1,690 research outputs found

    Incentives for Quality through Endogenous Routing

    Get PDF
    We study how rework routing together with wage and piece rate compensation can strengthen incentives for quality. Traditionally, rework is assigned back to the agent who generates the defect (in a self routing scheme) or to another agent dedicated to rework (in a dedicated routing scheme). In contrast, a novel cross routing scheme allocates rework to a parallel agent performing both new jobs and rework. The agent who passes quality inspection or completes rework receives the piece rate paid per job. We compare the incentives of these rework allocation schemes in a principal-agent model with embedded quality control and routing in a multi-class queueing network. We show that conventional self routing of rework can never induce first-best effort. Dedicated routing and cross routing, however, strengthen incentives for quality by imposing an implicit punishment for quality failure. In addition, cross routing leads to workload allocation externalities and a prisoner’s dilemma, thereby creating highest incentives for quality. Firm profitability depends on capacity levels, revenues, and quality costs. With ample capacity, dedicated routing and cross routing both achieve first-best profit rate, while self routing does not. With limited capacity, cross routing generates the highest profit rate when appraisal, internal failure, or external failure costs are high, while self routing performs best when gross margins are high. When the number of agents increases, the incentive power of cross routing reduces monotonically and approaches that of dedicated routing.queueing networks; routing; Nash equilibrium; quality control; piece rate; epsilon equilibrium.

    Sharing delay information in service systems: a literature survey

    Get PDF
    Service providers routinely share information about upcoming waiting times with their customers, through delay announcements. The need to effectively manage the provision of these announcements has led to a substantial growth in the body of literature which is devoted to that topic. In this survey paper, we systematically review the relevant literature, summarize some of its key ideas and findings, describe the main challenges that the different approaches to the problem entail, and formulate research directions that would be interesting to consider in future work

    Some topics in web performance analysis

    Get PDF
    This thesis consists of four papers on web performance analysis. In the first paper we investigate the performance of overload control through queue length for two different web server architectures. The simulation result suggests that the benefit of request prioritization is noticeable only when the capacities of the sub-systems match each other. In the second paper we present an M/G/1/K*PS queueing model of a web server. We obtain closed form expressions for web server performance metrics such as average response time, throughput and blocking probability. The model is validated through real measurements. The third paper studies a queueing system with a load balancer and a pool of identical FCFS queues in parallel. By taking the number of servers to infinite, we show that the average waiting time for the system is not always minimized by routing each customer to the expected shortest queue when the information used for decision is stale. In the last paper we consider the problem of admission control to an M/M/1 queue under periodic observations with average cost criterion. The problem is formulated as a discrete time Markov decision process whose states are fully observable. A proof of the existence of the average optimal policy by the vanishing discounted approach is provided. We also show that the optimal policy is nonincreasing with respect to the observed number of customers in the system

    Stochastic methods for measurement-based network control

    Get PDF
    The main task of network administrators is to ensure that their network functions properly. Whether they manage a telecommunication or a road network, they generally base their decisions on the analysis of measurement data. Inspired by such network control applications, this dissertation investigates several stochastic modelling techniques for data analysis. The focus is on two areas within the field of stochastic processes: change point detection and queueing theory. Part I deals with statistical methods for the automatic detection of change points, being changes in the probability distribution underlying a data sequence. This part starts with a review of existing change point detection methods for data sequences consisting of independent observations. The main contribution of this part is the generalisation of the classic cusum method to account for dependence within data sequences. We analyse the false alarm probability of the resulting methods using a large deviations approach. The part also discusses numerical tests of the new methods and a cyber attack detection application, in which we investigate how to detect dns tunnels. The main contribution of Part II is the application of queueing models (probabilistic models for waiting lines) to situations in which the system to be controlled can only be observed partially. We consider two types of partial information. Firstly, we develop a procedure to get insight into the performance of queueing systems between consecutive system-state measurements and apply it in a numerical study, which was motivated by capacity management in cable access networks. Secondly, inspired by dynamic road control applications, we study routing policies in a queueing system for which just part of the jobs are observable and controllable

    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016

    Get PDF
    International audienceThis booklet contains the proceedings of the second European Conference in Queueing Theory (ECQT) that was held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT, Toulouse, France. ECQT is a biannual event where scientists and technicians in queueing theory and related areas get together to promote research, encourage interaction and exchange ideas. The spirit of the conference is to be a queueing event organized from within Europe, but open to participants from all over the world. The technical program of the 2016 edition consisted of 112 presentations organized in 29 sessions covering all trends in queueing theory, including the development of the theory, methodology advances, computational aspects and applications. Another exciting feature of ECQT2016 was the institution of the TakĂĄcs Award for outstanding PhD thesis on "Queueing Theory and its Applications"
    • 

    corecore