115 research outputs found

    Elevating commodity storage with the SALSA host translation layer

    Full text link
    To satisfy increasing storage demands in both capacity and performance, industry has turned to multiple storage technologies, including Flash SSDs and SMR disks. These devices employ a translation layer that conceals the idiosyncrasies of their mediums and enables random access. Device translation layers are, however, inherently constrained: resources on the drive are scarce, they cannot be adapted to application requirements, and lack visibility across multiple devices. As a result, performance and durability of many storage devices is severely degraded. In this paper, we present SALSA: a translation layer that executes on the host and allows unmodified applications to better utilize commodity storage. SALSA supports a wide range of single- and multi-device optimizations and, because is implemented in software, can adapt to specific workloads. We describe SALSA's design, and demonstrate its significant benefits using microbenchmarks and case studies based on three applications: MySQL, the Swift object store, and a video server.Comment: Presented at 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS

    Towards Design and Analysis For High-Performance and Reliable SSDs

    Get PDF
    NAND Flash-based Solid State Disks have many attractive technical merits, such as low power consumption, light weight, shock resistance, sustainability of hotter operation regimes, and extraordinarily high performance for random read access, which makes SSDs immensely popular and be widely employed in different types of environments including portable devices, personal computers, large data centers, and distributed data systems. However, current SSDs still suffer from several critical inherent limitations, such as the inability of in-place-update, asymmetric read and write performance, slow garbage collection processes, limited endurance, and degraded write performance with the adoption of MLC and TLC techniques. To alleviate these limitations, we propose optimizations from both specific outside applications layer and SSDs\u27 internal layer. Since SSDs are good compromise between the performance and price, so SSDs are widely deployed as second layer caches sitting between DRAMs and hard disks to boost the system performance. Due to the special properties of SSDs such as the internal garbage collection processes and limited lifetime, traditional cache devices like DRAM and SRAM based optimizations might not work consistently for SSD-based cache. Therefore, for the outside applications layer, our work focus on integrating the special properties of SSDs into the optimizations of SSD caches. Moreover, our work also involves the alleviation of the increased Flash write latency and ECC complexity due to the adoption of MLC and TLC technologies by analyzing the real work workloads

    LightNVM: The Linux Open-Channel SSD Subsystem

    Get PDF

    HEC: Collaborative Research: SAM^2 Toolkit: Scalable and Adaptive Metadata Management for High-End Computing

    Get PDF
    The increasing demand for Exa-byte-scale storage capacity by high end computing applications requires a higher level of scalability and dependability than that provided by current file and storage systems. The proposal deals with file systems research for metadata management of scalable cluster-based parallel and distributed file storage systems in the HEC environment. It aims to develop a scalable and adaptive metadata management (SAM2) toolkit to extend features of and fully leverage the peak performance promised by state-of-the-art cluster-based parallel and distributed file storage systems used by the high performance computing community. There is a large body of research on data movement and management scaling, however, the need to scale up the attributes of cluster-based file systems and I/O, that is, metadata, has been underestimated. An understanding of the characteristics of metadata traffic, and an application of proper load-balancing, caching, prefetching and grouping mechanisms to perform metadata management correspondingly, will lead to a high scalability. It is anticipated that by appropriately plugging the scalable and adaptive metadata management components into the state-of-the-art cluster-based parallel and distributed file storage systems one could potentially increase the performance of applications and file systems, and help translate the promise and potential of high peak performance of such systems to real application performance improvements. The project involves the following components: 1. Develop multi-variable forecasting models to analyze and predict file metadata access patterns. 2. Develop scalable and adaptive file name mapping schemes using the duplicative Bloom filter array technique to enforce load balance and increase scalability 3. Develop decentralized, locality-aware metadata grouping schemes to facilitate the bulk metadata operations such as prefetching. 4. Develop an adaptive cache coherence protocol using a distributed shared object model for client-side and server-side metadata caching. 5. Prototype the SAM2 components into the state-of-the-art parallel virtual file system PVFS2 and a distributed storage data caching system, set up an experimental framework for a DOE CMS Tier 2 site at University of Nebraska-Lincoln and conduct benchmark, evaluation and validation studies
    corecore