
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Some topics in web performance analysis

Cao, Jianhua

2004

Link to publication

Citation for published version (APA):
Cao, J. (2004). Some topics in web performance analysis. Lund Institute of Technology.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/4c75f6d2-b8ff-415d-9366-dcaad3262701


Some Topics in Web Performance Analysis

Jianhua Cao

Department of Communication Systems

Lund Institute of Technology



ISSN 1101-3931

ISRN LUTEDX/TETS–1066–SE+99P

c©Jianhua Cao

Printed in Sweden

E-kop

Lund 2004

ii



To Jing

iii



This thesis is submitted to Research Board FIME - Physics, Informatics, Mathematics

and Electrical Engineering at Lund Institute of Technology, Lund University in partial

fulfillment of the requirements for the degree of Licentiate in Engineering.

Contact information:

Jianhua Cao

Department of Communication Systems

Lund University

P.O. Box 118

SE-221 00 LUND

Sweden

Tel: +46 46 222 90 08

Fax: +46 46 14 58 23

e-mail: jcao@telecom.lth.se

iv



Abstract

This thesis consists of four papers on web performance analysis. In the first paper we

investigate the performance of overload control through queue length for two different web

server architectures. The simulation result suggests that the benefit of request prioritization

is noticeable only when the capacities of the sub-systems match each other. In the second

paper we present an M/G/1/K*PS queueing model of a web server. We obtain closed form

expressions for web server performance metrics such as average response time, throughput

and blocking probability. The model is validated through real measurements. The third

paper studies a queueing system with a load balancer and a pool of identical FCFS queues

in parallel. By taking the number of servers to infinite, we show that the average waiting

time for the system is not always minimized by routing each customer to the expected

shortest queue when the information used for decision is stale. In the last paper we

consider the problem of admission control to an M/M/1 queue under periodic observations

with average cost criterion. The problem is formulated as a discrete time Markov decision

process whose states are fully observable. A proof of the existence of the average optimal

policy by the vanishing discounted approach is provided. We also show that the optimal

policy is nonincreasing with respect to the observed number of customers in the system.

v



Acknowledgments

I am grateful to Jing for everything I can think of. My deepest gratitude goes to Dr. Chris-

tian Nyberg for his luminous guidance and warm encouragement during the course of this

research. I am indebted to Prof. Micha l Pióro for giving me treasurable advice from

time to time. Thanks Prof. Ulf Körner for carefully reading the manuscript and helpful

suggestions. Gratitude also goes to my colleague Mikael Andersson for the cooperation

made in one of the papers included in this thesis. Finally I want to thank all colleagues at

the department and my dear friends here in Sweden.

Jianhua Cao

Lund, April 2004

vi



Contents

1 Introduction 1

2 Architecture of a Web Server and a Cluster 1

3 Models and Research Issues 3

4 List of Papers 6

5 Future Work 8

Included Papers:

I On Overload Control through Queue Length for Web Servers 13

II Web Server Performance Modeling Using an M/G/1/K*PS Queue 25

III An Approximate Analysis of Load Balancing

Using Stale State Information 39

IV Admission Control to an M/M/1 Queue

under Periodic Observations with Average Cost Criterion 55

vii



viii



1 Introduction

The World Wide Web (WWW) has been the driving force behind the phenomenal growth

of the Internet since the 90’s. Started with remote file retrieving, the web has evolved

into a full-featured platform for many applications such as e-commerce [12]. The research

area of web performance analysis is attracting more and more attention as the demand for

quality of service guaranties increases in web applications [16, 4, 25].

This thesis consists of four papers on the topic of web performance analysis. The first

paper studies the effectiveness of the request based and the session based overload control

for a web server. We propose an M/G/1*PS queueing model for a web server in the second

paper. The third paper discusses a load balancing strategy using stale state information.

In the last paper, we study the optimal admission control to an M/M/1 queue under partial

observations with average cost criterion.

The purpose of this introduction is to give a background and motivation for the included

papers. The rest of this thesis introduction is organized as follows: in section 2, the

architectures of web servers and clusters are reviewed. Section 3 discusses both models

and related research issues for web performance analysis. Section 4 lists the four papers

included in this thesis. In the last section, we outline some of our future research directions.

2 Architecture of a Web Server and a Cluster

In a simple scenario a web server can be just a networked computer running HTTP soft-

ware that behaves according to the protocol specification. The most popular software for

handling HTTP requests is Apache. The architecture of Apache follows a multi-process

programming paradigm [11]. When the Apache receives an HTTP connection request,

the request is first parsed by the main process of the Apache program. Then a separate

process will be assigned to prepare the requested HTML file. When the requested HTML

file includes only static contents, the file is then loaded from disks or caches. When the

file includes dynamic contents, such as the result of a database inquiry, Apache forwards

the request to one of its modular processes which was ignited when the Apache program

was started. The multi-process paradigm allows many processes to prepare HTML files

simultaneously, as many as several hundred. When too many processes are generated, the

system performance starts to degrade as the cost of context switching between processes

soars. It is, however, possible to configure and limit the maximum number of allowed

processes in Apache.

1



The architecture model of Apache is sometimes referred as process-based servers [17].

Other well-known architecture models include: thread-based servers, event-driven servers

and in-kernel servers. Threads are similar to processes but share the same address space.

The cost of thread creation and context-switching is usually lower than the cost incurred for

processes. However poorly programmed threads can crash the whole server. Web servers

that use threads include JAWS and Sun’s Java Web Server. Servers that use event-driven

architectures include Flash and Zeus. With this architecture, a single process is used

with non-blocking I/O(or asynchronous I/O). Since there are no context-switch costs and

no extra memory consumption which is the case with threads or processes, event-driven

servers are usually fast. The down side is, however, like that of thread-based servers, a

single failure can halt the whole server. Moreover different operating systems have varying

levels of support for asynchronous I/O operations. All previous architectures place the

Web server software in user space, in the in-kernel servers such as AFPA and Tux, the

HTTP server is tightly integrated with the host’s TCP/IP stack. This type of server is

extremely fast since potentially expensive transitions to user space are avoided. But this

approach is least robust to programming errors. A single server fault can crash the whole

machine.

A web site may be just one computer with a fast CPU and lots of memory running

Linux, Apache or perhaps even MySQL. This simple solution is very popular for small

websites where traffic is usually low. But clearly this one-box-for-all approach isn’t scalable

for handling a large volume of transactions [8].

A simple scalable solution is to use a load balancing computer as front-end and several

identical web servers plus one or two databases behind the scene, [18, 24, 2]. A more

sophisticated configuration involves adding application servers for dynamic contents and

dedicated servers for searching. In that case, the web servers concentrate on static contents

such as files and images. Often there is another load balancer for the application servers.

This approach is usually referred to as web clusters. Harkins, for example in [15], describes

in great detail an e-commerce web site called etoys.com which employs this architecture.

It is worth mentioning that, employing caching carefully will boost performance dra-

matically in a web cluster because of the reduced communication delay between servers

[5, 6]. More than 90% hit ratio is easily achievable in practice. Harkins reported a 99%

hit ratio for etoy.com during the 2002 Christmas season [15].

A multi-tier caching strategy can be implemented as follows for a web cluster that

separates the web servers, application servers and search servers. The first level cache

2



catches the transactions between the web servers and the application servers. The contents

of first level cache can be shared among the web servers. The second level cache resides

inside the application servers and use IP-multicast to communicate with each other.

3 Models and Research Issues

Different problems in performance analysis are associated with different models which can

be roughly classified into two categories, descriptive models and control models. Queueing

models of web servers and web traffic are considered descriptive. Admission control, load

balancing and scheduling are, on the other hand, linked to control models.

3.1 Queueing System Models of a Web Server

Most queueing models of web servers capture an important behavior of the response time,

i.e. that it increases substantially as the server utilization approaches unity [30].

If quantitative characteristics of the throughput and the response time are of interest,

an M/G/1/K*PS queue model serves the objective well. It is natural to use processor

sharing in the model since different requests are served by different processes which are

served in a round-robin fashion. Two parameters of the model, the mean service time and

the maximum number of customers in the system can be accurately estimated from mea-

surements in a controlled environment. The first paper of this thesis covers this modeling

approach in detail.

In a server, a request can be queued at more than one place which makes it natural to

use a queueing network model. Van der Mei, for example [20, 26], proposed a queueing

network model consisting of three parts, TCP, HTTP and network IO subsystems, in

sequel. The TCP subsystem is modeled as a multi-server system without buffer. The

HTTP subsystem is modeled as a finite buffer with multi-servers. The IO subsystem is

modeled as a polling system with finite buffer. Even though this model reflects the real

transaction flow of an HTTP request, there are no explicit expressions for performance

metrics such as throughput and response time. Hence further research and investigation

using that model has to rely on simulation to a large extent. The second paper of this

thesis used this queueing network model to investigate how the admission control can be

affected by the server configuration.

3



3.2 Web Traffic Models

Noticeable results in web traffic modeling and analysis can be summarized as follows [18,

3, 2, 21, 19],

1. The traffic follows a day and week fluctuation pattern: busiest during the daytime

hours, less busy during the evening and nighttime hours and least busy on weekends.

But it can be regarded as constant in a short time scale such as an hour.

2. The traffic logs at the HTTP level show a bursty characteristic and a strong correla-

tion of inter-arrival times for a duration of several minutes.

3. The traffic logs in the session level, however, show that inter-arrival times of session

initialization request are almost independent.

The arrival process of HTTP requests to a web server is known to be stationary but

correlated in a short time scale such as an hour. The origin of the correlation is that

a real customer tends to send several requests in sequel when browsing at a web site.

This fact motivates a simple request process model that the sequence of initial requests

from customers follows a Poisson process and served requests feed back to the server as new

requests with a certain probability and delay. The feedback probability and the distribution

of the delay are two major components of the session model besides the arrival process of

the initial requests. This simple session model is used for describing customer behavior in

the first paper of this thesis.

Customer Behavior Model Graph(CBMG), proposed by Menasce et al. [22], is a more

sophisticated model for modeling the dependence between requests. Different types of

HTTP requests, such as browsing and searching, are represented by different states. The

transition probability between states can be estimated from HTTP traffic logs. Exploiting

CBMG for the purpose of QoS control has been reported by [23, 7].

3.3 Admission Control

For a simple queueing system, such as the M/M/1 queue, the queue length based overload

control which rejects arrivals when the queue length reaches a given threshold is effective

to guarantee the response time. However, there are two possible catches to put this simple

method into practice. The first one is that many queues are formed inside the system as a

web server is a collection of coordinated software and hardware. One can argue, perhaps,

4



that it is the bottleneck queue that deserves attention. But this argument is flawed since

the location of the bottleneck depends the characteristic of the carried workload which

varies [3]. Moreover it is preferable in practice that a rejection, if it happens, should be not

too early so that a friendly message can be sent to inform the misfortune customers and not

too late so that the amount of wasted work is minimized. The second problem in practice

is that the overhead of monitoring the queue and adjusting the admission control decision

continuously is usually high. Thus the decision has to be made based on incomplete state

information where the theory is under-developed. The last paper of this thesis explores

this topic.

One major direction of current research in overload control for web servers is taking

sessions into account, where a session is a sequence of related requests sent by a customer [9,

10]. The main motivation is that rejecting a browsing request is preferred over abandoning

a paying request.

In the first paper of this thesis, we use simulation to show that session based admission

control may lose effectiveness when the capabilities of different subsystems such as HTTP

processing and network IO are mismatched.

Control theory can also be applied to the overload control of web servers, see e.g.

[27, 1, 28].

3.4 Load Balancing

Load balancing is an important architecture component for a web cluster. In theory,

an HTTP request should be forwarded to the lightest loaded sever among those in the

cluster. In practice, however, the randomized strategies were shown to be stable and easy

to implement [24].

The third paper of this thesis investigates why in some cases a seemly “smart” load

balancing strategy which makes routing decisions based on incomplete state information

is even worse than the random selection.

Load balancing can be at TCP/IP level or at HTTP level. For TCP/IP level load

balancing, a single domain name is mapped to multiple servers. Different TCP/IP connec-

tions are forwarded to different servers. It is also possible to do load balancing at HTTP

application level and that is perhaps the only way when the web server cluster is tightly

coupled, i.e. only a subset of the servers in the cluster can accomplish the given task. How-

ever, since the HTTP request has to be parsed before it is forwarded, the load balancer

itself becomes a potential bottleneck. The current practice for e-commerce sites is to use

5



a TCP/IP level load balancer for the front end servers and an HTTP level load balancer

for application servers.

3.5 Scheduling

The commonly used web server software Apache, assigns a process to each request. The

scheduling of different processes is then dependent on the underlying operating system.

For Unix and Windows, for example, processes of the same priority, which is the case

for all HTTP processing tasks, are served in round robin fashion. This suggests that

a processor sharing scheduling model can be used for analyzing the “default” scheduling

scheme. Recent work show that the Shortest Remaining Processing Time (SRPT) scheduler

can relive the problem of transient overload without starving long jobs [14, 29]. Multi-class

priority queues are also proposed in order to get close to SRPT performance in response

time and provide much better response time variance property [13].

4 List of Papers

The following papers have been included in this thesis:

1. Jianhua Cao and Christian Nyberg

On Overload Control through Queue Length for Web Servers

16th Nordic Teletraffic Seminar (NTS), Aug 2002

2. Jianhua Cao, Mikael Andersson, Christian Nyberg and Maria Kihl

Web Server Performance Modeling using an M/G/1/K*PS Queue

International Conference on Telecommunication (ICT), Feb 2003

3. Jianhua Cao and Christian Nyberg

An Approximate Analysis of Load Balancing Using Stale State Information for Servers

in Parallel

The 2nd IASTED International Conference on Communications Internet and Infor-

mation Technology (CIIT) Nov 2003

4. Jianhua Cao and Christian Nyberg

Admission Control to an M/M/1 Queue under Periodic Observations with Average

Cost Criterion

Submitted to Operations Research, April 2004

6



In the first paper we investigate the performance of overload control through queue length

for two different web server architectures. Both of them use finite queue lengths to pre-

vent servers from being overloaded. One architecture prioritizes requests from established

sessions while the other treats all requests equally. We use simulation to evaluate the per-

formance of these two types of web servers. The result suggests that the benefit of request

prioritization is noticeable only when the capacities of the sub-systems match each other.

In the second paper we present an M/G/1/K*PS queueing model of a web server. The

arrival process of HTTP requests is assumed to be Poissonian and the service discipline is

processor sharing. The total number of requests that can be processed at the same time is

limited to K. We obtain closed form expressions for web server performance metrics such

as average response time, throughput and blocking probability. The average of the service

time requirement and the maximum number of requests being served simultaneously are

model parameters. The parameters are estimated through maximum likelihood estimation.

We validated the model through real measurements. The performance metrics predicted

by the model fit well to the experimental outcome.

In the third paper, we study a queueing system with a load balancer and a pool of

identical FCFS queues in parallel. The arrival process is assumed to be Poisson and the

service times have identical independent exponential distributions. The pool of servers

informs the load balancer on the number of customers in each server at some regularly

spaced time instances. The load balancer routes each customer to the expected shortest

queue based on available stale information and elapsed time since the last time instance

of system state information updating. We analyze the system performance approximately

by taking the number of servers to infinite. We show that the average waiting time for the

system is not always minimized by routing each customer to the expected shortest queue

when the information used for decision is stale even if prediction of queue length is used.

In the last paper we consider the problem of admission control to an M/M/1 queue

under periodic observations with average cost criterion. The admission controller receives

the system state information every τ :th second and can accordingly adjust the acceptance

probability. For a period of τ seconds, the cost is a linear function of the time average

of customer populations and the total number of served customers in that period. The

objective is to find a stationary deterministic control policy that minimizes long run average

cost. The problem is formulated as a discrete time Markov decision process whose states are

fully observable. The model in question generalizes two classical queueing control problems:

the open and the closed loop admission control to an M/M/1 queue when taking τ → ∞

7



and τ = 0 respectively. A proof of the existence of the average optimal policy by the

vanishing discounted approach is provided. Several useful lower and upper bounds of the

optimal cost are obtained. We also show that the optimal policy is nonincreasing with

respect to the observed number of customers in the system.

5 Future Work

As the web penetrates our everyday life, the following scenario is becoming a commonplace.

A web server farm consisting of several hundreds servers of different capabilities and capaci-

ties provides several types of web services, such as product inquiry and ordering. Some kind

of quality of service or service level agreement between the owner of the web server farm

and the web service providers is a necessity for carring out the business. As an extremely

simplified example, a possible web service level agreement can be as follows. There are N

types of web services. For a service request of type i, i = 1, · · · , N , the availability must be

greater than pi and the response time must be less than Wi, when the average arrival rate

for the requests of type i is less than λi. Many questions concerning capacity planning,

admission control and scheduling may arise immediately and can be considered under the

framework of a multi-class multi-server queueing system. Currently we are studying the

problem of admission control and load balancing of heterogeneous servers in parallel within

the service level agreement settings mentioned above. Often straightforward formulations

of the problems lead to nonlinear programs which are difficult to solve even numerically.

However, we can relate the nonlinear programs to some linear programs using arguments

from queueing theory. Usually these linear programs provide both the upper bound and

the lower bound of the objective for the nonlinear program in question. Thus our imme-

diate concern is to characterize the difference of the optimal objective values of two linear

programms that approximate the original nonlinear program when the underlying model-

ing prarameters are taken from some distributions. Moreover we plan to explore similar

problems with more elaborated service level agreements and study their solutions using

different approximation schemes.

8



References

[1] Abdelzaher, T. F., Shin, K. G., and Bhatti, N. (2002). Performance guarantees for Web

Server End-Systems: A control-theoretical approach. IEEE Transactions on Parallel and

Distributed Systems, 13(1).

[2] Arlitt, M., Krishnamurthy, D., and Rolia, J. (2001). Characterizing the scalability of

a large web-based shopping system. ACM Transactions on Internet Technology, 1(1).

[3] Arlitt, M. F. and Williamson, C. L. (1997). Internet web servers: Workload char-

acterization and performance implications. IEEE/ACM Transactions on Networking,

5(5).

[4] Bhoj, P., Ramanathan, S., and Singhal, S. (2000). Web2K: Bringing QoS to web

servers. In HP Laboratories Palo Alto, Hewlett-Packard Company. HPL-2000-61.

[5] Bunt, R. B. and Eager, D. L. (1999). Achieving load balance and effective caching in

clustered web servers. In Proceedings of the 4:th International Web caching Workshop.

[6] Caceres, R., Douglis, F., Feldmann, A., Glass, G., and Rabinovich, M. (1998). Web

proxy caching: The devil is in the details. Performance Evaluation Review, 26(3):11–15.

[7] Chen, H. and Mohapatra, P. (2003). Overload control in QoS-aware web servers. Com-

puter Networks, 42:119–133.

[8] Cherkasova, L. (1999). Scalabe web hosting service. Technical report, HP Laboratories

Palo Alto, Hewlett-Packard Company. HPL-1999-52(R.1).

[9] Cherkasova, L. and Phaal, P. (1998). Session based admission control: a mechanism

for improving the performance of an overloaded web server. Technical report, Computer

Systems Laboratory, Hewlett-Packard Company. HPL-98-119.

[10] Cherkasova, L. and Phaal, P. (1999). Hybrid and predictive admission strategies to

improve the performance of an overloaded web server. Technical report, HP laboratories

Palo Alto, Hewlett-Packard Company. HPL-98-125(R.1).

[11] Dragoi, O. A. (1999). The conceptual architecture of the Apache web server. Technical

report, Department of Computer Science, University of Waterloo.

9



[12] Feldman, S. (2000). The changing face of e-commerce: Extending the boundaries of

the possible. IEEE Internet Computing.

[13] Ghosh, S. and Squillante, M. S. (2003). Analysis and control of correlated web server

queues. In Proceedings of SPIE, volume 5244.

[14] Harchol-Balter, M., Bansal, N., Schroeder, B., and Agrawal, M. (2000). Implementa-

tion of {SRPT} scheduling in web servers. Technical report, Department of Computer

Science, Carnegie Mellon University. CMU-CS-00-170.

[15] Harkins, P. (2001). Building a large-scale E-commerce site with Apache and mod perl.

Technical report, perl.com.

[16] Iyengar, A., MacNair, E., and Nguyen, T. (1997). An analysis of web server perfor-

mance. In Globecom.

[17] Iyengar, A., Nahum, E., Shaikh, A., and Tewari, R. (2002). Enhancing Web Perfor-

mance. In Proceedings of the IFIP World Computer Congress.

[18] Kwan, T. T., McGrath, R. E., and Reed, D. A. (1995). NCSA’s World Wide Web

server: Design and performance. IEEE Computer, 28(11):68–74.

[19] Liu, Z., Niclausse, N., and Jalpa-Villanueva, C. (2001). Traffic model and performace

evaluation of web servers. Performance Evaluation, 46:77–100.

[20] Mei, R. D. V. D., Hariharan, R., and Reeser, P. (2001). Web server performance

modeling. Telecommunication Systems, 16(3,4):361–378.

[21] Menasce, D., Almeida, V., Riedi, R., Ribeiro, F., Fonseca, R., and Jr., W. M. (2003).

A hierarchical and multiscale approach to analyze E-business workloads. Performance

Evaluation, 54:33–57.

[22] Menasce, D. A., Almeida, V. A. F., Fonseca, R., and marco A. Mendes (1999). A

methodology for workload characterization of e-commerce sites. In Proceedings of 1999

ACM conference on Electronic Commerce Deaver, Colorado.

[23] Menasce, D. A., Almeida, V. A. F., Fonseca, R., and Mendes, M. A. (2000). Business-

oriented resource management policies for e-commerce servers. Performance Evaluation,

42:223–239.

10



[24] Mosedale, D., Foss, W., and McCool, R. (1997). Lessons learned administering

Netscape’s Internet site. IEEE Internet Computing, 1(2):28–35.

[25] Nahum, E., Barzilai, T., and Kandlur, D. D. (2002). Performance issues in WWW

servers. IEEE/ACM Transactions on Networking, 10(1).

[26] Reeser, P. K., van der Mei, R. D., and Hariharan, R. (1999). An analytic model of a

web server. In Proceedings of the International Teletraffic Congress ITC-16.

[27] Robertsson, A., Wittenmark, B., and Kihl, M. (2003). Analysis and design of admis-

sion control in web-server systems. In American control Conference ACC.

[28] Sahai, A., Ouyang, J., Machiraju, V., and Wurster, K. (2001). Specifying and guar-

anteeing quality of service for web services through real time measurement and adaptive

control. Technical report, E-services Software Research Department. HP-2001-134.

[29] Schroeder, B. and Harchol-Balter, M. (2002). Web servers under overload: How

scheduling can help. Technical report, School of Computer Science, Carnegie Mellon

University. CMU-CS-02-143.

[30] Slothouber, L. P. (1995). A model of web server performance. lpslot@biap.com.

11



12



On Overload Control through Queue Length for Web Servers

Jianhua Cao and Christian Nyberg

Presented at the 16:th Nordic Teletraffic Seminar, August 2002, Espoo Finland

Abstract. We investigate the performance of overload control through queue length for

two different web server architectures. Both of them use finite queue lengths to prevent

servers from being overloaded. One architecture prioritizes requests from established ses-

sions while the other treats all requests equally. First, we introduce queueing models for

these two systems. Then, we define and explain a new web server performance metric that

is a function of session throughput, error rate for connection within sessions and average

request response time. Finally, we use simulation to evaluate the performance of these

two types of web servers. The result suggests that the benefit of request prioritization is

noticeable only when the capacities of the sub-systems match each other.

13



1 Introduction

The excessive delay of web services is more and more common as the number of Internet

users increases everyday. Not only the customers will be unsatisfied but also the service

provider will be hurt in the long term. There are two ways to alleviate the problem,

namely, infrastructure upgrading and overload control. Infrastructure upgrading is an

obvious approach and will bring more traffic and, probably, more profit to the operator.

Overload control, however, assures a certain quality of service to a limited amount of

customers and sacrifices the rest by throttling the incoming traffic.

Overload control may not be the best thing to do when infrastructure upgrading is

possible, but it is still a necessary complement to upgrading approach for two reasons.

First, one can not upgrade the system so often as to keep up with the ever increasing

Internet traffic. Second, the large variance of Internet traffic will cause the web server

overload from time to time even if the web server is engineered to handle the average

traffic. So how could overload control be done? A crude overload control mechanism

will constantly monitor the server’s CPU usage, connection response time, the number of

current connections (jobs) and/or the number of queued requests. When certain parameters

exceed some predetermined levels, the server starts to reject customers until monitored

parameters are back to normal. However, this simple scheme has a problem that all

requests are equally treated.

A customer visiting a web site tends to send several requests in sequel. A possible

sequence could contain the following commands: browsing, searching, ordering, paying

and exiting. We call such a sequence of requests a session. As one can see here, the

customer will be very irritated if her paying request is rejected after filling in her credit

card number. In general, requests within a session should not be rejected. When a overload

control scheme is blind at sessions, it is called request-based overload control (RBOC)

otherwise session-based overload control (SBOC).

Different overload control strategies for telephone switches have been studied by Nyberg

[5]. The performance of SBOC and RBOC for e-commerce web sites has been studied by

Kihl and Widell [2] recently. Several attempts [1, 4, 6] have been tried to model the web

servers and have different level of success.

In this paper, we use simulation to study the effectiveness of SBOC and RBOC through

queue length. Overload control through queue length means that the control decision is

based on the number of queued requests. The result shows that the SBOC through queue

length is not necessarily effective when the web server is not carefully configured.

14



The paper is organized as follows. In Section 2, we introduce the queuing models of a

web server. We then define and explain a performance metric for web servers in Section

3. Section 4 gives the simulation results of web servers using SBOC and RBOC with three

different configurations. We conclude the paper in Section 4.

2 Queuing Models of Web Servers

The basic queuing model used here is based on [4]. The model consists of three subsystems,

TCP, HTTP and IO, in tandem. Fig. 1 shows the structure.

TCP IOHTTP

Figure 1: A basic queueing model of web server consists of three
subsystems,TCP, HTTP and IO in tandem.

The TCP subsystem is modeled as a multi-server system with zero buffer. The number

of TCP servers, mtcp is equal to the maximum number of allowed concurrent TCP connec-

tions. The HTTP subsystem is modeled as a multi-server system with a finite buffer. The

number of HTTP servers, mhttp, is equal to the maximum number of allowed concurrent

HTTP processes or threads. The IO subsystem is modeled as a processor sharing server

with a finite buffer. The buffer size of HTTP subsystem, nhttp, and the buffer size of the

IO subsystem, mio, along with mtcp and mhttp, are all configurable parameters.

The model works as follows. When a HTTP request arrives, the TCP subsystem will

establish a connection between the client and the web server by handshake. So the service

time of the TCP subsystem, xtcp, is equal to the the round trip time, trtt. Note that the

TCP subsystem will allow at most mtcp simultaneous connections .

After the connection is established, the request is forwarded to the HTTP subsystem

and the TCP server will be released. The request will be processed immediately if there is

a free HTTP server available otherwise it will be pushed into the FIFO queue. The service

time of the HTTP subsystem, xhttp, is the total time spending on parsing the HTTP

requests and fetching/generating the HTML files. We could reasonably assume that xhttp

15



is proportional to the returned file size with coefficient, k(with unit s/KB). As soon as the

returned files are compiled, the job will be transfered to the IO subsystem when there is

an IO slot available, otherwise the HTTP server that processes the request will be hold.

The HTTP server on holding state can not process more HTTP requests until it is freed.

The IO subsystem uses the TCP protocol to send the HTML files. The bandwidth of IO

server is shared by all jobs in the queue. The IO server polls jobs in a round robin fashion.

The service time of an IO job, xio(with unit seconds), depends on the file size, sfile(with

unit KB), the bandwidth of the server, wserver(with unit KB/s), and the client, wclient, the

number of concurrent IO jobs, nio(≤ mio), and the packet loss rate of the connection, ploss.

To simplify the derivation of xio, we use the following four assumptions. First, all the

clients use the same maximum segment size, smss (with unit KB). Second, all the clients

have the same packet loss rate of zero, ploss = 0. Third, all the connection have the same

TCP flow/congestion control window size, swnd(with unit KB), all the time. Fourth, the

bandwidth of client is less than that of server. So, the approximated IO service time is

given by Eq.1.

xio =

⌈
sfile

swnd

⌉

trtt +
sfile

wclient

+

⌈
sfile

smss

⌉
smss

wserver

(nio − 1) (1)

The first item in the right hand side of the equation is the transmission time of the file;

the second item is the time for client to receive the file; the third item is the waiting time.

The model described above can be used to predict the throughput, the response time

of the web server quite accurately. But it needs some modification when the requests are

grouped in sessions, otherwise the arrival process is not a Poisson process any more.

delay

TCP IOHTTP

q

Figure 2: The session is modeled by Bernoulli feedback. If the
feedback probability is q, then average number requests in a session
is 1/(1 − q).

In our case, we model the sessions by adding a Bernoulli feedback from the output to

the input of the model above, as shown in Fig. 2. So it implies that the number of requests

16



in a session is geometrically distributed. This fact is justified by the statistical analysis of

web traffics [3]. Since the transient analysis is not our major interests, the delay between

requests is not modeled explicitly here.

The HTTP server with FIFO queue of finite length is in fact an implementation of

RBOC through queue length. Therefore the model above can be used to investigate the

performance of RBOC. The HTTP subsystem of SBOC is a bit different from that of

RBOC, as illustrated in Fig. 3. Let us call the customers from the feedback the old

customers and the others new customers. The SBOC uses two separate queues in the

HTTP subsystem: one for new customers and one for old customers. The queue for old

customers is assigned with a higher priority in order to break as little number of sessions

as possible.

delay

TCP IOHTTP

q

Figure 3: The model of web server using SBOC scheme. Two
queues are used for old customers and new customers. The
queue for old customers has higher priority than the other
one.

3 Web Server Performance Metrics

Three metrics, throughput, H, response time, T , and connection error rate,E are widely

used to evaluate the performance of web servers. Throughput is defined as the average

number of completed requests (or sessions) per second. Typically, the throughput will

reach some limit when the arrival intensity, λ, i.e. the number of arrived customers per

second, exceeds some threshold, λ∗. Below that threshold, the throughput will increase

linearly with λ. The response time measures the interval between when request is sent

and when the requested files are received by the customer. It should be a small constant

when λ < λ∗ and increase when λ is close to λ∗. If the web server uses finite buffers, the

response time will be a large constant when λ > λ∗. The connection error rate reflects

17



the percentage of requests (or sessions) that are rejected (or broken) due to the limited

capacity of the web server. It should be approximately zero when λ < λ∗, and approach

one when λ becomes large.

In order to compare overall performance of RBOC and SBOC, we need a unified metric.

In analogy with the definition of network power which is throughput divided by delay, we

propose a metric called the power of web server, denoted by P . It is a function of session

throughput, error rate for sessions and average request response time:

P =
Hsession

Trequest

(1 − Esession) (2)

whereHsession is the number of completed sessions per second, Trequest is the average response

time for each accepted request, Esession is the probability that a session is being broken.

Since Hsession, Trequest and Esession are all functions of the arrival intensity λ, and so is

the server power, P . We would expect the power of an ideal server to have the following

properties: First, it should be proportional to λ when λ < λ∗. Second, it maintains the

maximum power, P (λ∗), when λ > λ∗. As we can see later, the RBOC cannot maintain

the second property and the power of web server using RBOC will drop. So can SBOC

maintain maximum power constantly even if the server is heavily loaded? Our answer is

“it depends” as the simulation shows.

4 Simulation Results

We use discrete event simulation to investigate the performance of web servers using RBOC

and SBOC.

To avoid unnecessary complication, we limit the sources of randomness in our simulation

to be two: the customer arrival process assumed to be Poissonian and the session length

which is geometrically distributed with mean 1/(1 − q) = 6.0. The following parameters

are assumed to be constants: the size of file that clients request, sfile = 10KB; the speed of

file feteching, k = 0.01 s/KB; the client bandwidth, wclient = 5.5KB/s; the round trip time

between client and server, trtt = 0.1s; the maximum segment size, smss = 0.5KB.

The following parameters in both models are configurable: the number of TCP servers,

mtcp; the number of HTTP servers, mhttp; the maximum queue length of HTTP subsystem,

nhttp; the maximum buffer size of IO subsystem, mio; and the bandwidth of the web server,

wserver.

18



Let C denote the capacity of a system, i.e. the maximum number of requests that can

be proceeded in one second. The capacities of TCP, HTTP, IO subsystems are then given

by:

Ctcp =
mtcp

xtcp

=
mtcp

trtt
(3)

Chttp =
mhttp

xhttp

=
mhttp

k · sfile

(4)

Cio =
mio

xio|nio=mio

(5)

Given that k, sfile and trtt are constants, the capacities of the sub-systems, Ctcp, Chttp, Cio,

are then fully determined by the system configuration.

In most configurations, it will usually be the case that Ctcp > Chttp and Ctcp > Cio. So

we limit our investigation to the following three cases: Chttp > Cio (case A), Chttp = Cio(case

B), Chttp < Cio (case C).

Further we fix the configurations: mtcp = 1024, nhttp = 100, mio = 507 and wserver =

100Mbits/s, to make Cio a constant. The variation of Chttp is then achieved by adjusting

the number of HTTP servers, mhttp.

We show the different configurations of mhttp and corresponding subsystem capacities

in three cases in Table 1. The simulation results are shown in Fig. 4 and Fig. 5.

In Fig. 4, we plot the session throughput, average request response time and session

error rate for systems using RBOC and SBOC in three different cases. The sub-figure (a)

and (b) show that RBOC and SBOC give almost identical session throughput. But SBOC

gives lower response than RBOC in all three cases as sub-figures (c) and (d) indicate.

The sub-figure (e) gives expected behavior of session error rate of RBOC that approaching

to one when arrival intensity exceeds some threshold. However the session error rate of

SBOC in case A shows the the same pattern. Recall that in case A, the capacity of HTTP

subsystem is greater than that of IO subsystem, therefore HTTP servers tend to be held

when a job completes. When there are some HTTP servers are held, the effective number

of servers will decrease and queues of HTTP subsystem will tend to pile up.

In Fig. 4, we show the power of systems using RBOC and SBOC. Now it is much more

straightforward to compare RBOC and SBOC in three different configurations. Let us first

consider the case B. It is clear from the simulation results that the power of the system

using SBOC does not drop even when the arrival intensity exceeds the threshold λ∗, while

it is not the case for the system using RBOC. However in case A, the power of two systems

19



case A case B case C
mhttp 24 12 6
Ctcp 10240 10240 10240
Chttp 240 120 60
Cio 120.057 120.057 120.057

Table 1: Different configuration of mhttp and the capacities of sub-
systems in different cases. case A: Chttp > Cio; case B: Chttp = Cio;
case C: Chttp < Cio.

using RBOC and SBOC is the same. The reason is mainly due to that in both systems

the session error rate increases as the arrival intensity increases. In case C, we see some

advantages of SBOC over RBOC but the gain is not that much as in case B. We also notice

that the power of the two systems in case C is the half of that in case B. If checking the

Table 1, we will find out that the number of HTTP servers in case C is half of that in case

B. Obviously the configuration of case C makes the web server under utilized.

So finally, we can reach a conclusion that SBOC will have its largest advantage over

RBOC when the web server is configured in such a way that the capacities of subsystems

match each other.

5 Conclusion Remarks

In this paper, we first introduce the queuing model of web servers with SBOC and RBOC

respectively. To facilitate the investigation, we define a new performance metric called the

power of web server. We use simulation to investigate the performance of two overload

control schemes in the cases that the capacity of the HTTP subsystem does/does not match

that of the IO subsystem. The result suggests that SBOC is effective when the web server

is properly configured so that the capacities of the subsystems match each other.

For the future work, first, it is preferred to use analytical model over simulation model

in order to find out the region of the system parameters that renders the different overload

control schemes effective/ineffective. Second, a more realistic model of the web server is

needed. In order to simplify both simulation and analysis, the current web server model

ignores the fact that the tasks like HTTP parsing, network and file IO operation are all

sharing CPU, network bandwidth and hard-disk. Hence a processor sharing based queueing

network model could reveal more interesting dynamics of the web server.

20



0

5

10

15

20

0 5 10 15 20 25 30 35 40 45 50

se
ss

io
n 

th
ro

ug
hp

ut
 (

1/
se

c)

session arrival rate (1/sec)

RBOC

case A
case B
case C

(a) Throughput (RBOC)

0

5

10

15

20

0 5 10 15 20 25 30 35 40 45 50

se
ss

io
n 

th
ro

ug
hp

ut
 (

1/
se

c)

session arrival rate (1/sec)

SBOC

case A
case B
case C

(b) Throughput (SBOC)

3

3.5

4

4.5

5

5.5

6

6.5

7

0 5 10 15 20 25 30 35 40 45 50

av
er

ag
e 

re
qu

es
t  

re
sp

on
se

 ti
m

e 
(s

ec
)

session arrival rate (1/sec)

RBOC

case A
case B
case C

(c) Average Response Time (RBOC)

3

3.5

4

4.5

5

5.5

6

6.5

7

0 5 10 15 20 25 30 35 40 45 50

av
er

ag
e 

re
qu

es
t  

re
sp

on
se

 ti
m

e 
(s

ec
)

session arrival rate (1/sec)

SBOC

case A
case B
case C

(d) Average Response Time (SBOC)

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35 40 45 50

se
ss

io
n 

er
ro

r 
ra

te

session arrival rate (1/sec)

RBOC

case A
case B
case C

(e) Session Error Rate (RBOC)

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35 40 45 50

se
ss

io
n 

er
ro

r 
ra

te

session arrival rate (1/sec)

SBOC

case A
case B
case C

(f) Session Error Rate (SBOC)

Figure 4: The throughput, average request response time and ses-
sion error rate of web servers using RBOC and SBOC in three
different cases. 21



0

1

2

3

4

5

0 5 10 15 20 25 30 35 40 45 50

po
w

er

session arrival rate (1/sec)

RBOC

case A
case B
case C

(a) Power (RBOC)

0

1

2

3

4

5

0 5 10 15 20 25 30 35 40 45 50

po
w

er

session arrival rate (1/sec)

SBOC

case A
case B
case C

(b) Power (SBOC)

Figure 5: The power of web servers using RBOC and SBOC in
three different cases.

22



References

[1] Heidemann, J., Orbraczka, K., and Touch, J. (1997). Modeling the performance of http

over several transport protocols. IEEE/ACM Transactions on Networking, 5(5).

[2] Kihl, M., Widell, N., and Nyberg, C. (2002). Performance modeling of distributed

e-commerce sites. In Networking.

[3] Liu, Z., Niclasusse, N., and Jalpa-Villanueva, C. (2001). Traffic model and performance

evaluation of web servers. Performance Evaluation, 46.

[4] Mei, R. D. V. D., Hariharan, R., and Reeser, P. K. (2001). Web server performance

modeling. Telecommunication Systems, 16(3,4):361–378.

[5] Nyberg, C. (1992). On Overload Control in Telecommunication Systems. PhD thesis,

Lund University.

[6] Reeser, P. K., van der Mei, R. D., and Hariharan, R. (1999). An analytical model of a

web server. In ITC16, pages 1199–1280.

23



24



Web Server Performance Modeling Using
an M/G/1/K ∗ PS Queue

Jianhua Cao, Mikael Andersson, Christian Nyberg and Maria Kihl

Presented at the 10:th International Conference on Telecommunication, February 2003,

Tahiti French Polynesia

Abstract. Performance modeling is an important topic in capacity planning and overload

control for web servers. We present an M/G/1/K*PS queueing model of a web server. The

arrival process of HTTP requests is assumed to be Poissonian and the service discipline

is processor sharing. The total number of requests that can be processed at one time

is limited to K. We obtain closed form expressions for web server performance metrics

such as average response time, throughput and blocking probability. The average of the

service time requirement and the maximum number of requests being served simultaneously

are model parameters. The parameters are estimated by maximizing the log-likelihood

function of the measured average response time. Compared to other models, our model

is conceptually simple and it is easy to estimate model parameters. The model has been

validated through measurements in our lab. The performance metrics predicted by the

model fit well to the experimental outcome.

25



1 Introduction

Performance modeling is an important part of the research area of web servers. Without

a correct model of a web server it is difficult to give an accurate prediction of performance

metrics. A validated model is the basis of web server capacity planning, where models

are used to predict performance in different settings, see Hu et al. [6] or Menasc and

Almeida [12].

Today a web site can receive millions of hits per day and it may become overloaded

as the arrival rate exceeds the server capacity. To cope with this, overload control can

be used, which means that some requests are allowed to be served by the web server and

some are rejected. In this way the web server can achieve reasonable service times for the

accepted requests. In overload control investigations for web servers, performance models

predict improvements when using a certain overload control strategy, see Widell [16] or

Cao and Nyberg [3]. Overload control is a research area of its own, but it is depending on

performance models that are valid in the overloaded work region.

Several attempts have been made to create performance models for web servers. Van

der Mei et al. [11] modeled the web server as a tandem queuing network. The model was

used to predict web server performance metrics and was validated through measurements

and simulations. Wells et al. [15] made a performance analysis of web servers using colored

Petri nets. Their model is divided into three layers, where each layer models a certain aspect

of the system. The model has several parameters, some of which are known. Unknown

parameters are determined by simulations. Dilley et al. [5] used layered queuing models

in their performance studies. Cherkasova and Phaal [4] used a model similar to the one

presented in this paper, but with assumptions of deterministic service times and session-

based workload. Beckers et al. [2] proposed a generalized processor sharing performance

model for Internet access lines which include web servers. Their model describes the flow-

level characteristics of the traffic carried. They established simple relations between the

capacity, the utilization of the access line and download times of Internet objects.

However, several of the previous models are complicated. It lacks a simple model that

is still valid in the overloaded work region. A simple model renders a smaller parameter

space thus easier to estimate, while a complicated model usually contains parameters that

are difficult to obtain.

A simple model, like the M/M/1/K or M/D/1/K with a First-Come-First-Served

(FCFS) service discipline can predict web server performance quite well. But conceptually

it is difficult to assume that the service time distribution is exponential or deterministic

26



and that the service discipline is always FCFS.

In this paper we describe a web server model that consists of a processor sharing node

with a queue attached to it. The total number of jobs in the system is limited. The arrival

process to the server is assumed to be Poissonian, whereas the service time distribution

is arbitrary. A system like this is called an M/G/1/K*PS queue. The average service

time and the maximum number of jobs are parameters that can be determined through a

maximum likelihood estimation. We also derived closed form expressions for web server

performance metrics such as throughput, average response time and blocking probability.

Our validation environment consists of a server and two computers representing clients

connected through a switch. The measurements validate the model. Results show that the

model can predict the performance metrics at both lighter loaded and overloaded regions.

The rest of the paper is organized as follows: The next section gives an overview of

how a web server works and introduces M/G/1/K*PS queue. In section 3 we describe our

new web server model and derive expressions for the performance metrics. We develop

the maximum likelihood estimation of the model parameters in Section 4. Our model is

validated through experiments in Section 5. Section 5 shows the results and the discussion.

The last section concludes our work.

2 Preliminaries

This section describes how web servers work and gives a background on the theory of an

M/G/1/K*PS queue.

2.1 Web servers

A web server contains software that offers access to documents stored on the server. Clients

can browse the documents in a web browser. The documents can be for example static

Hypertext Markup Language (HTML) files, image files or various script files, such as

Common Gateway Interface (CGI), Java script or Perl files. The communication between

clients and server is based on HTTP [13].

A HTTP transaction consists of three steps: TCP connection setup, HTTP layer pro-

cessing and network processing. The TCP connection setup is performed through a three-

way handshake, where the client and the server exchange TCP SYN, TCP SYN/ACK and

TCP ACK messages. Once the connection has been established, a document request can

be issued with a HTTP GET message to the server. The server then replies with a HTTP

27



GET REPLY message. Finally, the TCP connection is closed by sending TCP FIN and

TCP ACK messages in both directions.

Apache [Apache], which is a well-known web server and widely used, is multi-threaded.

This means that a request is handled by its own thread or process throughout the life cycle

of the request. Other types of web servers e.g. event-driven ones also exist [14]. However,

in this paper we consider only the Apache web server. Apache also puts a limit on the

number of processes allowed at one time in the server.

2.2 M/G/1/K*PS queue

Consider an M/G/1/K queue with processor sharing service discipline. The arrival of jobs

is according to a Poisson process with rate λ. The service time requirements have a general

distribution with mean x̄. An arrival will be blocked if the total number of jobs in the

system has reached a predetermined value K. A job in the queue receives a small quantum

of service and is then suspended until every other job has received an identical quantum of

service in a round-robin fashion. When a job has received the amount of service required,

it leaves the queue. Such a system can also be viewed as a queueing network with one

node [8].

The probability mass function (pmf) of the total number of jobs in the system has the

following expression,

P [N = n] =
(1 − ρ)ρn

(1 − ρK+1)
, (1)

where ρ is the offered traffic and is equal to λx̄. We note that an M/M/1/K*FCFS queue

has the same pmf [9, 10]. However the service time distribution of the M/M/1/K*FCFS

queue must be exponential and its service discipline must be FCFS.

3 Web Server Model

We model the web server using an M/G/1/K*PS queue as Fig. 1 shows. The requests

arrive according to a Poisson process with rate λ. The average service requirement of each

request is x̄. The service can handle at most K requests at a time. A request will be

blocked if the number has been reached. The probability of blocking is denoted as Pb.

Therefore the rate of blocked requests is given by λPb.

From (1) we can derive the following three performance metrics, average response time,

throughput and blocking probability.

28



λPb

λ

x̄

K

Figure 1: An M/G/1/K-PS model of web servers

The blocking probability Pb is equal to the probability that there are K jobs in the

system, i.e. the system is full,

Pb = P [N = K] =
(1 − ρ)ρK

(1 − ρK+1)
. (2)

The throughput H is the rate of completed requests. When web server reaches equilib-

rium, H is equal to the rate of accepted requests,

H = λ(1 − Pb). (3)

The average response time T is the expected sojourn time of a job. Following the

Little’s law, we have that

T =
E[N ]

H
=
ρK+1(Kρ−K − 1) + ρ

λ(1 − ρK)(1 − ρ)
(4)

4 Parameter Estimation

There are two parameters, x̄ and K, in our model. We assume that the average response

time for a certain arrival rate can be estimated from measurements. The estimations, ˆ̄x and

K̂, are obtained by maximizing the likelihood function of the observed average response

time.

Let Ti be the average response time predicted from the model and T̂i be the average

response time estimated from the measurements when the arrival intensity is λi, i = 1 . . .m.

Since the estimated response time T̂ is the mean of samples, it is approximately a normal

distributed random variable with mean T and variance σ2
T/n when the number of samples

n is very large. Hence, the model parameter pair (x̄, K) can be estimated by maximizing

29



the log-likelihood function

log
m∏

i=1

1
√

2πσ2
i /ni

exp




−

(

T̂i − Ti

)2

2σ2
i /ni




 . (5)

Maximizing the log-likelihood function above is equivalent to minimize the weighted

sum of square errors as follows,

m∑

i=1

(

T̂i − Ti

)2

σ2
i /ni

. (6)

As an approximation, the estimated variance of response time, σ̂i
2, can be used instead

of σ2
i .

Now, the problem of parameter estimation becomes a question of optimization,

(ˆ̄x, K̂) = arg
(x̄,K)

min
m∑

i=1

(

T̂i − Ti

)2

σ̂i
2/ni

(7)

The optimization can be solved in various ways, such as steepest decent, conjugate

gradient, truncated Newton and even brute force searching. In this paper, we used a

brute force approach. The optimum parameter is selected by examining every point of the

discretized parameter space.

5 Experiments

Our validation experiments used one server computer and two client computers connected

through a 100 Mbits/s Ethernet switch. The server was a PC Pentium III 1700 MHz with

512 MB RAM. The two clients were both PC Pentium III 700 with 256 MB RAM.

All computers used RedHat Linux 7.3 as operating system. Apache 1.3.9 [Apache] was

installed in the server. We used the default configuration of the Apache, except for the

maximum number of connections. The client computers were installed with a HTTP load

generator, which was a modified version of S-Client [1]. The S-Client is able to generate

high request rates even with few client computers by aborting TCP connection attempts

that take too long time. The original version of S-Client uses deterministic waiting time

between requests. We used exponential distributed waiting time instead. This makes the

arrival process Poissonian [7].

30



Table 1: The configuration of four experiments
Nr = 1000 Nr = 2000

Nconn,max = 75 A1 B1
Nconn,max = 150 A2 B2

Table 2: Estimated Parameters of the Model
A1 A2 B1 B2

ˆ̄x 0.00708 0.00708 0.00866 0.00834

K̂ 208 286 215 298

The clients were programmed to request dynamically generated HTML files from the

server. The CGI script was written in Perl. It generates a fix number, Nr, of random

numbers, adds them together and returns the summation. By varying Nr, we can simulate

different loads on the web server.

We were interested in the following performance metrics: average response time, through-

put, and blocking probability. The throughput was estimated by taking the ratio between

the total number of successful replies and the time span of measurement. The response

time is the time difference between when a request is sent and when a successful reply

is fully received. The average response time was calculated as the sample mean of the

response times after removing transients. An HTTP request sent by a client computer will

be blocked either when the maximum number of connections, denoted as Nconn,max, in the

server has been reached or the TCP connection is timed out at the client computer. A

TCP connection will be timed out by a client computer when it takes too long time for the

server to return an ACK of the TCP-SYN. The blocking probability was then estimated as

the ratio between the number of blocking events and the number of connection attempts

in a measurement period.

We carried out the experiments in four cases by varying Nr and Nconn,max. Table 1 shows

the configurations of four experiments: A1, A2, B1 and B2. In each case, the performance

metrics were collected while the arrival rate (in number of requests/second) was changed

from 20 to 300 with step size 20.

31



0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300

m
ill

is
ec

on
ds

requests/second

(a)

model
measurement

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300
m

ill
is

ec
on

ds
requests/second

(b)

model
measurement

0

50

100

150

200

0 50 100 150 200 250 300

re
qu

es
ts

/s
ec

on
d

requests/second

(c)

model
measurement

0

50

100

150

200

0 50 100 150 200 250 300

re
qu

es
ts

/s
ec

on
d

requests/second

(d)

model
measurement

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

requests/second

(e)

model
measurement

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

requests/second

(f)

model
measurement

Figure 2: (a) Average response time of A1. (b) Average response time of A2. (c) Through-
put of A1. (d) Throughput of A2. (e) Blocking probability of A1. (f) Blocking probability
of A2.

32



0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300

m
ill

is
ec

on
ds

requests/second

(a)

model
measurement

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300
m

ill
is

ec
on

ds
requests/second

(b)

model
measurement

0

50

100

150

200

0 50 100 150 200 250 300

re
qu

es
ts

/s
ec

on
d

requests/second

(c)

model
measurement

0

50

100

150

200

0 50 100 150 200 250 300

re
qu

es
ts

/s
ec

on
d

requests/second

(d)

model
measurement

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

requests/second

(e)

model
measurement

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

requests/second

(f)

model
measurement

Figure 3: (a) Average response time of B1. (b) Average response time of B2. (c) Through-
put of B1. (d) Throughput of B2. (e) Blocking probability of B1. (f) Blocking probability
of B2.

33



6 Results and Discussion

The method developed in section 4 were used to estimate the parameters from the mea-

surements. The results are presented in Table 2.

Using the estimated parameters, we can predict the web server performance and com-

pare it with the measurements. Fig. 2 and 3 show the average response time, the through-

put and the blocking probability curves. To facilitate the discussion, we divide four exper-

iments into two groups. The first group called α contains experiments A1 and A2 and the

second group β contains B1 and B2.

We notice the following relations in Table 2

ˆ̄xA1 = ˆ̄xA2 < ˆ̄xB1 ≈ ˆ̄xB2.

Recall that the same CGI script is used for experiments in the same group. The script for

group β is more computational intensive than the one for group α. The script for the group

α adds 1000 numbers but the script for the other adds 2000 numbers. However x̄B1(or x̄B2)

is not twice as large as x̄A1(or x̄A2). This can be understood as that the time spent on the

summations is only a fraction of the sojourn time. Other parts of x̄ include the connection

setup time, the file transferring time, etc., which can be considered as constants in all

experiments.

We find that the estimated K in all experiments is much greater than Nconn,max which is

a parameter in the Apache configuration. One may expect that K ≈ Nconn,max. However,

recognize that in our model K is the maximum number of jobs simultaneously in the

system. The jobs can be in the HTTP processing phase as well as in the TCP connection

setup phase in which the Apache has no control. On the other hand, Nconn,max is the

maximum number of jobs handled by the Apache which runs on top of the TCP layer.

Therefore K should be greater than Nconn,max.

One can reasonably predict that within the same experiment group, α or β, the dif-

ference of K̂ should be approximately equal to the difference of Nconn,max which is 75. In

our experiments, K̂A2 − K̂A1 = 78, K̂B2 − K̂B1 = 83. There is a reason why the differences

are close and greater than 75. When Nconn,max is increased, the average load of CPU will

increase. As a result, the TCP listening queue will be visited less frequently by the oper-

ating system. This implies that the TCP listening queue size will increase. So the increase

of K will be greater than the increase of Nconn,max. This explanation is also supported by

the fact that the increase of K in the experiment group β is larger than in the group α.

34



As we mentioned earlier, the CGI script of the group β is more CPU demanding than that

of the group α.

Now we turn our attention from the estimated parameters to the predicted performance

metrics. The measured and the predicted average response time in all four experiments fit

well. This should be of a little surprise because the measured average response times at

various arrival rates are used to estimate the parameters of the model.

The predicted blocking probability is slightly less than the measurements in all four ex-

periments. According to (3), the error in the prediction of Pb will also affect the prediction

of the throughput. Such divergence is expected since we only use the measured average

response time in our parameter estimation.

7 Conclusions

We have presented an M/G/1/K*PS queueing model of a web server. We obtained

closed form expressions for web server performance metrics such as average response time,

throughput and blocking probability. Model parameters were estimated from the mea-

sured average response time. We validated the model through four sets of experiments.

The performance metrics predicted by the model fitted well to the experimental outcome.

Future work will include more validation under different types of loads such as network

intensive and hard-disk intensive cases. It would also be interesting to see how well the

model fits web servers that use an event-driven approach instead of multi-threading.

Acknowledgments

We would like to thank Thiemo Voigt for sharing his code with us and Niklas Widell for

useful and interesting discussions. The work has been supported by the Swedish Research

Council under contract No. 621-2001-3053.

35



References

[Apache] Apache. Apache web server. http://www.apache.org.

[1] Banga, G. and Druschel, P. (1997). Measuring the capacity of a web server. In USENIX

Symposium on Internet Technologies and Systems, pages 61–71.

[2] Beckers, J., I.Hendrawan, R.E.Kooij, and van der Mei, R. (2001). Generalized pro-

cessor sharing performance model for internet access lines. In 9th IFIP Conference on

Performance Modelling and Evaluation of ATM and IP Networks. Budapest.

[3] Cao, J. and Nyberg, C. (2002). On overload control through queue length for web

servers. In 16th Nordic Teletraffic Seminar. Espoo, Finland.

[4] Cherkasova, L. and Phaal, P. (2002). Session-based admission control: A mechanism

for peak load management of commercial web sites. IEEE Transactions on computers,

51(6):669–685.

[5] Dilley, J., Friedrich, R., Jin, T., and Rolia, J. (1998). Web server performance mea-

surement and modeling techniques. Performance Evaluation, 33:5–26.

[6] Hu, J., Mungee, S., and Schmidt, D. (1998). Principles for developing and measuring

high-performance web servers over ATM. In Proceedings of INFOCOM ’98, March/April

1998.

[7] Jain, R. (1991). The Art of Computer Systems Performance Analysis. John Wiley &

Sons.

[8] King, P. J. B. (1990). Computer and Communication Systems Performance Modelling.

Prentice Hall.

[9] Kleinrock, L. (1975). Queueing Systems, Volume 1: Theory. John Wiley & Sons.

[10] Lam, S. (1977). Queueing networks with population size constraints. IBM Journal of

Research and Development, 21(4):370–378.

[11] Mei, R. D. V. D., Hariharan, R., and Reeser, P. K. (2001). Web server performance

modeling. Telecommunication Systems, 16(3,4):361–378.

[12] Menasc, D. A. and Almeida, V. A. F. (2002). Capacity Planning for Web Services.

Prentice Hall.

36



[13] Stallings, W. (2000). Data & Computer Communications. Prentice Hall. Sixth Edition.

[14] Voigt, T. (2002). Overload behaviour and protection of event-driven web servers. In

In proceedings of the International Workshop on Web Engineering. Pisa, Italy.

[15] Wells, L., Christensen, S., Kristensen, L. M., and Mortensen, K. H. (2001). Simula-

tion based performance analysis of web servers. In Proceedings of the 9th International

Workshop on Petri Nets and Performance Models (PNPM 2001), pages 59–68. IEEE

Computer Society.

[16] Widell, N. (2002). Performance of distributed information systems. Technical Report

144, Department of Communication Systems, Lund Institute of Technology. Lic. Thesis.

37



38



An Approximate Analysis of Load Balancing

Using Stale State Information for Servers
in Parallel

Jianhua Cao and Christian Nyberg

Presented at the 2:nd IASTED International Conference on Communications Internet

and Information Technology, November 2003, Scottsdale USA

Abstract. That a load balancing strategy using stale information carelessly will incur

system performance degradation is easy to verify. However it is not so obvious that routing

a customer to the expected shortest queue has the same problem when information for used

decision is stale. We consider a queueing system with a load balancer and a pool of identical

FCFS queues in parallel. The arrival process is assumed to be Poisson and the service

times have identical independent exponential distributions. The pool of servers informs

the load balancer the number of customers in each server at some regularly spaced time

instances. The load balancer routes each customer to the expected shortest queue based

on available stale information and elapsed time since the last time instance of system state

information updating. The system performance analysis of this type of model is usually

difficult because the involved state space is very large. However when taking the number of

servers to the infinite limit, we have a set of differential equations which is easier to handle

than the finite case. Using the approximation of infinite number of severs, we show that

the average waiting time for the system is not always minimized by routing each customer

to the expected shortest queue when information used for decision is stale.

39



1 Introduction

Load Balancing (LB) improves network performance by distributing traffic efficiently so

that individual servers are not overwhelmed by sudden fluctuations in activity [3, 13]. In

a large Internet web site, balancing incoming requests evenly among many computers is

a critical and sometimes tricky task [16, 17]. Despite fruitful theoretical results on both

static and dynamic LB strategies[19, 18], current engineering practices, such as web server

farm/cluster architecting, is calling for robust LB algorithms that can exploit imperfect

system state information effectively.

Routing a customer to the shortest queue when some mild constraint on the service

time distribution is satisfied is a conventional wisdom in LB for identical servers in parallel.

However sticking to the rule when the assumption of perfect information is broken will cause

performance troubles as a previous study reveals [14]. In this paper, a seemly “good” LB

algorithm which routes customers to the expected shortest queue is studied. The queueing

system under consideration consists a pool of identical servers in parallel, each with its own

queue. Customers arrive according to a Poisson process and immediately upon arrival must

join one of the queues thereafter to be served on a first-come first-served basis, with no

jockeying or defection allowed. The service times have identical independent exponential

distributions and are independent of the arrival process and the decisions of customers.

The pool of servers announces the state of the system, i.e. the number of customers

waiting and being served at each server, at some regularly spaced time instance called state

information update instance. When a customer arrives, the load balancer of the system

knows the elapsed time since the last announcement plus the stale state information used

for decision. The load balancer routes each customer to the expected shortest queue based

on available stale information, which is called the expected shortest queue strategy (ESQS)

hereafter. Other well known strategies include random selection and round robin.

The problem of deciding which queue to join when the full and exact state information

is available has been studied by many authors. Haight [8] and Kingman [12] considered

the dynamics of two servers in parallel when arrivals join the shortest queue. Winston [22]

and Weber [20] showed that the shortest queue strategy for N servers in parallel is optimal

when the service time distribution has a non-decreasing failure rate and arbitrary arrival.

In practice, however, the full and exact state information may be difficult to obtain and

maintain, see for example Eager [7] and Zhou [23]. Hjalmtysson and Whitt [11] studied the

resource sharing of parallel queues by periodically redistribute customers based on fresh

state information. Mitzenmacher [14] considered a system with period state information

40



update similar to ours. He showed that joining the shortest queue based on stale state

information is better than the strategy of random selection when the state information

is not too old. Motivated by Mitzenmacher’s work, Dahlin [5] proposed an algorithm to

exploit the stale state information. His simulation results show that the system employing

the algorithm gives shorter waiting times than joining queues at random. Even when

the state information is very old, his algorithm will not perform worse than the random

strategy.

In the quest for the optimal LB strategy with stale state information, one may first con-

sider the optimality of the strategy that minimizes each customer’s expected waiting time.

When the distribution of service times is exponential, routing a customer to the expected

shortest queue will minimize this customer’s expected waiting time. However finding the

expected shortest queue is usually very computationally demanding as the available state

information is stale. Even if a load balancer has access to unlimited computational re-

sources, the overall system performance is still questionable as the following cases suggest.

The fact that decentralized routing based on the expected shortest delay delay may result

in poor performance has been known for a long time, see for example Cohen and Kelley [4]

and Bersekas [2]. There are several other queueing scenarios where individual optimality

does not give a system optimum. Bell and Stidham [1] considered the case that customers

only know the service time distribution and the cost of waiting in each server upon arrival

to N parallel servers. Whitt [21] found that the average waiting time of the system is not

minimized by having each customer minimize his expected waiting time upon arrival to N

parallel servers with a certain service time distribution. In this paper numerical examples

show that the average queue length and average waiting time of the system is not mini-

mized by routing each customer to the expected shortest queue when the available system

state information for load balancing is stale. So this is yet another queueing scenario in

which the individual optimum does not coincide with the system optimum.

The rest of this paper is organized as follows. In Section 2 we derive differential equa-

tions for the system dynamics. Both the case of finite and infinite number of servers are

treated. Section 3 contains the numerical results for the case of infinite number of servers

and discussions. Discussions of our result from game theoretical perspective are offered in

Section 4. We summarize the paper in Section 5.

41



µ

µCustomers
Incoming

µ

LB

Departures

State Information

Figure 1: A system consisting of a LB and N identical servers in parallel.

t t+ τ t+ 2τ t+ 3τ

SIU SIU SIU SIU

Figure 2: The servers inform the LB their states at regularly spaced SIU instances: t, t+τ ,
t+ 2τ , t+ 3τ , . . . .

2 Dynamics of the System

2.1 System model

We consider a system consisting N FCFS servers in parallel and a load balancer that

dispatches incoming customers to the servers, as Fig. 1 shows. The service rates are

assumed to be identical and exponential distributed. The servers inform the LB their

state, i.e. the number of customers in each server, at some regularly spaced time instance

which is called state information update (SIU) instance subsequently, as Fig. 2 shows. The

time between two SIU instances is denoted as τ and assumed to be a constant.

We first consider when there are a finite number of servers in the pool. Because the

system of differential equations is difficult to solve analytically or numerically especially

when the number of server is large, we then consider the limit situation in which the

number of servers is infinite. Even though the analytical solution is still difficult to obtain,

42



the numerical result reveals some important proprieties of the system dynamics. The

infinite server system approximation seems strange at first since an arrival is guaranteed

to find an empty server when the state information is fresh. When the state information

is stale, an arrival may join the queue of a busy server due to errors in the predication

regardless the number of servers.

2.2 Finite number of servers

Let N be the total number of servers in the server pool; k = [k1, k2, . . . , kN ] be the vector of

the number of customers in each server; k̂ = [k̂1, k̂2, . . . , k̂N ] be the vector of the predicted

number of customers in each server. For convenience, let δi denote [0, . . . , 0, 1
︸ ︷︷ ︸

i

, 0, . . . , 0
︸ ︷︷ ︸

N−i

].

The arrival process is assumed to be Poisson. Let λ be the arrival rate per server to the

system. The total arrival rate to the system is Nλ.

Since all customers make decisions using prediction, the arrival rate to a server depends

not only on how many customers are predicted in this server but also how many customers

are predicted in other servers. When the predicted number of customers is distributed as

k̂, the arrival rate to the server i at time t is given by,

φ
(i)

k̂
(t) =







Nλ/n if i ∈ A

0 otherwise
(1)

where A = {i : ki = min(k̂1, k̂2, . . . , k̂N )} is the set of servers having less customers than

the others in the pool and n is the number of elements in the set A. When a few servers

are being predicted to have the same number of customers and to have less customers than

any other in the pool, the total arrival rate Nλ is divided into n portions. Each server

that is predicted to have the smallest number of customers receives a portion of Nλ/n.

The state of the system is characterized by k and k̂ jointly because k and k̂ may differ

except at the moment when SIU happens. Let p
k,k̂(t) be the probability that the system

is at the state (k, k̂). When the system is initially empty,

p
k,k̂(0) =







1 if k = k̂ = 0

0 otherwise
(2)

For brevity, we only consider states that are not near the boundary, i.e. when ki ≥ 1

43



and k̂i ≥ 1, k = 1, . . . , N in the following discussion.

Conditioned on the current state (k, k̂), the probability that the state is unchanged in

a small time interval ∆t is

1 − 2
N∑

i=1

φ
(i)

k̂
(t)∆t− 2Nµ∆t+ o(∆t).

Conditioned on the current state (k−δi, k̂), the probability that the state changes to (k, k̂)

in a small time interval ∆t is

φ
(i)

k̂
(t)∆t+ o(∆t).

Conditioned on the current state (k, k̂−δi), the probability that the state changes to (k, k̂)

in a small time interval ∆t is

φ
(i)

k̂−δi
(t)∆t+ o(∆t).

Conditioned on the current state (k + δi, k̂) or (k, k̂ + δi), the probability that the state

changes to (k, k̂) in a small time interval ∆t is

µ∆t+ o(∆t).

Conditioned on all other current state, the probability that the state changes to (k, k̂) in

a small time interval ∆t is o(∆t).

Thus the system evolves from time t to t+ ∆t according to the following rule,

p
k,k̂(t+ ∆t) =p

k,k̂(t)

(

1 − 2
N∑

i=1

φ
(i)

k̂
(t)∆t− 2Nµ∆t

)

+
N∑

i=1

p
k−δi,k̂

(t)φ
(i)

k̂
(t)∆t

+
N∑

i=1

p
k,k̂−δi

(t)φ
(i)

k̂−δi
(t)∆t

+
N∑

i=1

p
k+δi,k̂

(t)µ∆t

+
N∑

i=1

p
k,k̂+δi

(t)µ∆t+ o(∆t). (3)

Moving p
k,k̂(t) from the right side to the left, dividing both sides by ∆t and letting

44



∆t→ 0, we have the following differential equation,

d

dt
p
k,k̂(t) = − 2p

k,k̂(t)

(
N∑

i=1

φ
(i)

k̂
(t) +Nµ

)

+
N∑

i=1

p
k−δi,k̂

(t)φ
(i)

k̂
(t)

+
N∑

i=1

p
k,k̂−δi

(t)φ
(i)

k̂−δi
(t)

+
N∑

i=1

p
k+δi,k̂

(t)µ+
N∑

i=1

p
k,k̂+δi

(t)µ. (4)

At the SIU instance t, an arrival will have the full and the exact information about how

many customers are in each queue, therefore,

p
k,k̂(t) =







lims↑t

∑

h
pk,h(s) if k̂ = k

0 otherwise
(5)

The system of differential equation is nonlinear because p
k,k̂ depends on the state

dependent arrival rate. Like most nonlinear differential equations, a closed analytical

solution is unlikely to be found. Let us investigate the prospect of a numerical solution.

When the number of servers in the pool is large, we have a very large state space. Assume

that the system of differential equations is truncated so the maximal number of customers

per server is kmax. When we have N servers, the total number of states is (kmax + 1)2N .

The number of states increases exponentially as N increases. Therefore (4) is numerically

intractable when N is large.

However when we let N → ∞,we can actually have a set of differential equations that

are simpler but yet powerful enough to reveal the dynamics of the system.

2.3 Approximated analysis using infinite number of servers

Let pi,j(t) be the percentage of servers having i customers but being predicted to have

j customers at time t. Though we do not explicitly model how many customers, real

and predicted, in each queue, knowing pi,j(t) is enough to derive the average number of

customers per server in the system.

Let ψj(t) be the arrival rate to servers that are predicted to have j customers each.

45



Since new arrivals are routed to servers that are predicted having 0 customers, ψ0(t) is the

ratio between the average arrival rate per server λ and the percentage of servers that are

predicted to have 0 customers. Thus,

ψj(t) =







λ/
∑

k pk,0(t) if j = 0

0 otherwise
(6)

When the system is initially empty,

pi,j(0) =







1 if i = 0 and j = 0

0 otherwise
(7)

The system evolves from time t to time t+ ∆t according to the following rules:

when i = 0 and j = 0,

p0,0(t+ ∆t) =p0,0(t) (1 − 2ψ0(t)∆t)

+ p1,0(t)µ∆t+ p0,1(t)µ∆t+ o(∆t); (8)

when i = 0 and j ≥ 1,

p0,j(t+ ∆t) =p0,j(t) (1 − 2ψj(t)∆t− µ∆t)

+ p0,j−1(t)ψj−1(t)∆t

+ p1,j(t)µ∆t+ p0,j+1(t)µ∆t+ o(∆t); (9)

when i ≥ 1 and j = 0,

pi,0(t+ ∆t) =pi,0(t) (1 − 2ψ0(t)∆t− µ∆t)

+ pi−1,0(t)ψ0(t)∆t

+ pi+1,0(t)µ∆t+ pi,1(t)µ∆t+ o(∆t); (10)

when i ≥ 1 and j ≥ 1,

pi,j(t+ ∆t) =pi,j(t) (1 − 2ψj(t)∆t− 2µ∆t)

+ pi−1,j(t)ψj(t)∆t+ pi,j−1(t)ψj−1(t)∆t

+ pi+1,j(t)µ∆t+ pi,j+1(t)µ∆t+ o(∆t). (11)

46



Moving p0,0(t), p0,j(t), pi,0(t) and pi,j(t) from the right sides of (8),(9), (10) and (11) to

the left sides, dividing both sides by ∆t and letting ∆t→ 0, we have the following system

of differential equations, when i = 0 and j = 0,

d

dt
p0,0(t) = −2p0,0(t)ψ0(t) + p1,0(t)µ+ p0,1(t)µ; (12)

when i = 0 and j = 1,

d

dt
p0,j(t) = − p0,j(t)(2ψj(t) + µ)

+ p0,j−1(t)ψj−1(t) + p1,j(t)µ+ p0,j+1(t)µ; (13)

when i = 1 and j = 0,

d

dt
pi,0(t) = − pi,0(t)(2ψ0(t) + µ)

+ pi−1,0(t)ψ0(t) + pi+1,0(t)µ+ pi,1(t)µ; (14)

when i ≥ 1 and j ≥ 1,

d

dt
pi,j(t) = − 2pi,j(t)(ψj(t) + µ)

+ pi−1,j(t)ψj(t) + pi,j−1(t)ψj−1(t)

+ pi+1,j(t)µ+ pi,j+1(t)µ. (15)

At the SIU instance t, an arrival knows the percentage of servers having i customers in

the system. So,

pi,j(t) =







lims↑t

∑

k pi,k(s) if j = i

0 otherwise
(16)

The system of differential equations for the case of an infinite number of servers is still

nonlinear and analytical intractable. But now it is solvable by numerical methods.

3 Numerical Results

We first truncate the system of differential equations (12), (13), (14) and (15) to a finite

number of i:s and j:s, i.e. 0 ≤ i ≤ imax = 100 and 0 ≤ j ≤ jmax = 100. The truncated

47



differential equations are then solved numerically using ODEPACK [10]. For convenience,

we assume the service rate of each server µ = 1 in the following discussion. For stability

reasons, both for the system itself and the numerical solutions, we choose to show the

result when λ = 0.5.

We are interested in the average number of customers per server n̄(t) which can be

calculated as follows once the distribution of the system states [pi,j(t)] is known,

n̄(t) =
imax∑

i=0

i

jmax∑

j=0

pi,j(t) (17)

Fig. 3 shows the transient behavior of n̄(t) for different SIU intervals τ when the system

is initially empty. From Fig. 3, we see that n̄(t) oscillates. The period of oscillation is equal

to the period of the SIU updates. The amplitude of oscillation increases as SIU interval

increases.

Fig. 4 shows the transient behavior of n̄(t) between two SIU updates for different SIU

intervals τ when the influence of the initial state can be neglected. We scale different SIU

intervals to 1 in order to reveal the trend in the curves. From Fig. 4 we see that just

before each SIU update instance n̄(t) reaches maximum, and n̄(t) starts to drop right after

each SIU update instance. Fig. 4 also shows that for the fixed arrival rate λ = 0.5, the

maximum of n̄(t) increases, but not indefinitely, as the SIU update interval increases.

When the SIU interval is large, the average number of customers in the system is not

minimized by routing each customer to the expected shortest queue. In Fig. 4(b) the

minimum of the average queue length per server n̄(t) between two SIU instances, which

is about 1.11 , is greater than 1.0 which can be obtained if random selection strategy is

used. Hence, by Little’s law, the average waiting time for the system is not minimized by

routing each customer to the expected shortest queue.

Fig. 5 shows how the maximum of n̄(t) increases with arrival rate λ when the SIU

interval τ is fixed to 50 seconds. In the same figure, we also plot the average number of

customers per server in steady state for the random selection strategy 1. For the ESQS,

the maximum of n̄(t) increases faster and is always greater than the average number of

customers per server for the random selection. Therefore it suggests that the system using

the ESQS becomes unstable earlier than the system using the random strategy when the

arrival rate per server λ is close to 1 or the utilization of servers is close to 1.

1When the random selection is used, the arrival process to each server is Poisson. Therefore the average
number of customers per server n̄ = λ/(1 − λ), where λ is the arrival rate per server.

48



0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200

A
ve

ra
ge

 n
um

be
r 

of
 c

us
to

m
er

s 
pe

r 
se

rv
er

Time(seconds)

τ = 5.0

(a) τ = 5.0

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200

A
ve

ra
ge

 n
um

be
r 

of
 c

us
to

m
er

s 
pe

r 
se

rv
er

Time(seconds)

τ = 10.0

(b) τ = 10.0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200

A
ve

ra
ge

 n
um

be
r 

of
 c

us
to

m
er

s 
pe

r 
se

rv
er

Time(seconds)

τ = 40.0

(c) τ = 40.0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200

A
ve

ra
ge

 n
um

be
r 

of
 c

us
to

m
er

s 
pe

r 
se

rv
er

Time(seconds)

τ = 80.0

(d) τ = 90.0

Figure 3: Transient behavior of the average number of customers per server between time
0 second and 200 seconds for different SIU intervals τ when the system is initially empty.

49



0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 n
um

be
r 

of
 c

us
to

m
er

s 
pe

r 
se

rv
er

The scaled state information update interval

τ = 0.1
τ = 1.0
τ = 3.0
τ = 5.0

τ = 10.0
τ = 20.0
τ = 90.0

(a)

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 n
um

be
r 

of
 c

us
to

m
er

s 
pe

r 
se

rv
er

The scaled state information update interval

τ = 20.0
τ = 30.0
τ = 40.0
τ = 50.0
τ = 60.0
τ = 70.0
τ = 80.0

(b)

Figure 4: Transient behavior of the average number of customers per server between two
SIU instance for different SIU intervals τ when the influence of the initial state can be
neglected. We scale different SIU intervals to 1 in order to reveal the trend in curves.

50



0

0.5

1

1.5

2

2.5

3

0.1 0.2 0.3 0.4 0.5 0.6 0.7

N
um

be
r 

of
 c

us
to

m
er

s 
pe

r 
se

rv
er

Arrival rate λ (1/second)

ESQS
Random selection

Figure 5: The maximum of the average number of customers per server for the ESQS vs.
arrival rate per server when the influence of initial state can be neglected. We also plot the
average number of customers per server in steady state when the random selection strategy
is used.

4 Discussions

The system under consideration can also be viewed from another perspective. Let us call

the system described in Section 2.1 system A. Consider a similar system B. In system B,

the load balancer is removed but each arrival decides which queue to join based on stale

state information and the elapsed time since last SIU update instance. Now we have a

queueing game that will be played by all customers. Every customer tries to minimize

his own waiting time. Clearly the optimal decision of each customer also depends on all

early arrivals. When almost everyone joins the expected shortest queue based on stale

information, no one will benefit a shorter waiting time by deviating the common strategy.

In game theory literatures [9, 6, 15], such a situation is refereed as Wardrop equilibrium (for

infinite numer of players) or Nash equilibrium (for finite number of players). By definition,

system B in Wardrop equilibrium is equivalent to System A.

From game theory point of view, that minimizing the expected waiting time of each

customer is not equivalent to minimizing the average waiting time of the system is clear.

However when there are finite numer of servers in our system, this fact is difficult to verify

through equations that governs the system dynamics. The approximation using infinite

number of servers turns out be effective to reveal that in our system Wardop equilibrium

51



does not bring the system optimal solution.

5 Conclusions

This article studies a LB strategy of routing an arrival to the expected shortest queue among

a pool of identical servers in parallel when the available state information is stale. When the

number of servers is finite, we derive differential equations that reflect the system dynamics.

Because of the analytical and numerical intractability of these differential equations, we

consider the limiting situation in which the number of servers is infinite. It turns out that

the set of differential equations for an infinite number of servers can be solved numerically.

The numerical solution presents some expected behaviors of the system dynamics such as

the oscillation and some unexpected behaviors such as the extreme of the average number

of customers per server increases as the SIU interval grows. The numerical solution also

shows that LB through routing each customer to the expected shortest queue is not always a

good strategy in order to achieve the minimum of average waiting time when the available

information used for decision is stale. However for the system under consideration the

optimum load balancing strategy that minimizes the average waiting time is still unresolved

and is a subject of future work.

52



References

[1] Bell, C. E. and Jr., S. S. (1983). Individual versus social optimization in the allocation

of customers to alternative servers. Management Science, 29(7):831–839.

[2] Bertsekas, D. P. (1982). Optimal routing and flow control methods for communication

networks. In Bensoussan, A. and Lions, J. L., editors, Analysis and Optimization of

Systems, volume 44 of Lecture Notes in Control and Information Science, pages 615–

643. Springer-Verlag.

[3] Bourke, T. (2001). Server Load Balancing. O’Reilly & Associates. 2nd edition.

[4] Cohen, J. E. and Kelly, F. P. (1990). A paradox of congestion in a queuing network.

Journal of Applied Proabbility, 27:730–734.

[5] Dahlin, M. (2001). Interpreting stale load information. IEEE Transactions on Parallel

and Distributed System, 11(10):1033–1047.

[6] Dubey, P. (1986). Inefficiency of Nash equilibria. Mathematics of Operation Research,

11:1–8.

[7] Eager, D. L., Lazowska, E. D., and Zahorjan, J. (1986). Adaptive load sharing in

homogeneous distributed systems. IEEE Transactions on Software Engineering, SE-

12(5):662–675.

[8] Haight, F. A. (1958). Two queues in parallel. Biometrika, 45(3/4):401–410.

[9] Hassin, R. and Haviv, M. (2003). To Queue or Not to Queue: Equilibrium Behavior in

Queueing Systems. Kluwer Academic Publishers.

[10] Hindmarsh, A. C. (1983). Scientific Computing, chapter ODEPACK, A Systematized

Collection of ODE Solvers. North-Holland, Amsterdam.

[11] Hjalmtysson, G. and Whitt, W. (1998). Periodic load balancing. Queueing Systems,

30:203–250.

[12] Kingman, J. F. C. (1961). Two similar queues in parallel. Annals of Mathematical

Statistics, 32(4):1314–1323.

[13] Kopparapu, C. (2002). Load Balancing Servers, Firewalls, * Caches. John Wiley &

Sons.

53



[14] Mitzenmacher, M. (2000). How useful is old information? IEEE Transactions On

Parallel and Distributed Systems, 11(1):6–20.

[15] Myerson, R. B. (1991). Game Theory, Analysis of Conflicit. Harvard University Press.

[16] Redbooks, I. (1998). Load-Balancing Internet Servers. IBM Corp.

[17] Redbooks, I. (1999). Load Balancing for eNetwork Communications Servers. IBM

Corp.

[18] Ross, K. W. and Yao, D. D. (1991). Optimal load balancing and scheduling in a

distributed computer system. Journal of the ACM, 38(3):676–690.

[19] Tantawi, A. N. and Towsley, D. (1985). Optimal static load balancing in distributed

computer systems. Journal of the ACM, 32(2):445–465.

[20] Weber, R. R. (1978). On the optimal assignment of customers to parallel servers.

Journal of Applied Probability, 15:406–413.

[21] Whitt, W. (1986). Deciding which queue to join: Some counterexamples. Operations

Research, 34(1):55–62.

[22] Winston, W. (1977). Optimality of the shortest line discipline. Journal of Applied

Probability, 14:181–189.

[23] Zhou, S. (1988). A trace-driven simulation study of dynamic load balancing. IEEE

Transactions On Software Engineering, 14(9):1327–1341.

54



Admission Control to an M/M/1 Queue
under Periodic Observations with Average Cost Criterion

Jianhua Cao and Christian Nyberg

Submitted to Operations Research, April 2004

Abstract.We consider the problem of admission control to an M/M/1 queue under peri-

odic observations with average cost criterion. The admission controller receives the system

state information every τ :th second and can accordingly adjust the acceptance probability.

For a period of τ seconds, the cost is a linear function of the time average of customer

populations and the total number of served customers in that period. The objective is

to find a stationary deterministic control policy that minimizes the long run average cost.

The problem is formulated as a discrete time Markov decision process whose states are

fully observable. By taking the control period τ to 0 or to ∞, the model in question gen-

eralizes two classical queueing control problems: the open and the closed loop admission

control to an M/M/1 queue. Our contribution includes : (1) a proof of the existence of

the average optimal policy by the vanishing discounted approach; (2) several useful lower

and upper bounds of the optimal cost; (3) a proof that the optimal policy is nonincreasing

with respect to the observed number of customers in the system. Numerical examples are

also given.

55



1 Introduction

We consider the problem of admission control to an M/M/1 queue under periodic obser-

vations with average cost criterion. The admission controller receives the system state

information every τ :the second and can accordingly adjust the control policy which is the

probability that an arrival will be accepted into the system. For a period of τ seconds, the

cost for making a particular decision is a linear function of the time average of customer

populations waiting in queue and the total number of served customers in that period.

The objective is to find a stationary deterministic control policy that minimizes long run

average cost.

The problem in question is motivated by a recent study of admission control for an

M/G/1 queue with applications to web servers and e-commerce systems [21]. An important

assumption in their study is that the controller can monitor the queueing system state only

at regular spaced time instances. Their control objective is to keep the the server utilization

close to a prescribed target. We keep the assumption of periodic observations unchanged

but consider a different objective function and limit ourself to the case of an M/M/1

queue. Our objective function definition which rewards departures and penalizes a long

queue resembles to that of Naor [19] and many others, see Stidham Jr. [32], Stidham Jr.

[33, 34] and references therein. Along this line of objective function definition, the optimal

admission control in the cases of complete observable and non-observable queueing system

are well understood see, e.g., Hassin and Haviv [12]. In a brief summary, when the queue

length is completely observable, the optimal policy is of threshold type and when the queue

length is not observable, the optimal policy accepts customers with a fixed probability. Of

course there are many other ways of defining the the objective function. Walrand [37,

Example 8.5.8 p.278], e.g., introduced an admission control model for an M/M/1 queue in

which the cost is incurred for each rejection as well as for each customer in the queue per

time unit. In telecommunication applications, it is a common practice to maximize the

throughput (or minimize the rejection probability) while limiting the queueing delay see

Altman [1, p. 2].

Many models of queueing system admission control, including ours, are based on

Markov decision theory, see[35, Section 4] and references therein. One ramification to

the existing admission control problems is reducing the amount of information used for

decision. Much work has been done along this direction. [11] also considered a queueing

system under periodic observations. There are two types of customers in his system with

the same service time distribution and different arrivals processes. The control policy con-

56



sidered is call gapping control where the low priority customers are blocked for the next

period whenever the observed queueing system state exceeds a predetermined limit. [17]

studied the discrete time admission control and routing to a queueing system consisting of

two parallel queues with delayed queue length information. Their objective is to minimize

the total expected discounted cost in which a fixed reward is received for each admitted

customers and linear holding cost is incurred for customers waiting in queue. The opti-

mal policy in case of one period information delay is of threshold type. [18] considered a

multiple-server loss model where the admission controller is informed when an admitted

customer finds all servers are busy but not informed when customers depart. In this system

a cost is incurred if a new arrival is blocked and an even larger cost induced if an admitted

customer is blocked by servers. They proved that the threshold type policy that blocks for

a certain amount of time after an admitted arrival is optimal in case of single servers.

The structure properties of queueing control problems provide guidelines for heuristic

algorithm design and, thus, are often considered valuable [35]. In particular, many optimal

policies of queueing system control problems turn out be monotonic which is often intu-

itively clear as, e.g., less should get into the queue if there are many customers already.

The general paradigm is to show that the step cost is super/sub-modular and the value

function in value iteration is and convex/concave [2]. To avoid further mathematical com-

plication, early works often considered total discounted cost and shy away from average

cost criteria. The necessary conditions for the existence of the optimal policy for the av-

erage cost Markov decision problems, in particular for models with unbounded cost and

enumerable state spaces, are now widely known see e.g. [3][13] and Sennott [27].

The main contributions of this paper can be summarized as follows:

1. We introduce an average cost Markov decision process model that unifies two classical

queueing control problems: the open loop admission control and the closed loop

admission control. The existence of an average cost optimal policy is proved using

the vanishing discount approach.

2. Several lower and upper bounds of the optimal cost are examined. The value of

information which is the difference between the upper bound and the lower bounds

of the optimal cost, is shown to have a limit as arrival rate increases.

3. We establish that the average cost optimal policy is nonincreasing. This is an im-

portant property that can be exploited to accelerate numerical computations.

57



a λ

a

λ

(1−a)

µ

t+ τ t+2 τ

and adjusts acceptance rate a at those time instances

λ

The controller receives the system state information from the queue

t

Figure 1: Arrival rate control to an M/M/1 queue with periodic observations.

This paper is organized as follows: In Section 2 we define the Markov decision process

model for our problem. In Section 3 we prove the existence of an average optimal solution

via the vanishing discount approach. Section 4 relates our model to two well studied

problems of admission control for an M/M/1 queue. We show that the average optimal

solution is nonincreasing in Section 5. Numerical examples are give in Section 6. Finally,

we conclude with some remarks.

2 The Markov Decision Process Model

2.1 Classes of Control Policies and Induced Markov Chains

We control the arrival rate to an M/M/1 queue using percentage blocking. For convenience,

we assume that the service rate is 1 in the rest of this paper. The arrival rate to the system

is λ which can be less or greater than 1. There is an admission controller that rejects arrivals

in order to maintain a reasonable response time for admitted customers. The controller

is characterized by the admission probability a, 0 ≤ a ≤ 1. We are allowed to adjust

the admission probability every τ :th seconds when the updated system state information

becomes available. Fig. 1 illustrates the model.

Let S := {0, 1, 2, · · · } be the set of system states. A stationary deterministic control

policy is an infinite sequence (π (0) , π (1) , · · · ) =: π, with 0 ≤ π (i) ≤ 1,∀i ∈ S. It specifies

58



that whenever the observed number of customers in the system is i ∈ S, the admission

probability should be adjusted to π (i) and remain the same for the next τ seconds. Let

Π be the set of stationary deterministic control policies. A more generic control class is,

e.g., {πk (i, t) ∈ [0, 1] | t ∈ [0, τ) , k ∈ N, i ∈ S}, where πk (i, t) is the admission probability

at time kτ + t when the observed number of customers at time kτ is i . We shall, however,

content ourselves with the class of stationary deterministic control policies in this paper.

Let t0, t1, t2, · · · be the time instances when the admission probability is adjusted and

t0 = 0,tk+1 − tk = τ,∀k ∈ N. Let X(t) ∈ S be the system state at time t. Clearly

{X (tk)}∞k=0 can be regarded as a discrete time Markov chain. For convenience denote

Xk := X (tk).

The transition probability between states i and j is denoted as P (j | i, π (i)). It is

actually the probability that at time τ there are j customers in an M/M/1 queue with

arrival rate π (i)λ when there are i customers in the system initially. The explicit expression

of this probability in the transform domain (s, z) is reviewed in Appendix A. Once a control

policy π ∈ Π and the initial state are given, the associated Markov Chain {Xk} is fully

specified. Notice that the transition probability P (· | ·, a) is continuous in a.

2.2 One Step Cost

Given a fixed arrival rate, one would like to accept as few customers as possible in order

maintain a short mean response time. But, on the other hand, to have a high throughput,

the arrival rate ought to be close to the service rate. Hence one has to balance low response

time and high throughput. One way to resolve this dilemma is to formulate an constrained

optimization problem where the throughput is the objective to be maximized while the

response time is subject to a given constraint. Another way is to consider an unconstrained

optimization problem whose objective is to minimize a cost which is a function of response

time and throughput. This paper discusses the second approach.

To make the definition of cost more precise, we introduce some auxiliary notation.

Let N̄ (t, i, a), N̄ : [0, τ)×S×[0, 1] 7→ [0,∞), be the expected number of customers in an

M/M/1 queue at time t when initially there are i customers and the admission probability

is a.

The time average number of customers in the system between time 0 and τ is

1

τ

∫ τ

0

N̄ (t, i, a) dt.

59



The average number of severed customers(not including the rejected customers) be-

tween time 0 and τ is
1

τ

(
i+ aλτ − N̄ (τ, i, a)

)
.

Let C be the cost to maintain one customer in the system per time unit and R be

the reward for a departure. To avoid the trivial case, we assume that 0 < C < R. The

one-step cost, i.e. the time average of net cost incurred in a period of τ seconds between

two adjacent control parameter adjustment instances, is denoted as c (i, a), and is defined

as follows,

c (i, a) :=
C

τ

∫ τ

0

N̄ (t, i, a) dt− R

τ

(
i+ aλτ − N̄ (τ, i, a)

)
. (1)

It is easy to convince oneself that the step cost c (i, a) is not necessarily monotonic in

i or a. Moreover the one-step cost c (i, a) is unbounded as i increases,

Lemma 1. c (i, a) → ∞ as i→ ∞.

Proof. It is enough to show that a low bound of c (i, a) is increasing linearly in i. Let’s

consider a system with i real customers and infinitely many phantom customers who queue

after those real customers. Only real customers incur a cost C for each time unit and each

customer in the system. The system receives reward R for each served customer no matter

real or not. In other words, there is an unlimited supply of customers who will bring only

profit but not costs since the only cost is serving i real customers. Let d be the time

average cost for a period of τ seconds of this system. The following relation then holds

c (i, a) ≥ d ≥ CN̄ (τ, i, 0) −R.

Clearly N̄ (τ, i, 0) ≥ (1 − e−τ ) i since serving i customers with one server is not as fast

as using i servers working in parallel.

2.3 Average Cost and β-Discount Cost

The expected long-run average cost or average cost incurred by a policy π ∈ Π is defined

as

J (i, π) := lim sup
N→∞

Eπ
i

[

1

N

N−1∑

k=0

c (Xk, π (Xk))

]

,

where i is the initial number of customers in the system .

60



The optimal average cost for any initial state i ∈ S is defined as

J∗ (i) := inf
π∈Π

{J (i, π)} .

A policy π is average cost optimal, or average optimal, if J (i, π) = J ∗ (i) for all i ∈ S.

While the average cost is of primal interest of this paper, β-discounted cost is helpful

in our proof of the existence of the average optimal policy.

Given some β ∈ (0, 1), the β-discount cost incurred by a policy π ∈ Π is defined as

Jβ (i, π) := Eπ
i

[
∞∑

k=0

βkc (Xk, π (Xk))

]

.

For any initial state i ∈ S, the optimal β-discount cost is defined as

J∗
β (i) := inf

π∈Π
{Jβ (i, π)}

A policy π is β-discount cost optimal, or β-discount optimal, if Jβ (i, π) = J∗
β (i) for all

i ∈ S.

3 The Existence of Average Cost Optimal Policy

The existence of an average optimal policy for a Markov decision process with finite state

space, enumerable action sets and bound costs is well understood [3], but our model is

characterized by the enumerable infinite state space S and the unbounded one-step cost

c (i, a) (Lemma 1). The existence of average cost optimal policy in such cases are not

so obvious as the counterexamples in Ross [22, p.90], Ross [24, p. 142] and Sennott [27,

Section 7.1] show.

There are at least three well developed methods to prove the existence of the average

optimal policy when the state space is enumerable infinite and step cost is unbounded see

Arapostathis et al. [3, Section 5.2 and Section 5.3] for review. The first one is Hordijk’s

Lyapunov stability condition [15]. Sennott’s three necessary conditions [26, 27, 28] can be

counted as the second. The third one is Borkar’s convex analytic approach [5, 6]. Sennott’s

conditions are particularly well suited for queueing problems [27] where the step cost often,

if not always, grows as more customers accumulate in the queue. Our proof of the existence

of the average optimal policy for our particular model is based on Sennott’s conditions.

A complete proof of the existence of average optimal policy for a Markov decision

61



process satisfies Sennott’s three conditions relies on the vanishing discounted approach.

The general idea is that one treats the average cost case as the limit of the discounted cost

problem. The vanishing discounted approach was also used by [4] to prove the existence

of average optimal policy for a model with finite state space and action set, and [9] for

countable state space, finite action set and bounded costs.

The existence β-discount optimal policy of our problem is easy to check, see Arapos-

tathis et al. [3, Lemma 2.1]. We shall verify Sennott’s three conditions in our particular

problem in Lemma 2 and prove the existence of average optimal policy using vanishing

discount approach in Theorem 4. The proof of Theorem 4 is mainly based on Arapostathis

et al. [3, Theorem 5.9].

Lemma 2. (a) For every i ∈ S and every β ∈ (0, 1), J ∗
β (i) <∞.

(b) There exists a nonnegative integer L such that

hβ (i) := J∗
β (i) − J∗

β (0) ≥ −L

(c) There exists a function M : S 7→ R such that hβ (i) ≤ M (i) for all i ∈ S and

β ∈ (0, 1) and for every i ∈ S and a ∈ [0, 1] such that
∑

j P (j | i, a)M (j) <∞.

Proof. (a). Clearly there exists a stationary deterministic policy, e.g π := (0, 0, · · · ) such

that the induced MC is ergodic and J (i, π) = 0 for all i ∈ S. By the Tauberian Theorem

see Appendix B, we have

lim inf
β↑1

(1 − β) J∗
β (i) ≤ lim sup

β↑1
(1 − β) J∗

β (i) ≤ J (i, π)

Hence J∗
β (i) is finite for all i ∈ S and β ∈ (0, 1).

(b) Consider a queuing system with two M/M/1 queues, one queue with i customers

initially but no arrivals, another queue starts empty and the β-discount optimal policy is

employed. The discounted cost for the whole system is therefore J ∗
β (0) + Jβ (i,0), where

0 = (0, 0, · · · ) is a policy that rejects all arrivals. Clearly J ∗
β (0) + Jβ (i,0) ≤ J∗

β (i), hence

we have

J∗
β (i) − J∗

β (0) ≥ Jβ (i,0)

Let n := bR/Cc. For all i ∈ S, Jβ (i,0) ≥ Jβ (n,0) ≥ −nR. Therefore hβ (i) ≥
−bR/CcR.

62



(c) Let Π∗ be the class of policies inducing irreducible, ergodic MC and ci,0 (π) the

expected total cost of a first passage from i to 0. Clearly Π∗ is not empty. Let M (0) = 0

and for i ≥ 1, M (i) = infπ∈Π∗ ci,0 (π). We then have J∗
β (i) ≤M (i) + J∗

β (0) and for all

i ∈ S and a ∈ [0, 1], and some π ∈ Π∗,

∑

j∈S

P (j | i, a)M (j) ≤
∑

j

P (j | i, a) ci,0 (π) = ci,0 (π) <∞.

Lemma 3. Let M be a function such that M : S 7→ R and |M (i)| < ∞, for all i ∈ S.

Let {fn}be an infinite sequence of functions such that fn : S 7→ R and |fn (i)| ≤ |M (i)|.
Then there exists a subsequence {nk} of {n} such that there is a function f , f : S 7→ R,

and fnk
(i) → f (i)for all i ∈ S.

Proof. From {n} we can extract {n0,k} such that limk→∞ fn0,k
(0) =: f (0). From {n0,k} we

can extract {n1,k} such that limk→∞ fn1,k
(1) =: f (1). And so on. Clearly {nk,k}or simply

{nk}is the desired subset and f is the desired function.

This proof is sometimes referred diagonalizing procedure. The sequence{nk,k} is called

the “Cantor” diagonal sequence. The {fn}is said to be point-wise convergent to f .

Theorem 4. There exists an average optimal policy π ∈ Π.

Proof. Let {n}be a sequence such that βn ↑ 1 and βn ∈ (0, 1). Let πn be the corresponding

βn-discount optimal policy. By Lemma 3, there exist a subsequence {nk} of {n}, a policy

ϕ ∈ Π and a function h, h : S 7→ R such that limk→∞ βnk
→ 1, ∀i ∈ S, limk→∞ πnk

(i) =

ϕ (i) and limk→∞ hβnk
(i) = h (i), where hβnk

(i) = J∗
βnk

(i) − J∗
βnk

(0). To simplify the

notation {nk} shall be denoted as {n} in the rest of this proof. Since J ∗
βn

(i) is finite,

denote ρ (i) := limβn↑1 (1 − βn) J∗
βn

(i). By Lemma 2(c),

|ρ (i) − ρ (0)| ≤ lim
β↑1

(1 − β) max {|M (i)| , L} = 0

Moreover because −R ≤ ρ (i) ≤ C, ρ (i) is a finite constant. Let ρ := ρ (i).

We shall show that infπ∈Π {J (i, π)} = ρ and that the policy ϕ is indeed average optimal,

i.e. J (i, ϕ) = ρ,∀i ∈ S,

Since πn is βn-DC optimal, ∀i ∈ S

63



(1 − βn) J∗
βn

(0) + hβn
(i) = c (i, πn (i)) + βn

∑

j∈S

P (j | i, πn (i))hβn
(j) . (2)

Since P (· | i, a) is continuous in a, by Fatou’s lemma [25, p. 23][30, p. 187],

lim inf
βn↑1

βn

∑

j∈S

P (j | i, πn (i))hβn
(j) ≥

∑

j∈S

lim inf
βn↑1

βnP (j | i, πn (i))hβn
(j)

=
∑

j∈S

P (j | i, ϕ (i))h (j)

Taking “liminf” on the both sides of (2), we have

ρ+ h (i) ≥ c (i, ϕ (i)) +
∑

j∈S

P (j | i, ϕ (i))h (j) .

Let {Xk}be the MC under control of ϕ. By the towering property of the conditional

expectation and Lemma 2(b), we have

ρ∗ ≥ lim
N→∞

1

N
Eϕ

i

[
N−1∑

k=0

c (Xk, π)

]

+
1

N
(Eϕ

i [h (XN)] − h (i))

≥ lim
N→∞

1

N
Eϕ

i

[
N−1∑

k=0

c (Xk, π)

]

+
1

N
(−L−M (i))

= J (i, ϕ)

Hence ρ ≥ J (i, ϕ). On the other hand by Tauberian theorem, and for all π ∈ Π

J (i, π) = lim sup
N→∞

1

N
Eπ

i

[
N−1∑

k=0

c (Xk, π)

]

≥ lim sup
n→∞

(1 − βn)Eπn

i

[
∞∑

k=0

βk
nc (Xk, π)

]

≥ lim
β↑1

(1 − β) J∗
β (i)

= ρ.

Thus J (i, ϕ) = ρ and ϕ is average optimal.

In fact we have just proved that if an average cost Markov decision process problem

with countable infinite sate space, compact action set and unbounded step cost satisfies

64



the conditions in Lemma 2, then the average optimal policy exists. Moreover Lemma 2(c)

can be loosed in the following form and still guarantee that the average optimal policy

exists:

Lemma 5. There exists a function M : S 7→ R such that hβ (i) ≤ M (i) for all i ∈ S and

β ∈ (0, 1) and for every i ∈ S there exists a ∈ [0, 1]and such that
∑

j P (j | i, a)M (j) <∞.

4 Relations with the Two Classical Queueing Control

Models

Our model is parametrized by the control interval τ , the arrival rate λ, the cost coefficient

C and the reward coefficient R. In two extremes: when τ → ∞ and τ = 0, our model

degenerates into, respectively, the admission control without state information (referred to

as open loop control) and with complete information (referred to as closed loop control).

In this section we first examine the average optimal costs and policies for the open and

the closed loop admission control models. The optimal average costs of the open and

the closed control model are then exploited to establish the upper and the lower bounds

of the optimal costs for models in general cases 0 ≤ τ . Finally we show that the value

of information which is the difference between the previous established upper and lower

bounds increases with respect to the arrival rate but has a limit.

4.1 Open Loop Admission Control

When τ → ∞, the step cost is independent of i,

lim
τ→∞

c (i, a) =







C aλ
1−aλ

−Raλ if a < 1
λ

∞ otherwise

On the other hand the step cost becomes the average cost. Therefore the optimal

admission control probability a∗ is such that

a∗ = arg min
0≤a<(1∧ 1

λ)
C

aλ

1 − aλ
−Raλ.

which can be solved rather easily:

65



a∗ =







1 ifλ ≤
(

1 −
√

C/R
)

1
λ

(

1 −
√

C/R
)

otherwise

The corresponding optimal average cost is −
(√

R−
√
C
)2

.

4.2 Closed Loop Admission control

When τ = 0

c (i, a) =







0 if i = 0

Ci−Rµ otherwise

Theorem 6. The average optimal policy ϕ of the closed loop admission control is of thresh-

old type, i.e. there exists some n ∈ N such that

ϕ (i) =







1 if i < n

0 otherwise

Proof. We shall show that the policy ϕ (i)is nonincreasing in i and is either 1 or 0.

Notice that the admission control decision is not enforced until a customer arrives. After

applying the uniformization procedure [7, p. 3], the original formulation is equivalent to

a discrete time problem which is embedded at the arrival and the departure epochs of the

original process. The transition probability for the constructed discrete time process is as

follows,

P̃ (j | i, a) =







aλ
λ+1

if j = i+ 1

(1−a)λ
λ+1

if j = i

1
λ+1

if j = i− 1

0 otherwise

for i > 0 and

P̃ (j | i, a) =







a if j = 1

1 − a if j = 0

0 otherwise

66



for i = 0.

The step cost is redefined as follows

c̃ (i, a) =







aλ
λ+1

C if i = 0

λ
λ+1

Ci+ aλ
λ+1

C − 1
λ+1

R if i > 0

The discrete time process is stochastically equivalent to the original one. But now

we have a controlled birth death process with a cost which a linear function of state and

action. We can verify that the similar condition prescribed in Lemma 2 is satisfied and

therefore by Theorem 4, the existence of average optimal policy is assured.

Let ρ be the optimal average cost and h (i) := limβ↑1 J
∗
β (i) − J∗

β (0) where J∗
β (i) is

the optimal β-discount cost. The average optimal policy ϕ is the minimal selector for the

average cost optimality equation,

ρ+ h (i) = min
a
c̃ (i, a) +

∑

j∈S

P̃ (j | i, a)h (j) , ∀i ∈ S (3)

Let g (i, a) := c̃ (i, a) +
∑

j∈S P̃ (j | i, a)h (j) − h (i), it can be shown that g (i, a) is

supermodular in (i, a), i.e g (i, a′) − g (i, a) is non-decreasing in i for all a′ > a. Hence the

optimal policy must be a non-increasing sequence with respect to i. Moreover g (i, a) is

linear in a, hence ϕ (i) = arg mina g (i, a) is either 1 or 0.

Since the optimal policy is of threshold type, finding the optimal threshold value can

be achieved through solving the following optimization problem

n = arg min
k
C
λ
(
1 − (1 + k)λk + kλ1+k

)

(1 − λ) (1 − λk+1)
−R

λ
(
1 − λk

)

(1 − λ1+k)
(4)

where the first item in the r.h.s. above is the cost coefficient times the average number

of customers in an M/M/1/k queue and the second item in the r.h.s. above is the reward

coefficient times the carried traffic intensity.

Notice that as the arrival rate becomes large, the optimal threshold becomes small. In

the extreme case when λ → ∞, the optimal threshold is 1 and the corresponding average

cost is C −R.

67



4.3 Lower and Upper Bounds of the Optimal Average Cost

In general, our model is parametrized by the tuple (λ,R,C, τ). When we study how the

solution varies with a particular parameter, e.g. λ, with a little abuse of notion, the

associated optimal average cost is denoted as J ∗ (λ) and the average cost under policy

π ∈ Π is denoted as J (λ, π) We first establish a simple fact.

Lemma 7. J∗ (λ)is non-increasing in λ.

Proof. Assume that λ1 < λ2. Let π1 be the average optimal policy corresponding to J ∗ (λ1).

Let ϕ ∈ Π be a policy such that ϕ (i) = λ1

λ2
π1 (i) ,∀i ∈ S. Then J∗ (λ1) = J (λ1, π1) =

J (λ2, ϕ) ≥ J∗ (λ2).

The optimal average costs for the closed and open loop control models, which are

parameterized by (λ,R,C, 0) and (λ,R,C,∞) respectively, provide a lower bound and an

upper bound. However, the lower bound does not render an explicit expression except in

some special cases such as λ = 1 or λ = ∞. The following result is easy to verify,

Theorem 8. Let J∗ be the optimal average cost associated with the model parametrized by

(λ,R,C, τ). Then C −R < J∗ ≤ −
(√

R−
√
C
)2

.

The lower bound can be tightened further (almost half), in certain cases and still remain

an explicit expression.

Theorem 9. When 1 ≤ R/C ≤ 3/2 and λ ≤ 1, (C−R)
2

≤ J∗

Proof. It is sufficient to show that the optimal AC of the closed loop control model J ∗ is
C−R

2
when λ = 1 and R/C ≤ 3/2. From (4), we have

J∗ = min
k
C
k

2
−R

k

k + 1
.

When 1 ≤ R/C ≤ 3/2, the optimal threshold n = arg J ∗ = 1 because C k
2
− R k

k+1
is

increasing in k.

Note that a tighter upper bound of the optimal cost can be obtained from the first step

of the value iteration. Due to the not-so-simple definition of the one-step cost function

c (n, a), it is difficult to find the explicit expression for this upper bound.

68



4.4 The Value of Information

We define the value of information as the difference of the optimal average costs between

the open and the closed loop control models,

V (λ) := lim
τ→∞

J∗ (λ, τ) − J∗ (λ, 0)

when the cost coefficient C and the reward coefficient R are given.

By Lemma 7, V (λ) increases in λ. It is, however, interesting to note that the value of

information is bounded.

Theorem 10. limλ→∞ V (λ) = 2
(√

R/C − 1
)

C.

Proof. Recall for the open loop control model, one have limτ→∞ J∗ (λ, τ) = −
(√

R−
√
C
)2

and for the closed loop control model we have limλ→∞ J∗ (λ, 0) = C −R.

Since the argument above involves nothing more than the optimal solution to the open

and the closed control models, the result can be further generalized to a model with K

identical exponential servers in parallel. Define the value of information VK (λ) similarly.

One can easily show that limλ→∞ VK (λ) = 2
(√

R/C − 1
)

CK.

5 The Monotonic Property of

the Average Cost Optimal Policy

Intuitively when more customers are observed in one control instance, less should be admit-

ted into the system in the next control period of τ seconds. Hence it is reasonable to conjec-

ture that the average optimal policy ϕ is nonincreasing in i, i.e. ϕ (i) ≥ ϕ (i+ 1) ,∀i ∈ S.

This fact can be easily verified in the cases of closed loop and open loop admission control.

In this section we shall prove that this is true in general when 0 ≤ τ <∞. Let N (t, i, a) be

the number of customers in a queue (with arrival rate aλ and service rate 1) at time t with

initial condition N (0, i, a) = i. Notice that given t, i, a, N (t, i, a) is a random variable.

A function f : N → R is discrete convex if f (i+ 2) − f (i+ 1) ≥ f (i+ 1) − f (i) for

all i ∈ N. Let F be the space of discrete convex functions that map from S to R. The

following lemma follows.

Lemma 11. Given t > 0, for all f ∈ F, E [f (N (t, i, a))] is supermodular in (i, a).

69



Proof. We have to show that for all f ∈ F, i ∈ S, 0 ≤ b < a ≤ 1 ,

E [f (N (t, i+ 1, a))] + E [f (N (t, i, b))] ≥ E [f (N (t, i, a))] + E [f (N (t, i+ 1, b))]

The following stochastic order relations can be verified by the normalization technique:

N (t, i+ 1, a) ≥st N (t, i, a), N (t, i+ 1, a) ≥st N (t, i+ 1, b), N (t, i+ 1, b) ≥st N (t, i, b),

N (t, i+ 1, a)−N (t, i, a) ≥st N (t, i+ 1, b)−N (t, i, a). Since f is discrete convex, we have

f (N (t, i+ 1, a)) − f (N (t, i, a)) ≥st f (N (t, i+ 1, b)) − f (N (t, i, a)) which leads to the

claim after taking expectation on both sides.

Lemma 12. Given t > 0, for all f ∈ F. i ∈ S, 0 ≤ b < a ≤ 1,

E [f (N (t, i, a))] + E [f (N (t, i+ 2, b))] ≥ 2E

[

f

(

N

(

t, i+ 1,
a+ b

2

))]

Proof. Since f is discrete convex, it is enough to show that

N (t, i, a) +N (t, i+ 2, b) ≥st 2N

(

t, i+ 1,
a+ b

2

)

. (5)

Consider a system consisting of two identical but independent M/M/1 queues. The total

arrival rate is (a+ b)λ and initially there are 2i + 2 customers in total in two queues.

Suppose we are allowed to distribute 2i + 2 customers into to two queues at time 0 and

split the incoming traffic by random routing. Total number of customers in the whole

system at time t can be minimized (in stochastic order sense) by placing i + 1 customers

in each queue and splitting traffic evenly. Thus (5) holds.

Lemma 13. Define g : F×S×[0, 1] 7→ R as follows g(f) (i, a) := c (i, a)+E [f (N (τ, i, a))],

then g (f) (i, a)is supermodular in (i, a) and mina g (f) (i, a) is convex in i.

Proof. (Supermodularity) By Lemma 11, E [N (t, i, a)] is supermodular in (i, a). Recall

the definition of the step cost

c (i, a) =
C

τ

∫ τ

0

E [N (t, i, a)] dt− R

τ
(i+ aλτ − E [N (τ, i, a)]) .

Hence c (i, a) is supermodular in (i, a) too. Also from Lemma 11, E [f (N (τ, i, a))] is

supermodular. Thus g (f) (i, a) is supermodular in (i, a).

(Convexity) We have to show that ∀i ∈ S

min
a
g (f) (i+ 2, a) + min

a
g (f) (i, a) ≥ 2 min

a
g (f) (i+ 1, a) .

70



We shall show that there exist some w ∈ [0, 1] such that

min
a
g (f) (i+ 2, a) + min

a
g (f) (i, a) ≥ 2g (f) (i, w) (6)

Let u := arg mina g (f) (i, a), v := arg mina g (f) (i+ 2, a). By the supermodularity of g,

v ≤ u. If u = v, then let w = u = v, the inequality above is evident. If v < u then let

w = u+v
2

. By Lemma 12,

E [N (t, i+ 2, v)] + E [N (t, i, u)] ≥ 2E [N (t, i+ 1, w)]

and

E [f (N (t, i+ 2, v))] + E [f (N (t, i, u))] ≥ 2E [f (N (t, i+ 1, w))] .

Therefore (6) is valid.

Theorem 14. If ϕ ∈ Π is average optimal, then ϕ (i) ≥ ϕ (i+ 1) for all i ∈ S.

Proof. Consider the value iteration. The value function Vk : S 7→ R at the k:th iteration

is defined as follows

Vk+1 (i) = min
a

{

c (i, a) +
∑

j

Vk (j)P (j | i, a)

}

with V0 (j) = 0,∀j ∈ S. The average optimal policy is defined as follows

ϕ (i) = lim
k→∞

arg min
a
c (i, a) +

∑

j

Vk (j)P (j | i, a) ,∀i ∈ S

By induction, we have that for all k, Vk (i) is convex in i and c (i, a)+
∑

j Vk (j)P (j | i, a)

is supermodular in (i, a). Hence ϕ (i) is nonincreasing in i.

6 Numerical Examples

In our model, the state space is countable infinite. For numerical calculations, however, the

state space must be truncated (cutting off the tail). Rigors analysis of the effects of state

space truncation for dynamic programming in general can be found in Fox [10], Whitt

[38, 39]. The approximating sequence method described in Sennott [27, Chapter 8] is

also very illuminating. In our particular case, we note that the difference in the optimal

71



cost between the original model and the state space truncated model decreases as the

probability of unexpected blocking diminishes. Once the state space is truncated, both the

value iteration algorithm and the policy iteration algorithm [20, Section 8.5 and 8.6] can

be used to calculate the optimal policy and the optimal average cost. The policy iteration

algorithm which is used in our numerical examples is described briefly as follows.

Step 1 Initialization: An arbitrary stationary policy π is chosen.

Step 2 Value determination: For the current policy π, compute the unique solution {J, hi}
for the following system of linear equations

hi = c (i, π (i)) − J +
∑

j∈S
′

hjP (j | i, π (i)) , ∀i ∈ S ′

h0 = 0

where S ′ is the truncated state space.

Step 3 Policy improvement: The new policy π
′

is obtained as follows

π
′

(i) = arg min
0≤a≤1

c (i, a) − J +
∑

j∈S′

hjP (j | i, a) ∀i ∈ S
′

.

Step 4 Convergence test. Let d (π′, π) be a distance measure of two policies such as follows

d (π′, π) =
∑

i∈S′

∣
∣π

′

(i) − π (i)
∣
∣. If the new policy π

′

is within the give distance ε of the

old policy π, i.e. d
(
π

′

, π
)
< ε, the algorithm stops, otherwise goto step 2 with π replaced

by π
′

.

Note that due the state space truncation, the expression for the average number of cus-

tomers in the system N̄ (i, t, a) and the transition probability P (j | i, a) must be swapped

from the M/M/1 model to the M/M/1/K model where K is the truncated queue size. See

Appendix A for more information.

Using the same techniques in proving Lemma 13 and Theorem 14, one can show that

the function to be minimized in the policy improvement step is convex and supermodular

if the policy chosen in the initialization step is nonincreasing. As a result many convex

programming techniques can be used to find the minimum in step 3 and further, the search

region for π
′

(i) can be narrowed from [0, 1] to
[
0, π

′

(i− 1)
]
.

In the following discussions, we set the reward coefficient to a constant R = 100.

In Fig. 2, 3 and 4, we show how the optimal average cost changes as the control interval

τ increases for different combinations of cost coefficients C = 10, 30, 50 and arrival rates

λ = 0.7, 1.0, 1.5, 2.0. Notice that when the offered traffic intensity and the cost of waiting

72



are high, e.g. C = 50, λ = 2.0, the optimal average cost for models with short control

intervals is sensitive to τ . We also plot the theoretical lower and the upper bound of the

optimal average cost in these figures.

We have shown in Section 5 that the average optimal policy is nonincreasing. In Fig. 5,

we give examples of the average optimal control policies in cases of τ = 0.1, 5.0, 10.0 when

λ = 1.0 and C = 30. The optimal control policy in the case of open loop control τ → ∞
is also shown. If the closed loop control is used (i.e. τ = 0.0) when λ = 1.0, C = 30, the

average optimal policy is of threshold type and the optimal threshold is 1.

The traditional performance metrics such as average response time T and throughout

H can easily be calculated once a control policy is given. In Fig. 6 and 7 we show how

the average response time and the throughput change with the arrival rate in cases of

C = 10, 30, 50 when τ = 5.0. For comparison the plot of the optimal average cost versus

the arrival rate for the same group of system configurations is shown in Fig. 8. The trade-

off between the throughput and the average response time becomes evident in those plots.

For example, the average response time becomes lower at the expense of lower throughput

when the waiting cost coefficient C is high.

Recall that the value of information is defined as the difference of optimal costs between

the open loop controlled model and the closed loop controlled model in Section 4.4. We

have showed that the value of information increases but posses a limit as the arrival rate

increases. In Fig. 9, we plot the value of information versus arrival rate in the case

C = 10.0. Moreover, it is interesting that the value of information increases almost linearly

when the arrival rate is small.

7 Conclusions

We have presented an admission control model for an M/M/1 queue under periodic obser-

vations with average cost criterion. This model degenerates into two well known queueing

control problems when the observation interval becomes zero and infinite. The correspond-

ing discrete time Markov decision process is obtained via embedding the state transition

instances at the state information update epochs. The state transition probability is re-

lated to the transient solution of state probability distribution of an M/M/1 queue. The

step cost is linearly proportional to the time average number of customers in the queue

and the time average number of departures per time unit between two adjacent control

instances. The existence of average optimal policy is proved via the vanishing discount

73



-75

-70

-65

-60

-55

-50

-45

 0  1  2  3  4  5  6  7  8  9  10

J

τ

C=10

λ=0.7
λ=1.0
λ=1.5
λ=2.0

an upper bound
a lower bound when λ<2.0

Figure 2: Average optimal cost versus the control interval τ when C = 10

-50

-45

-40

-35

-30

-25

-20

 0  1  2  3  4  5  6  7  8  9  10

J

τ

C=30

λ=0.7
λ=1.0
λ=1.5
λ=2.0

an upper bound
a lower bound when λ<2.0

Figure 3: Average optimal cost versus the control interval τ when C = 30

74



-35

-30

-25

-20

-15

-10

-5

 0  1  2  3  4  5  6  7  8  9  10

J

τ

C=50

λ=0.7
λ=1.0
λ=1.5
λ=2.0

an upper bound
a lower bound  when λ<2.0

Figure 4: Average optimal cost versus the control interval τ when C = 50.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

a i

i

τ=0.1
τ=5.0

τ=10.0
τ→∞

Figure 5: The average optimal control policy when λ = 1.0 and C = 30.

75



 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

T

λ

C=10
C=30
C=50

Figure 6: Average Response time versus arrival rate(when τ = 5.0).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

H

λ

C=10
C=30
C=50

Figure 7: Average throughput versus arrival rate when τ = 5.0.

76



-60

-50

-40

-30

-20

-10

 0

 10

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

J

λ

C=10
C=30
C=50

Figure 8: Average optimal cost versus arrival rate when τ = 5.0.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  10  20  30  40  50  60  70  80  90  100

J m
ax

− 
J m

in

λ

Figure 9: The value of information versus arrival rate

77



approach. The optimal solutions for the open and the closed loop control models naturally

form the upper and the lower bound of the optimal cost for a model with an arbitrary

observation interval. We also obtain a tighter lower bound by limit ting the arrival rate

to be less than twice the departure rate and the reward coefficient is less than one half

of the waiting cost coefficient. The value of information possesses a limit as the arrival

rate increases. With help of value iteration algorithm and induction, we proved that the

average optimal policy is nonincreasing. Several numerical examples are also provided in

a separate section.

Many claims/arguments in the paper are not specific to the M/M/1 queue, e.g. Lemma

2 used in the proof of the existence of average optimal policy; Lemma 11 and 12 in the

proof of the monotonic property of optimal policy. However one must proceed with caution

when the approach in defining the discrete time Markov decision process for the M/M/1

model in this paper is extended to an M/G/1 or an G/M/1 queue.

A The Transformation Expressions for

an M/M/1 Queue and an M/M/1/K Queue

Let P (i, t)be the probability that there are i customers in an M/M/1 queueing system

(arrival rate λ > 0 and service rate 1) at time t given that P (n, 0) = 1. Let P ∗ (z, s) :=
∑∞

i=0 z
i
∫∞

0
e−stP (i, t) dt. According to [16, p.77 Eq. 2.162]

P ∗ (z, s) =
zn+1 − (1 − z)P ∗

0 (s)

sz − (1 − z) (1 − λz)

where P ∗
0 (s) = αn+1

1−α
and α =

s+1+λ−
√

(s+1+λ)2−4λ

2λ
.

Let N̄ (t, n, λ) be the average number of customers in the system at time t. Let

N̄∗ (s, n, λ) :=

∫ ∞

0

e−stN̄ (t, n, λ) dt.

Clearly we have

N̄∗ (s, n, λ) = lim
z→0

d

dz
P ∗ (z, s)

=
sn+ λ− 1 + sP ∗

0 (s)

s2
.

78



In the case of M/M/1/K queue the corresponding transformation expression is given

as follows

P ∗ (z, s) =
zn+1 − (1 − z)P ∗

0 (s) + λzK+1 (1 − z)P ∗
K (s)

− [λz2 − s (s+ λ+ 1) z + 1]
,

N̄ (s, n, λ) =
sn+ λ− 1 + sP ∗

0 (s) − λsP ∗
K (s)

s2

where

P ∗
0 (s) =

−
(
αn+1

1 αK+1
2 (1 − α2) − αK+1

1 αn+1
2 (1 − α1)

)

(1 − α1) (1 − α2)
(
αK+1

1 − αK+1
2

)

P ∗
K (s) =

−
(
αn+1

1 (1 − α2) − αn+1
2 (1 − α1)

)

λ (1 − α1) (1 − α2)
(
αK+1

1 − αK+1
2

)

and

α1 =
s+ 1 + λ+

√

(s+ 1 + λ)2 − 4λ

2λ
,

α2 =
s+ 1 + λ−

√

(s+ 1 + λ)2 − 4λ

2λ
.

Many numerical inversion schemes can be employed in calculating N (t, n, λ). We found

that Crump’s method [8] is particularly stable in our numerical calculations. When we are

interested in the set of transient probability distribution function {P (i, t) , i = 0, · · · , K}
for the M/M/1/K queue, the matrix exponent method can be used to calculate the transi-

tion matrix: P = [P (j, t | i, λ)] = exp (Qt) where Q is the transition rate matrix. We uses

the matrix exponent package called expokit [31] in our numerical investigations.

When λ = 0, the expression for P (i, t) and N̄ (t, n, λ) (both for the M/M/1 queue and

the M/M/1/K queue) are straightforward,

P (i, t) =







1 − e−t
∑n−1

k=0
tk

k!
if i = 0

ti−k

(i−k)!
e−t otherwise

N̄ (t, n, 0) = e−t

n∑

k=1

k tn−k

(n− k)!

79



B Theorem of Tauberian

The Tauberian theorem is the key in proving an existence of the average cost optimal

policy using the vanishing discount approach. It can be found in [3], Heyman and Sobel

[14, Proposition 4.7] and Sennott [27, Appendix A4]

Theorem 15. Let {an}be a sequence of nonnegative numbers and β ∈ (0, 1), then

lim inf
N→∞

1

N

N−1∑

m=0

am ≤ lim inf
β↑1

(1 − β)
∞∑

n=0

βnan

≤ lim sup
β↑1

(1 − β)
∞∑

n=0

βnan

≤ lim sup
N→∞

1

N

N−1∑

m=0

am

C Supermodularity and Stochastic Orders

C.1 Supermodularity

Supermodularity has been proved itself a sharp tool in establishing the monotonic prop-

erty of many functions. In particular, it is has been used in many occasions to prove the

monotonic property of the optimal control policy on queueing problems, see [35] and refer-

ences therein. Formal discussion of supermodularity and its application to Markov decision

process problems can be found in [36] and Heyman and Sobel [14, Chapter 8, p.368]. The

description below is adapted for the particular needs of this paper.

A function g(i, a), g : N × R 7→ R is supermodular in (i, a), or simply supermodular,

if g (i, a) − g (i, b) is nondecreasing in i for all a > b. The following results are particular

important for our problem.

Lemma 16. If g (i, a)is supermodular in (i, a), then π (i) = inf {arg mina g (i, a)} is non-

increasing in i.

Proof. Assume that π (i) < π (i+ 1) for some i. Since g (i, a) is supermodular in (i, a), we

have

g (i, π (i+ 1)) − g (i, π (i)) ≤ g (i+ 1, π (i+ 1)) − g (i+ 1, π (i)) .

This implies that

g (i+ 1, π (i+ 1)) = g (i+ 1, π (i))

80



which contradicts the definition of π (i+ 1).

Lemma 17. (a) If f (i, a) and g (i, a) are both supermodular in (i, a) then f (i, a) + g (i, a)

is supermodular in (i, a).

(b) If a function f (i, a, t), f : N × R × R 7→ R, is supermodular in (i, a) for all t ∈ R

and the integral
∫

A
f (i, a, t) dt, is properly defined over the set A ⊂ R, then

∫

A
f (i, a, t) dt

is supermodular in (i, a).

C.2 Stochastic Orders

Let X and Y be two random variables such that P (X > u) ≤ P (Y > u) for all u ∈
(−∞,+∞). Then X is said to be smaller than Y in the usual stochastic order (denoted

by X ≤st Y or Y ≥st X). More information on stochastic order can found in Ross [23,

Chapter 8, p. 251],[29] and Chen and Yao [7, p. 8].

81



References

[1] Altman, E. (1999). Constrained Markov Decision Processes. Chapman & Hall/CRC.

[2] Altman, E. and Stidham Jr., S. (1995). Optimality of monotonic policies for two-

action Markovian decision processes, with application to control of queues with delayed

information. Queueing Systems: Theory and Applications, 21:267–291.

[3] Arapostathis, A., Borkar, V., Fernández-Gaucherand, E., Ghosh, M. K., and Marcus,

S. I. (1993). Discrete-time controlled Markov processes with average cost criterion: a

survey. SIAM J. Control and Optimization, 31(2):282–344.

[4] Blackwell, D. (1962). Discrete dynamic programming. The Annals of Mathematical

Statistics, 33(2):719–726.

[5] Borkar, V. S. (1988). Stochastic Differential Systems, Stochastic Control Theory and

Applications, volume 10 of The IMA Volumes in Mathematics and Its Applications,

chapter Control of Markov chains with long-run average cost criterion, pages 57–77.

Springer-Verlag.

[6] Borkar, V. S. (2000). Markov Decision Processes: Model, Methods and Open Problems,

chapter Convex analytic methods in Markov decision processes. Kluwer 2000.

[7] Chen, H. and Yao, D. D. (2001). Fundamentals of Queueing Networks: Performance,

Asymptotics and Optimization. Springer.

[8] Crump, K. S. (1976). Numerical inversion of laplace transforms using a fourier series

approximation. Journal of the ACM, 23(1):89–96.

[9] Derman, C. (1966). Denumerable state Markov decision processes, average cost crite-

rion. Ann. Math. Statist., 37:1545–1553.

[10] Fox, B. L. (1971). Finite-State Approximations to Denumerable-State Dynamic Pro-

grams. J. Math. Anal. Appl, 34(665–670).

[11] Fukuda, A. (1986). Input regulation control based on periodical monitoring using call

gapping control. Electronics Comm. Japan, Part 1, 69(11):84–92.

[12] Hassin, R. and Haviv, M. (2003). To Queue or Not to Queue: Equilibrium Behavior

in Queueing Systems. Kluwer Academic Publishers.

82



[13] Hernández-Lerma, O. and Lasserre, J. B. (1996). Discrete-Time Markov Control

Processes, Basic Optimality Criteria. Springer.

[14] Heyman, D. P. and Sobel, M. J. (2004). Stochastic Model in Operations Research Vol

II Stochastic Optimization. Dover. McGraw-Hill Book Company 1984.

[15] Hordijk, A. (1974). Dynamic Programming and Markov Potential Theory. Technical

report, Math. Centre Tract No. 51, Mathematisch Centrum, Amsterdam.

[16] Kleinrock, L. (1975). Queueing Systems: Volume 1: Theory. John Wiley & Sons.

[17] Kuri, J. and Kumar, A. (1995). Optimal control of arrivals to queues with delayed

queue length information. IEEE Tran. Automatic Control, 40(8):1444–1450.

[18] Lin, K. Y. and Ross, S. M. (2003). Admission control with incomplete information of

a queueing system. Operations Research, 51(4):645–654.

[19] Naor, P. (1969). The regulation of queue size by levying tolls. Econometrica, 37(1).

[20] Puterman, M. L. (1994). Markov Decision Processes, Discrete Stochastic Dynamic

Programming. John Wiley & Sons, Inc.

[21] Robertsson, A., Wittenmark, B., and Kihl, M. (2003). Analysis and design of admis-

sion control in Web-server systems. In American Control Conference 2003.

[22] Ross, S. M. (1982a). Introduction to Stochastic Dynamic Programming. Academic

Press.

[23] Ross, S. M. (1982b). Stochastic Processes. John Wiley & Sons.

[24] Ross, S. M. (1992). Applied Probability Models with Optimization Applications. Dover

Pubns. Reprint edition of Holden-Day Inc. 1970.

[25] Rudin, W. (1986). Real and Complex Analysis. McGraw-Hill.

[26] Sennott, L. I. (1989). Average cost optimal stationary policies in infinite state Markov

decision processes with unbounded costs. Operations Research, 37:626–633.

[27] Sennott, L. I. (1998). Stochastic Dynamic Programming and the Control of Queueing

Systems. John Wiley & Sons.

83



[28] Sennott, L. I. (2000). Markov Decision Processes: Model, Methods and Open Problems,

chapter Average reward optimization theory for denumerable state spaces. Kluwer 2000.

[29] Shaked, M. and Shanthikumar, J. G. (1994). Stochastic Orders and Their Applications.

Academic Press.

[30] Shiryaev, A. N. (1996). Probability. Springer Verlag 2nd.

[31] Sidje, R. B. (1998). Expokit: software package for computing matrix exponentials.

ACM Transaction on Mathematical Software, 24(1):130–156.

[32] Stidham Jr., S. (1985). Optimal control of admission to a queueing system. IEEE

Tran. on Automatic Control, 30(8).

[33] Stidham Jr., S. (1988). Stochastic differential systems: stochastic control theory and

applications, chapter Scheduling, Routing, and Flow Control in Stochastic Networks,

pages 529–561. Springer-Verlag.

[34] Stidham Jr., S. (2002). Analysis, design and control of queueing systems. Operations

Research, 50(1):197–216.

[35] Stidham Jr., S. and Weber, R. (1993). A survey of Markov decision models for control

of networks of queues. Queueing Systems, 13:291–314.

[36] Topkis, D. M. (1978). Minimizing a submodular function on a Lattice. Operations

Research, 26(2):305–321.

[37] Walrand, J. (1988). An Introduction to Queueing Networks. Prentice-Hall Inc.

[38] Whitt, W. (1978). Approximations of dynamic programs I. Mathematics of Operations

Research, 3(3):231–243.

[39] Whitt, W. (1979). Approximations of dynamic programs, II. Mathematics of Opera-

tions Research, 4(2):179–185.

84



#
"

 
!Reports on Communication Systems

101. On Overload Control of SPC-systems

Ulf Körner, Bengt Wallström, and Christian Nyberg, 1989.

CODEN: LUTEDX/TETS- -7133- -SE+80P

102. Two Short Papers on Overload Control of Switching Nodes

Christian Nyberg, Ulf Körner, and Bengt Wallström, 1990.

ISRN LUTEDX/TETS- -1010- -SE+32P

103. Priorities in Circuit Switched Networks

Åke Arvidsson, Ph.D. thesis, 1990.

ISRN LUTEDX/TETS- -1011- -SE+282P

104. Estimations of Software Fault Content for Telecommunication Systems

Bo Lennselius, Lic. thesis, 1990.

ISRN LUTEDX/TETS- -1012- -SE+76P

105. Reusability of Software in Telecommunication Systems

Anders Sixtensson, Lic. thesis, 1990.

ISRN LUTEDX/TETS- -1013- -SE+90P

106. Software Reliability and Performance Modelling for Telecommunication Sys-

tems

Claes Wohlin, Ph.D. thesis, 1991.

ISRN LUTEDX/TETS- -1014- -SE+288P

107. Service Protection and Overflow in Circuit Switched Networks

Lars Reneby, Ph.D. thesis, 1991.

ISRN LUTEDX/TETS- -1015- -SE+200P

108. Queueing Models of the Window Flow Control Mechanism

Lars Falk, Lic. thesis, 1991.

ISRN LUTEDX/TETS- -1016- -SE+78P

109. On Efficiency and Optimality in Overload Control of SPC Systems

Tobias Rydén, Lic. thesis, 1991.

ISRN LUTEDX/TETS- -1017- -SE+48P

110. Enhancements of Communication Resources

Johan M Karlsson, Ph.D. thesis, 1992.

ISRN LUTEDX/TETS- -1018- -SE+132P



111. On Overload Control in Telecommunication Systems

Christian Nyberg, Ph.D. thesis, 1992.

ISRN LUTEDX/TETS- -1019- -SE+140P

112. Black Box Specification Language for Software Systems

Henrik Cosmo, Lic. thesis, 1994.

ISRN LUTEDX/TETS- -1020- -SE+104P

113. Queueing Models of Window Flow Control and DQDB Analysis

Lars Falk, Ph.D. thesis, 1995.

ISRN LUTEDX/TETS- -1021- -SE+145P

114. End to End Transport Protocols over ATM

Thomas Holmström, Lic. thesis, 1995.

ISRN LUTEDX/TETS- -1022- -SE+76P

115. An Efficient Analysis of Service Interactions in Telecommunications

Kristoffer Kimbler, Lic. thesis, 1995.

ISRN LUTEDX/TETS- -1023- -SE+90P

116. Usage Specifications for Certification of Software Reliability

Per Runeson, Lic. thesis, May 1996.

ISRN LUTEDX/TETS- -1024- -SE+136P

117. Achieving an Early Software Reliability Estimate

Anders Wesslén, Lic. thesis, May 1996.

ISRN LUTEDX/TETS- -1025- -SE+142P

118. On Overload Control in Intelligent Networks

Maria Kihl, Lic. thesis, June 1996.

ISRN LUTEDX/TETS- -1026- -SE+80P

119. Overload Control in Distributed-Memory Systems

Ulf Ahlfors, Lic. thesis, June 1996.

ISRN LUTEDX/TETS- -1027- -SE+120P

120. Hierarchical Use Case Modelling for Requirements Engineering

Björn Regnell, Lic. thesis, September 1996.

ISRN LUTEDX/TETS- -1028- -SE+178P



121. Performance Analysis and Optimization via Simulation

Anders Svensson, Ph.D. thesis, September 1996.

ISRN LUTEDX/TETS- -1029- -SE+96P

122. On Network Oriented Overload Control in Intelligent Networks

Lars Angelin, Lic. thesis, October 1996.

ISRN LUTEDX/TETS- -1030- -SE+130P

123. Network Oriented Load Control in Intelligent Networks Based on Optimal De-

cisions

Stefan Pettersson, Lic. thesis, October 1996.

ISRN LUTEDX/TETS- -1031- -SE+128P

124. Impact Analysis in Software Process Improvement

Martin Höst, Lic. thesis, December 1996.

ISRN LUTEDX/TETS- -1032- -SE+140P

125. Towards Local Certifiability in Software Design

Peter Molin, Lic. thesis, February 1997.

ISRN LUTEDX/TETS- -1033- -SE+132P

126. Models for Estimation of Software Faults and Failures in Inspection and Test

Per Runeson, Ph.D. thesis, January 1998.

ISRN LUTEDX/TETS- -1034- -SE+222P

127. Reactive Congestion Control in ATM Networks

Per Johansson, Lic. thesis, January 1998.

ISRN LUTEDX/TETS- -1035- -SE+138P

128. Switch Performance and Mobility Aspects in ATM Networks

Daniel Søbirk, Lic. thesis, June 1998.

ISRN LUTEDX/TETS- -1036- -SE+91P

129. VPC Management in ATM Networks

Sven-Olof Larsson, Lic. thesis, June 1998.

ISRN LUTEDX/TETS- -1037- -SE+65P

130. On TCP/IP Traffic Modeling

Pär Karlsson, Lic. thesis, February 1999.

ISRN LUTEDX/TETS- -1038- -SE+94P



131. Overload Control Strategies for Distributed Communication Networks

Maria Kihl, Ph.D. thesis, March 1999.

ISRN LUTEDX/TETS- -1039- -SE+158P

132. Requirements Engineering with Use Cases - a Basis for Software Development

Björn Regnell, Ph.D. thesis, April 1999.

ISRN LUTEDX/TETS- -1040- -SE+225P

133. Utilisation of Historical Data for Controlling and Improving Software Develop-

ment

Magnus C. Ohlsson, Lic. thesis, May 1999.

ISRN LUTEDX/TETS- -1041- -SE+146P

134. Early Evaluation of Software Process Change Proposals

Martin Höst, Ph.D. thesis, June 1999.

ISRN LUTEDX/TETS- -1042- -SE+193P

135. Improving Software Quality through Understanding and Early Estimations

Anders Wesslén, Ph.D. thesis, June 1999.

ISRN LUTEDX/TETS- -1043- -SE+242P

136. Performance Analysis of Bluetooth

Niklas Johansson, Lic. thesis, March 2000.

ISRN LUTEDX/TETS- -1044- -SE+76P

137. Controlling Software Quality through Inspections and Fault Content Estima-

tions

Thomas Thelin, Lic. thesis, May 2000

ISRN LUTEDX/TETS- -1045- -SE+146P

138. On Fault Content Estimations Applied to Software Inspections and Testing

H̊akan Petersson, Lic. thesis, May 2000.

ISRN LUTEDX/TETS- -1046- -SE+144P

139. Modeling and Evaluation of Internet Applications

Ajit K. Jena, Lic. thesis, June 2000.

ISRN LUTEDX/TETS- -1047- -SE+121P



140. Dynamic traffic Control in Multiservice Networks - Applications of Decision

Models

Ulf Ahlfors, Ph.D. thesis, October 2000.

ISRN LUTEDX/TETS- -1048- -SE+183P

141. ATM Networks Performance - Charging and Wireless Protocols

Torgny Holmberg, Lic. thesis, October 2000.

ISRN LUTEDX/TETS- -1049- -SE+104P

142. Improving Product Quality through Effective Validation Methods

Tomas Berling, Lic. thesis, December 2000.

ISRN LUTEDX/TETS- -1050- -SE+136P

143. Controlling Fault-Prone Components for Software Evolution

Magnus C. Ohlsson, Ph.D. thesis, June 2001.

ISRN LUTEDX/TETS- -1051- -SE+218P

144. Performance of Distributed Information Systems

Niklas Widell, Lic. thesis, February 2002.

ISRN LUTEDX/TETS- -1052- -SE+78P

145. Quality Improvement in Software Platform Development

Enrico Johansson, Lic. thesis, April 2002.

ISRN LUTEDX/TETS- -1053- -SE+112P

146. Elicitation and Management of User Requirements in Market-Driven Software

Development

Johan Natt och Dag, Lic. thesis, June 2002.

ISRN LUTEDX/TETS- -1054- -SE+158P

147. Supporting Software Inspections through Fault Content Estimation and Effec-

tiveness Analysis

H̊akan Petersson, Ph.D. thesis, September 2002.

ISRN LUTEDX/TETS- -1055- -SE+237P

148. Empirical Evaluations of Usage-Based Reading and Fault Content Estimation

for Software Inspections

Thomas Thelin, Ph.D. thesis, September 2002.

ISRN LUTEDX/TETS- -1056- -SE+210P



149. Software Information Management in Requirements and Test Documentation

Thomas Olsson, Lic. thesis, October 2002.

ISRN LUTEDX/TETS- -1057- -SE+122P

150. Increasing Involvement and Acceptance in Software Process Improvement

Daniel Karlström, Lic. thesis, November 2002.

ISRN LUTEDX/TETS- -1058- -SE+125P

151. Changes to Processes and Architectures; Suggested, Implemented and Ana-

lyzed from a Project viewpoint

Josef Nedstam, Lic. thesis, November 2002.

ISRN LUTEDX/TETS- -1059- -SE+124P

152. Resource Management in Cellular Networks -Handover Prioritization and Load

Balancing Procedures

Roland Zander, Lic. thesis, March 2003.

ISRN LUTEDX/TETS- -1060- -SE+120P

153. On Optimisation of Fair and Robust Backbone Networks

P̊al Nilsson, Lic. thesis, October 2003.

ISRN LUTEDX/TETS- -1061- -SE+116P

154. Exploring the Software Verification and Validation Process with Focus on Effi-

cient Fault Detection

Carina Andersson, Lic. thesis, November 2003.

ISRN LUTEDX/TETS- -1062- -SE+134P

155. Improving Requirements Selection Quality in Market-Driven Software Devel-

opment

Lena Karlsson, Lic. thesis, November 2003.

ISRN LUTEDX/TETS- -1063- -SE+132P

156. Fair Scheduling and Resource Allocation in Packet Based Radio Access Net-

works

Torgny Holmberg, Ph.D. thesis, November 2003.

ISRN LUTEDX/TETS- -1064- -SE+187P



157. Increasing Product Quality by Verification and Validation Improvements in an

Industrial Setting

Tomas Berling, Ph.D. thesis, December 2003.

ISRN LUTEDX/TETS- -1065- -SE+208P

158. Some Topics in Web Performance Analysis

Jianhua Cao, Lic. thesis, June 2004

ISRN LUTEDX/TETS- -1066- -SE+99P


