102,530 research outputs found

    Localizing Gravitational Wave Sources with Single-Baseline Atom Interferometers

    Full text link
    Localizing sources on the sky is crucial for realizing the full potential of gravitational waves for astronomy, astrophysics, and cosmology. We show that the mid-frequency band, roughly 0.03 to 10 Hz, has significant potential for angular localization. The angular location is measured through the changing Doppler shift as the detector orbits the Sun. This band maximizes the effect since these are the highest frequencies in which sources live several months. Atom interferometer detectors can observe in the mid-frequency band, and even with just a single baseline can exploit this effect for sensitive angular localization. The single baseline orbits around the Earth and the Sun, causing it to reorient and change position significantly during the lifetime of the source, and making it similar to having multiple baselines/detectors. For example, atomic detectors could predict the location of upcoming black hole or neutron star merger events with sufficient accuracy to allow optical and other electromagnetic telescopes to observe these events simultaneously. Thus, mid-band atomic detectors are complementary to other gravitational wave detectors and will help complete the observation of a broad range of the gravitational spectrum.Comment: 16 pages, 3 figures, 2 table

    Simulations of the OzDES AGN Reverberation Mapping Project

    Get PDF
    As part of the OzDES spectroscopic survey we are carrying out a large scale reverberation mapping study of āˆ¼\sim500 quasars over five years in the 30 deg2^2 area of the Dark Energy Survey (DES) supernova fields. These quasars have redshifts ranging up to 4 and have apparent AB magnitudes between 16.8<r<22.516.8<r<22.5 mag. The aim of the survey is to measure time lags between fluctuations in the quasar continuum and broad emission line fluxes of individual objects in order to measure black hole masses for a broad range of AGN and constrain the radius-luminosity (Rāˆ’LR-L) relationship. Here we investigate the expected efficiency of the OzDES reverberation mapping campaign and its possible extensions. We expect to recover lags for āˆ¼\sim35-45\% of the quasars. AGN with shorter lags and greater variability are more likely to yield a lag, and objects with lags ā‰²\lesssim6 months or āˆ¼\sim1 year are expected be recovered the most accurately. The baseline OzDES reverberation mapping campaign is predicted to produce an unbiased measurement of the Rāˆ’LR-L relationship parameters for HĪ²\beta, Mg II Ī»\lambda2798, and C IV Ī»\lambda1549. However, extending the baseline survey by either increasing the spectroscopic cadence, extending the survey season, or improving the emission line flux measurement accuracy will significantly improve the Rāˆ’LR-L parameter constraints for all broad emission lines.Comment: Published online in MNRAS. 28 page

    (Looking) Back to the Future: using space-time patterns to better predict the location of street crime

    Get PDF
    Crime analysts attempt to identify regularities in police recorded crime data with a central view of disrupting the patterns found. One common method for doing so is hotspot mapping, focusing attention on spatial clustering as a route to crime reduction (Chainey & Ratcliffe, 2005; Clarke & Eck, 2003). Despite the widespread use of this analytical technique, evaluation tools to assess its ability to accurately predict spatial patterns have only recently become available to practitioners (Chainey, Tompson, & Uhlig, 2008). Crucially, none has examined this issue from a spatio-temporal standpoint. Given that the organisational nature of policing agencies is shift based, it is common-sensical to understand crime problems at this temporal sensitivity, so there is an opportunity for resources to be deployed swiftly in a manner that optimises prevention and detection. This paper tests whether hotspot forecasts can be enhanced when time-of-day information is incorporated into the analysis. Using street crime data, and employing an evaluative tool called the Predictive Accuracy Index (PAI), we found that the predictive accuracy can be enhanced for particular temporal shifts, and this is primarily influenced by the degree of spatial clustering present. Interestingly, when hotspots shrank (in comparison with the all-day hotspots), they became more concentrated, and subsequently more predictable. This is meaningful in practice; for if crime is more predictable during specific timeframes, then response resources can be used intelligently to reduce victimisation

    Drag-free estimation feasibility study

    Get PDF
    A drag compensation system for solar probes and other spacecraft that require a drag-free capability is presented. Estimation techniques, derived from modern control theory, are proposed

    A fast and exact ww-stacking and ww-projection hybrid algorithm for wide-field interferometric imaging

    Get PDF
    The standard wide-field imaging technique, the ww-projection, allows correction for wide-fields of view for non-coplanar radio interferometric arrays. However, calculating exact corrections for each measurement has not been possible due to the amount of computation required at high resolution and with the large number of visibilities from current interferometers. The required accuracy and computational cost of these corrections is one of the largest unsolved challenges facing next generation radio interferometers such as the Square Kilometre Array. We show that the same calculation can be performed with a radially symmetric ww-projection kernel, where we use one dimensional adaptive quadrature to calculate the resulting Hankel transform, decreasing the computation required for kernel generation by several orders of magnitude, whilst preserving the accuracy. We confirm that the radial ww-projection kernel is accurate to approximately 1% by imaging the zero-spacing with an added ww-term. We demonstrate the potential of our radially symmetric ww-projection kernel via sparse image reconstruction, using the software package PURIFY. We develop a distributed ww-stacking and ww-projection hybrid algorithm. We apply this algorithm to individually correct for non-coplanar effects in 17.5 million visibilities over a 2525 by 2525 degree field of view MWA observation for image reconstruction. Such a level of accuracy and scalability is not possible with standard ww-projection kernel generation methods. This demonstrates that we can scale to a large number of measurements with large image sizes whilst still maintaining both speed and accuracy.Comment: 9 Figures, 19 Pages. Accepted to Ap
    • ā€¦
    corecore