7 research outputs found

    Improving read mapping using additional prefix grams

    Get PDF
    BACKGROUND: Next-generation sequencing (NGS) enables rapid production of billions of bases at a relatively low cost. Mapping reads from next-generation sequencers to a given reference genome is an important first step in many sequencing applications. Popular read mappers, such as Bowtie and BWA, are optimized to return top one or a few candidate locations of each read. However, identifying all mapping locations of each read, instead of just one or a few, is also important in some sequencing applications such as ChIP-seq for discovering binding sites in repeat regions, and RNA-seq for transcript abundance estimation. RESULTS: Here we present Hobbes2, a software package designed for fast and accurate alignment of NGS reads and specialized in identifying all mapping locations of each read. Hobbes2 efficiently identifies all mapping locations of reads using a novel technique that utilizes additional prefix q-grams to improve filtering. We extensively compare Hobbes2 with state-of-the-art read mappers, and show that Hobbes2 can be an order of magnitude faster than other read mappers while consuming less memory space and achieving similar accuracy. CONCLUSIONS: We propose Hobbes2 to improve the accuracy of read mapping, specialized in identifying all mapping locations of each read. Hobbes2 is implemented in C++, and the source code is freely available for download at http://hobbes.ics.uci.edu

    Computing Platforms for Big Biological Data Analytics: Perspectives and Challenges.

    Full text link
    The last decade has witnessed an explosion in the amount of available biological sequence data, due to the rapid progress of high-throughput sequencing projects. However, the biological data amount is becoming so great that traditional data analysis platforms and methods can no longer meet the need to rapidly perform data analysis tasks in life sciences. As a result, both biologists and computer scientists are facing the challenge of gaining a profound insight into the deepest biological functions from big biological data. This in turn requires massive computational resources. Therefore, high performance computing (HPC) platforms are highly needed as well as efficient and scalable algorithms that can take advantage of these platforms. In this paper, we survey the state-of-the-art HPC platforms for big biological data analytics. We first list the characteristics of big biological data and popular computing platforms. Then we provide a taxonomy of different biological data analysis applications and a survey of the way they have been mapped onto various computing platforms. After that, we present a case study to compare the efficiency of different computing platforms for handling the classical biological sequence alignment problem. At last we discuss the open issues in big biological data analytics

    Technology dictates algorithms: Recent developments in read alignment

    Full text link
    Massively parallel sequencing techniques have revolutionized biological and medical sciences by providing unprecedented insight into the genomes of humans, animals, and microbes. Modern sequencing platforms generate enormous amounts of genomic data in the form of nucleotide sequences or reads. Aligning reads onto reference genomes enables the identification of individual-specific genetic variants and is an essential step of the majority of genomic analysis pipelines. Aligned reads are essential for answering important biological questions, such as detecting mutations driving various human diseases and complex traits as well as identifying species present in metagenomic samples. The read alignment problem is extremely challenging due to the large size of analyzed datasets and numerous technological limitations of sequencing platforms, and researchers have developed novel bioinformatics algorithms to tackle these difficulties. Importantly, computational algorithms have evolved and diversified in accordance with technological advances, leading to todays diverse array of bioinformatics tools. Our review provides a survey of algorithmic foundations and methodologies across 107 alignment methods published between 1988 and 2020, for both short and long reads. We provide rigorous experimental evaluation of 11 read aligners to demonstrate the effect of these underlying algorithms on speed and efficiency of read aligners. We separately discuss how longer read lengths produce unique advantages and limitations to read alignment techniques. We also discuss how general alignment algorithms have been tailored to the specific needs of various domains in biology, including whole transcriptome, adaptive immune repertoire, and human microbiome studies

    Novel computational techniques for mapping and classifying Next-Generation Sequencing data

    Get PDF
    Since their emergence around 2006, Next-Generation Sequencing technologies have been revolutionizing biological and medical research. Quickly obtaining an extensive amount of short or long reads of DNA sequence from almost any biological sample enables detecting genomic variants, revealing the composition of species in a metagenome, deciphering cancer biology, decoding the evolution of living or extinct species, or understanding human migration patterns and human history in general. The pace at which the throughput of sequencing technologies is increasing surpasses the growth of storage and computer capacities, which creates new computational challenges in NGS data processing. In this thesis, we present novel computational techniques for read mapping and taxonomic classification. With more than a hundred of published mappers, read mapping might be considered fully solved. However, the vast majority of mappers follow the same paradigm and only little attention has been paid to non-standard mapping approaches. Here, we propound the so-called dynamic mapping that we show to significantly improve the resulting alignments compared to traditional mapping approaches. Dynamic mapping is based on exploiting the information from previously computed alignments, helping to improve the mapping of subsequent reads. We provide the first comprehensive overview of this method and demonstrate its qualities using Dynamic Mapping Simulator, a pipeline that compares various dynamic mapping scenarios to static mapping and iterative referencing. An important component of a dynamic mapper is an online consensus caller, i.e., a program collecting alignment statistics and guiding updates of the reference in the online fashion. We provide Ococo, the first online consensus caller that implements a smart statistics for individual genomic positions using compact bit counters. Beyond its application to dynamic mapping, Ococo can be employed as an online SNP caller in various analysis pipelines, enabling SNP calling from a stream without saving the alignments on disk. Metagenomic classification of NGS reads is another major topic studied in the thesis. Having a database with thousands of reference genomes placed on a taxonomic tree, the task is to rapidly assign a huge amount of NGS reads to tree nodes, and possibly estimate the relative abundance of involved species. In this thesis, we propose improved computational techniques for this task. In a series of experiments, we show that spaced seeds consistently improve the classification accuracy. We provide Seed-Kraken, a spaced seed extension of Kraken, the most popular classifier at present. Furthermore, we suggest ProPhyle, a new indexing strategy based on a BWT-index, obtaining a much smaller and more informative index compared to Kraken. We provide a modified version of BWA that improves the BWT-index for a quick k-mer look-up

    Algorithm-Hardware Co-Design for Performance-driven Embedded Genomics

    Get PDF
    PhD ThesisGenomics includes development of techniques for diagnosis, prognosis and therapy of over 6000 known genetic disorders. It is a major driver in the transformation of medicine from the reactive form to the personalized, predictive, preventive and participatory (P4) form. The availability of genome is an essential prerequisite to genomics and is obtained from the sequencing and analysis pipelines of the whole genome sequencing (WGS). The advent of second generation sequencing (SGS), significantly, reduced the sequencing costs leading to voluminous research in genomics. SGS technologies, however, generate massive volumes of data in the form of reads, which are fragmentations of the real genome. The performance requirements associated with mapping reads to the reference genome (RG), in order to reassemble the original genome, now, stands disproportionate to the available computational capabilities. Conventionally, the hardware resources used are made of homogeneous many-core architecture employing complex general-purpose CPU cores. Although these cores provide high-performance, a data-centric approach is required to identify alternate hardware systems more suitable for affordable and sustainable genome analysis. Most state-of-the-art genomic tools are performance oriented and do not address the crucial aspect of energy consumption. Although algorithmic innovations have reduced runtime on conventional hardware, the energy consumption has scaled poorly. The associated monetary and environmental costs have made it a major bottleneck to translational genomics. This thesis is concerned with the development and validation of read mappers for embedded genomics paradigm, aiming to provide a portable and energy-efficient hardware solution to the reassembly pipeline. It applies the algorithmhardware co-design approach to bridge the saturation point arrived in algorithmic innovations with emerging low-power/energy heterogeneous embedded platforms. Essential to embedded paradigm is the ability to use heterogeneous hardware resources. Graphical processing units (GPU) are, often, available in most modern devices alongside CPU but, conventionally, state-of-the-art read mappers are not tuned to use both together. The first part of the thesis develops a Cross-platfOrm Read mApper using opencL (CORAL) that can distribute workload on all available devices for high performance. OpenCL framework mitigates the need for designing separate kernels for CPU and GPU. It implements a verification-aware filtration algorithm for rapid pruning and identification of candidate locations for mapping reads to the RG. Mapping reads on embedded platforms decreases performance due to architectural differences such as limited on-chip/off-chip memory, smaller bandwidths and simpler cores. To mitigate performance degradation, in second part of the thesis, we propose a REad maPper for heterogeneoUs sysTEms (REPUTE) which uses an efficient dynamic programming (DP) based filtration methodology. Using algorithm-hardware co-design and kernel level optimizations to reduce its memory footprint, REPUTE demonstrated significant energy savings on HiKey970 embedded platform with acceptable performance. The third part of the thesis concentrates on mapping the whole genome on an embedded platform. We propose a Pyopencl based tooL for gEnomic workloaDs tarGeting Embedded platfoRms (PLEDGER) which includes two novel contributions. The first one proposes a novel preprocessing strategy to generate low-memory footprint (LMF) data structure to fit all human chromosomes at the cost of performance. Second contribution is LMF DP-based filtration method to work in conjunction with the proposed data structures. To mitigate performance degradation, the kernel employs several optimisations including extensive usage of bit-vector operations. Extensive experiments using real human reads were carried out with state-of-the-art read mappers on 5 different platforms for CORAL, REPUTE and PLEDGER. The results show that embedded genomics provides significant energy savings with similar performance compared to conventional CPU-based platforms
    corecore