11,505 research outputs found

    A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters

    Get PDF
    Markov Chain Monte Carlo (MCMC) methods have become increasingly popular for estimating the posterior probability distribution of parameters in hydrologic models. However, MCMC methods require the a priori definition of a proposal or sampling distribution, which determines the explorative capabilities and efficiency of the sampler and therefore the statistical properties of the Markov Chain and its rate of convergence. In this paper we present an MCMC sampler entitled the Shuffled Complex Evolution Metropolis algorithm (SCEM-UA), which is well suited to infer the posterior distribution of hydrologic model parameters. The SCEM-UA algorithm is a modified version of the original SCE-UA global optimization algorithm developed by Duan et al. [1992]. The SCEM-UA algorithm operates by merging the strengths of the Metropolis algorithm, controlled random search, competitive evolution, and complex shuffling in order to continuously update the proposal distribution and evolve the sampler to the posterior target distribution. Three case studies demonstrate that the adaptive capability of the SCEM-UA algorithm significantly reduces the number of model simulations needed to infer the posterior distribution of the parameters when compared with the traditional Metropolis-Hastings samplers

    Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling?

    Get PDF
    In recent years, a strong debate has emerged in the hydrologic literature regarding what constitutes an appropriate framework for uncertainty estimation. Particularly, there is strong disagreement whether an uncertainty framework should have its roots within a proper statistical (Bayesian) context, or whether such a framework should be based on a different philosophy and implement informal measures and weaker inference to summarize parameter and predictive distributions. In this paper, we compare a formal Bayesian approach using Markov Chain Monte Carlo (MCMC) with generalized likelihood uncertainty estimation (GLUE) for assessing uncertainty in conceptual watershed modeling. Our formal Bayesian approach is implemented using the recently developed differential evolution adaptive metropolis (DREAM) MCMC scheme with a likelihood function that explicitly considers model structural, input and parameter uncertainty. Our results demonstrate that DREAM and GLUE can generate very similar estimates of total streamflow uncertainty. This suggests that formal and informal Bayesian approaches have more common ground than the hydrologic literature and ongoing debate might suggest. The main advantage of formal approaches is, however, that they attempt to disentangle the effect of forcing, parameter and model structural error on total predictive uncertainty. This is key to improving hydrologic theory and to better understand and predict the flow of water through catchment

    A Conceptual Framework for Integration Development of GSFLOW Model: Concerns and Issues Identified and Addressed for Model Development Efficiency

    Get PDF
    In Coupled Groundwater and Surface-Water Flow (GSFLOW) model, the three-dimensional finite-difference groundwater model (MODFLOW) plays a critical role of groundwater flow simulation, together with which the Precipitation-Runoff Modeling System (PRMS) simulates the surface hydrologic processes. While the model development of each individual PRMS and MODFLOW model requires tremendous time and efforts, further integration development of these two models exerts additional concerns and issues due to different simulation realm, data communication, and computation algorithms. To address these concerns and issues in GSFLOW, the present paper proposes a conceptual framework from perspectives of: Model Conceptualization, Data Linkages and Transference, Model Calibration, and Sensitivity Analysis. As a demonstration, a MODFLOW groundwater flow system was developed and coupled with the PRMS model in the Lehman Creek watershed, eastern Nevada, resulting in a smooth and efficient integration as the hydrogeologic features were well captured and represented. The proposed conceptual integration framework with techniques and concerns identified substantially improves GSFLOW model development efficiency and help better model result interpretations. This may also find applications in other integrated hydrologic modelings
    • …
    corecore