15,795 research outputs found

    From virtual demonstration to real-world manipulation using LSTM and MDN

    Full text link
    Robots assisting the disabled or elderly must perform complex manipulation tasks and must adapt to the home environment and preferences of their user. Learning from demonstration is a promising choice, that would allow the non-technical user to teach the robot different tasks. However, collecting demonstrations in the home environment of a disabled user is time consuming, disruptive to the comfort of the user, and presents safety challenges. It would be desirable to perform the demonstrations in a virtual environment. In this paper we describe a solution to the challenging problem of behavior transfer from virtual demonstration to a physical robot. The virtual demonstrations are used to train a deep neural network based controller, which is using a Long Short Term Memory (LSTM) recurrent neural network to generate trajectories. The training process uses a Mixture Density Network (MDN) to calculate an error signal suitable for the multimodal nature of demonstrations. The controller learned in the virtual environment is transferred to a physical robot (a Rethink Robotics Baxter). An off-the-shelf vision component is used to substitute for geometric knowledge available in the simulation and an inverse kinematics module is used to allow the Baxter to enact the trajectory. Our experimental studies validate the three contributions of the paper: (1) the controller learned from virtual demonstrations can be used to successfully perform the manipulation tasks on a physical robot, (2) the LSTM+MDN architectural choice outperforms other choices, such as the use of feedforward networks and mean-squared error based training signals and (3) allowing imperfect demonstrations in the training set also allows the controller to learn how to correct its manipulation mistakes

    Vision-Based Multi-Task Manipulation for Inexpensive Robots Using End-To-End Learning from Demonstration

    Full text link
    We propose a technique for multi-task learning from demonstration that trains the controller of a low-cost robotic arm to accomplish several complex picking and placing tasks, as well as non-prehensile manipulation. The controller is a recurrent neural network using raw images as input and generating robot arm trajectories, with the parameters shared across the tasks. The controller also combines VAE-GAN-based reconstruction with autoregressive multimodal action prediction. Our results demonstrate that it is possible to learn complex manipulation tasks, such as picking up a towel, wiping an object, and depositing the towel to its previous position, entirely from raw images with direct behavior cloning. We show that weight sharing and reconstruction-based regularization substantially improve generalization and robustness, and training on multiple tasks simultaneously increases the success rate on all tasks

    Integration of tools for the Design and Assessment of High-Performance, Highly Reliable Computing Systems (DAHPHRS), phase 1

    Get PDF
    Systems for Space Defense Initiative (SDI) space applications typically require both high performance and very high reliability. These requirements present the systems engineer evaluating such systems with the extremely difficult problem of conducting performance and reliability trade-offs over large design spaces. A controlled development process supported by appropriate automated tools must be used to assure that the system will meet design objectives. This report describes an investigation of methods, tools, and techniques necessary to support performance and reliability modeling for SDI systems development. Models of the JPL Hypercubes, the Encore Multimax, and the C.S. Draper Lab Fault-Tolerant Parallel Processor (FTPP) parallel-computing architectures using candidate SDI weapons-to-target assignment algorithms as workloads were built and analyzed as a means of identifying the necessary system models, how the models interact, and what experiments and analyses should be performed. As a result of this effort, weaknesses in the existing methods and tools were revealed and capabilities that will be required for both individual tools and an integrated toolset were identified

    Investigating the behavior of deep convolution networks in image recognition

    Get PDF
    This research project investigates the role of key factors that led to the resurgence of deep CNNs and their success in classifying large datasets of natural images. Our investigation included the role of new network components, the role of the training data, and the role of data augmentation. Investigating the role of data augmentation led to the successful implementation of a deep CNN that can be trained using a variable input size, which increased the amount of allowable scale augmentation and led to much better single-view performance. Our analysis of the role of the training data shows the capabilities of deep CNNs to break down a large hierarchical dataset along the hierarchical lines into smaller components and learn all of them with great efficiency. This might help explain why deep CNN are very effective in classifying large and dense datasets of natural images which tend to have a hierarchical structure. Our investigation of core network components shows that the shared normalisation statistics of BN allowed us to alter the behaviour of the network by controlling the structure of the training batches. We used this observation to obtain large conditional gain by training and testing the network using balanced batches. Finally, we were able to implement a successful multitasking network that were able to outperform the corresponding single task networks. Our model used the normalisation statistics of BN to separate between the tasks, and our analysis shows that using a whole dataset per task increases the gains of the multitasking network by increasing the transfer of knowledge between the tasks.Open Acces
    • …
    corecore