results of the experiment verify that the proposed approach provides a higher prediction rating and significantly increases the accuracy of the recommendation

    A fuzzy-based approach for classifying students' emotional states in online collaborative work

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Emotion awareness is becoming a key aspect in collaborative work at academia, enterprises and organizations that use collaborative group work in their activity. Due to pervasiveness of ICT's, most of collaboration can be performed through communication media channels such as discussion forums, social networks, etc. The emotive state of the users while they carry out their activity such as collaborative learning at Universities or project work at enterprises and organizations influences very much their performance and can actually determine the final learning or project outcome. Therefore, monitoring the users' emotive states and using that information for providing feedback and scaffolding is crucial. To this end, automated analysis over data collected from communication channels is a useful source. In this paper, we propose an approach to process such collected data in order to classify and assess emotional states of involved users and provide them feedback accordingly to their emotive states. In order to achieve this, a fuzzy approach is used to build the emotive classification system, which is fed with data from ANEW dictionary, whose words are bound to emotional weights and these, in turn, are used to map Fuzzy sets in our proposal. The proposed fuzzy-based system has been evaluated using real data from collaborative learning courses in an academic context.Peer ReviewedPostprint (author's final draft

    A model for providing emotion awareness and feedback using fuzzy logic in online learning

    Get PDF
    Monitoring users’ emotive states and using that information for providing feedback and scaffolding is crucial. In the learning context, emotions can be used to increase students’ attention as well as to improve memory and reasoning. In this context, tutors should be prepared to create affective learning situations and encourage collaborative knowledge construction as well as identify those students’ feelings which hinder learning process. In this paper, we propose a novel approach to label affective behavior in educational discourse based on fuzzy logic, which enables a human or virtual tutor to capture students’ emotions, make students aware of their own emotions, assess these emotions and provide appropriate affective feedback. To that end, we propose a fuzzy classifier that provides a priori qualitative assessment and fuzzy qualifiers bound to the amounts such as few, regular and many assigned by an affective dictionary to every word. The advantage of the statistical approach is to reduce the classical pollution problem of training and analyzing the scenario using the same dataset. Our approach has been tested in a real online learning environment and proved to have a very positive influence on students’ learning performance.Peer ReviewedPostprint (author's final draft

    Teaching in Ill-Defined Domains Using ITS and AI Appraoches

    Get PDF
    Ill-defined domains offer many challenges to computer scientists. Developing intelligent tutoring systems (ITSs) in these domains is a very challenging task due to the difficulty in modeling these domains, answers to ill-defined problems are ambiguously identified as right or wrong, and no generally accepted architecture is currently existed. This paper presents general guidelines for the development of ITSs in ill-defined domains, such as Argumentation and Ethics. This is instantiated in the two example systems AEINS and ALES. These systems offer adaptive learning processes and personalized feedback aiming to transfer the required skills to the learners and develop their reasoning

    Cultivating intelligent tutoring cognizing agents in ill-defined domains using hybrid approaches

    Get PDF
    Cognizing agents are those systems that can perceive information from the external environment and can adapt to the changing conditions of that environment. Along the adaptation process a cognizing agent perceives information about the environment and generates reactions. An intelligent tutoring cognizing agent should deal not only with the tutoring system’s world but also with the learner-it should infer and predict new information about the learner and tailor the learning process to fit this specific learner. This paper shows how intelligent tutoring cognizing agents can be cultivated in ill-defined domains using hybrid techniques instantiated in the two example agents AEINS-CA and ALES-CA. These agents offer adaptive learning process and personalized feedback aiming to transfer certain cognitive skills, such as problem solving skills to the learners and develop their reasoning in the two ill-defined domains of ethics and argumentation. The paper focuses on the internal structure of each agent and the reasoning methodology, in which, the cognizing agent administration and construction along with the pedagogical scenarios are described

    Five Lenses on Team Tutor Challenges: A Multidisciplinary Approach

    Get PDF
    This chapter describes five disciplinary domains of research or lenses that contribute to the design of a team tutor. We focus on four significant challenges in developing Intelligent Team Tutoring Systems (ITTSs), and explore how the five lenses can offer guidance for these challenges. The four challenges arise in the design of team member interactions, performance metrics and skill development, feedback, and tutor authoring. The five lenses or research domains that we apply to these four challenges are Tutor Engineering, Learning Sciences, Science of Teams, Data Analyst, and Human–Computer Interaction. This matrix of applications from each perspective offers a framework to guide designers in creating ITTSs

    Applying Recommender Systems and Adaptive Hypermedia for e-Learning Personalizatio

    Get PDF
    Learners learn differently because they are different -- and they grow more distinctive as they mature. Personalized learning occurs when e-learning systems make deliberate efforts to design educational experiences that fit the needs, goals, talents, and interests of their learners. Researchers had recently begun to investigate various techniques to help teachers improve e-learning systems. In this paper we present our design and implementation of an adaptive and intelligent web-based programming tutoring system -- Protus, which applies recommendation and adaptive hypermedia techniques. This system aims at automatically guiding the learner's activities and recommend relevant links and actions to him/her during the learning process. Experiments on real data sets show the suitability of using both recommendation and hypermedia techniques in order to suggest online learning activities to learners based on their preferences, knowledge and the opinions of the users with similar characteristics
    • …
    corecore