14,336 research outputs found

    Improving the Accuracy of a Two-Stage Algorithm in Evolutionary Product Unit Neural Networks for Classification by Means of Feature Selection

    Get PDF
    This paper introduces a methodology that improves the accuracy of a two-stage algorithm in evolutionary product unit neural networks for classification tasks by means of feature selection. A couple of filters have been taken into consideration to try out the proposal. The experimentation has been carried out on seven data sets from the UCI repository that report test mean accuracy error rates about twenty percent or above with reference classifiers such as C4.5 or 1-NN. The study includes an overall empirical comparison between the models obtained with and without feature selection. Also several classifiers have been tested in order to illustrate the performance of the different filters considered. The results have been contrasted with nonparametric statistical tests and show that our proposal significantly improves the test accuracy of the previous models for the considered data sets. Moreover, the current proposal is much more efficient than a previous methodology developed by us; lastly, the reduction percentage in the number of inputs is above a fifty five, on average.MICYT TIN2007-68084-C02-02MICYT TIN2008-06681-C06-03Junta de Andalucía P08-TIC-374

    Accuracy Increase on Evolving Product Unit Neural Networks via Feature Subset Selection

    Get PDF
    A framework that combines feature selection with evolution ary artificial neural networks is presented. This paper copes with neural networks that are applied in classification tasks. In machine learning area, feature selection is one of the most common techniques for pre processing the data. A set of filters have been taken into consideration to assess the proposal. The experimentation has been conducted on nine data sets from the UCI repository that report test error rates about fif teen percent or above with reference classifiers such as C4.5 or 1-NN. The new proposal significantly improves the baseline framework, both approaches based on evolutionary product unit neural networks. Also several classifiers have been tried in order to illustrate the performance of the different methods considered.Comisión Interministerial de ciencia y Tecnología TIN2011-28956-C02- 02Comisión Interministerial de Ciencia y Tecnología TIN2014-55894-C2-RJunta de Andalucía P11-TIC-752

    Evolutionary q-Gaussian Radial Basis Functions for Improving Prediction Accuracy of Gene Classification Using Feature Selection

    Get PDF
    This paper proposes a Radial Basis Function Neural Network (RBFNN) which reproduces different Radial Basis Functions (RBFs) by means of a real parameter q, named q-Gaussian RBFNN. The architecture, weights and node topology are learnt through a Hybrid Algorithm (HA) with the iRprop + algorithm as the local improvement procedure. In order to test its overall performance, an experimental study with four gene microarray datasets with two classes taken from bioinformatic and biomedical domains is presented. The Fast Correlation–Based Filter (FCBF) was applied in order to identify salient expression genes from thousands of genes in microarray data that can directly contribute to determining the class membership of each pattern. After different gene subsets were obtained, the proposed methodology was performed using the selected gene subsets as the new input variables. The results confirm that the q-Gaussian RBFNN classifier leads to promising improvement on accuracy

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    Agrupamiento, predicción y clasificación ordinal para series temporales utilizando técnicas de machine learning: aplicaciones

    Get PDF
    In the last years, there has been an increase in the number of fields improving their standard processes by using machine learning (ML) techniques. The main reason for this is that the vast amount of data generated by these processes is difficult to be processed by humans. Therefore, the development of automatic methods to process and extract relevant information from these data processes is of great necessity, giving that these approaches could lead to an increase in the economic benefit of enterprises or to a reduction in the workload of some current employments. Concretely, in this Thesis, ML approaches are applied to problems concerning time series data. Time series is a special kind of data in which data points are collected chronologically. Time series are present in a wide variety of fields, such as atmospheric events or engineering applications. Besides, according to the main objective to be satisfied, there are different tasks in the literature applied to time series. Some of them are those on which this Thesis is mainly focused: clustering, classification, prediction and, in general, analysis. Generally, the amount of data to be processed is huge, arising the need of methods able to reduce the dimensionality of time series without decreasing the amount of information. In this sense, the application of time series segmentation procedures dividing the time series into different subsequences is a good option, given that each segment defines a specific behaviour. Once the different segments are obtained, the use of statistical features to characterise them is an excellent way to maximise the information of the time series and simultaneously reducing considerably their dimensionality. In the case of time series clustering, the objective is to find groups of similar time series with the idea of discovering interesting patterns in time series datasets. In this Thesis, we have developed a novel time series clustering technique. The aim of this proposal is twofold: to reduce as much as possible the dimensionality and to develop a time series clustering approach able to outperform current state-of-the-art techniques. In this sense, for the first objective, the time series are segmented in order to divide the them identifying different behaviours. Then, these segments are projected into a vector of statistical features aiming to reduce the dimensionality of the time series. Once this preprocessing step is done, the clustering of the time series is carried out, with a significantly lower computational load. This novel approach has been tested on all the time series datasets available in the University of East Anglia and University of California Riverside (UEA/UCR) time series classification (TSC) repository. Regarding time series classification, two main paths could be differentiated: firstly, nominal TSC, which is a well-known field involving a wide variety of proposals and transformations applied to time series. Concretely, one of the most popular transformation is the shapelet transform (ST), which has been widely used in this field. The original method extracts shapelets from the original time series and uses them for classification purposes. Nevertheless, the full enumeration of all possible shapelets is very time consuming. Therefore, in this Thesis, we have developed a hybrid method that starts with the best shapelets extracted by using the original approach with a time constraint and then tunes these shapelets by using a convolutional neural network (CNN) model. Secondly, time series ordinal classification (TSOC) is an unexplored field beginning with this Thesis. In this way, we have adapted the original ST to the ordinal classification (OC) paradigm by proposing several shapelet quality measures taking advantage of the ordinal information of the time series. This methodology leads to better results than the state-of-the-art TSC techniques for those ordinal time series datasets. All these proposals have been tested on all the time series datasets available in the UEA/UCR TSC repository. With respect to time series prediction, it is based on estimating the next value or values of the time series by considering the previous ones. In this Thesis, several different approaches have been considered depending on the problem to be solved. Firstly, the prediction of low-visibility events produced by fog conditions is carried out by means of hybrid autoregressive models (ARs) combining fixed-size and dynamic windows, adapting itself to the dynamics of the time series. Secondly, the prediction of convective cloud formation (which is a highly imbalance problem given that the number of convective cloud events is much lower than that of non-convective situations) is performed in two completely different ways: 1) tackling the problem as a multi-objective classification task by the use of multi-objective evolutionary artificial neural networks (MOEANNs), in which the two conflictive objectives are accuracy of the minority class and the global accuracy, and 2) tackling the problem from the OC point of view, in which, in order to reduce the imbalance degree, an oversampling approach is proposed along with the use of OC techniques. Thirdly, the prediction of solar radiation is carried out by means of evolutionary artificial neural networks (EANNs) with different combinations of basis functions in the hidden and output layers. Finally, the last challenging problem is the prediction of energy flux from waves and tides. For this, a multitask EANN has been proposed aiming to predict the energy flux at several prediction time horizons (from 6h to 48h). All these proposals and techniques have been corroborated and discussed according to physical and atmospheric models. The work developed in this Thesis is supported by 11 JCR-indexed papers in international journals (7 Q1, 3 Q2, 1 Q3), 11 papers in international conferences, and 4 papers in national conferences
    corecore