2 research outputs found

    Decomposition-Based Approach for Model-Based Test Generation

    Get PDF
    Model-based test generation by model checking is a well-known testing technique that, however, suffers from the state explosion problem of model checking and it is, therefore, not always applicable. In this paper, we address this issue by decomposing a system model into suitable subsystem models separately analyzable. Our technique consists in decomposing that portion of a system model that is of interest for a given testing requirement, into a tree of subsystems by exploiting information on model variable dependency. The technique generates tests for the whole system model by merging tests built from those subsystems. We measure and report effectiveness and efficiency of the proposed decomposition-based test generation approach, both in terms of coverage and time

    Improving model-based test generation by model decomposition

    No full text
    One of the well-known techniques for model-based test generation exploits the capability of model checkers to return counterexamples upon property violations. However, this approach is not always optimal in practice due to the required time and memory, or even not feasible due to the state explosion problem of model checking. A way to mitigate these limitations consists in decomposing a system model into suitable subsystem models separately analyzable. In this paper, we show a technique to decompose a system model into subsystems by exploiting the model variables dependency, and then we propose a test generation approach which builds tests for the single subsystems and combines them later in order to obtain tests for the system as a whole. Such approach mitigates the exponential increase of the test generation time and memory consumption, and, compared with the same model-based test generation technique applied to the whole system, shows to be more efficient. We prove that, although not complete, the approach is sound
    corecore