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Decomposition-Based Approach for

Model-Based Test Generation
Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene

Abstract—Model-based test generation by model checking is a well-known testing technique that, however, suffers from

the state explosion problem of model checking and it is, therefore, not always applicable. In this paper, we address this

issue by decomposing a system model into suitable subsystem models separately analyzable. Our technique consists in

decomposing that portion of a system model that is of interest for a given testing requirement, into a tree of subsystems by

exploiting information on model variable dependency. The technique generates tests for the whole system model by

merging tests built from those subsystems. We measure and report effectiveness and efficiency of the proposed

decomposition-based test generation approach, both in terms of coverage and time.

Index Terms—model-based testing, test case generation, model checking, state explosion problem, decomposition.

F

1 INTRODUCTION

A classical technique for model-based test (MBT)

generation exploits the capability of model checkers to

produce counterexamples [1], [2]: a test is a sequence

of states that brings, in the space of reachable states, to

one that violates the negation of a testing goal.

Due to the well-known “state explosion prob-

lem” [3], this approach is not always applicable. Sev-

eral techniques [4], [5], [6] that have been developed to

tackle this problem in the context of property verifica-

tion, are not suitable for test generation [7] since they

may miss parts of the system model that are necessary

for building the tests.

In this paper, we present a technique that addresses

the state explosion problem for model-based test gen-

eration by model decomposition. It works for models

given as transition systems. Firstly, given a testing
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goal, the transition system is decomposed into linked

subsystems by exploiting the model variables depen-

dency (one subsystem for each set of interdependent

variables). The subsystems constitute a tree. Then, a

test for the entire system is built by visiting the tree,

generating tests for subsystems by suitable testing

goals, and merging them. The generation technique

has two versions: StrongTP assumes that all the tests

in all the subsystems have the same length, while

its extension, WeakTP, allows to generate and merge

tests of different length among the subsystems. Both

versions are sound, but neither is complete.

The presented approach extends that introduced

in [8] in two directions.

1) The test generation technique requires, as input, a

dependency tree among subsystems. The original

approach in [8] was based on a dependency graph

among subsystems, and this caused an extra effort

to derive, for every test predicate, a suitable tree

November 24, 2017 DRAFT

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187987348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2781231, IEEE
Transactions on Software Engineering

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

from the graph. Here, the decomposition directly

builds a tree dependency structure among sub-

systems and permits the immediate application of

the test generation. Moreover, the current decom-

position technique applies not to the entire model

but to that portion of it which is of interest for a

given testing goal.

2) Although obtained results in terms of time and

memory were encouraging, the experimentation

in [8] was very limited and the approach was

not fully automatic (system decomposition, test

predicate generation, and global test construction

were hand-made), so preventing a deep and sig-

nificant comparison analysis. The current version

is completely automatic and this made possible a

deep evaluation of the proposed technique on a

bigger sample of case studies.

Implementation and experimentation of our

techniques required to choose a concrete nota-

tion for transition systems and a model checker.

SCR [9], RSML´e [10], ASMs [11], Statecharts [12],

UML behavioural diagrams [13], Event-B [14],

SPIN/Promela [15], NuSMV [16], etc., are formal

methods suitable to apply our approach.

We applied our approach to 87 NuSMV models,

representative of real-life systems. Experiments show

that the proposed technique is able to increase the cov-

erage of testing goals by around 3.1 percentage points

(pp) w.r.t. the classical technique without decomposi-

tion; moreover, it speeds up the generation time of

around 14%. The technique pays a price in terms of

completeness because of the applied decomposition:

the percentage of infeasible testing goals increases by

around 0.65 pp due to the decomposition.

The paper is organized as follows. Sect. 2 provides

some basic definitions of transition systems and vari-

able dependency, and it briefly recalls the model-based

test generation by model checking. Sect. 3 presents

the procedure for system decomposition into a tree

of dependent subsystems. Sect. 4 recalls from [8] the

strong and weak techniques for test generation. Ex-

perimental results about applicability and comparison

of the two techniques in test generation are shown in

Sect. 5. Sect. 6 identifies possible threats to the validity

of the approach, Sect. 7 reviews related literature, and

Sect. 8 concludes the paper.

2 BASIC DEFINITIONS

System models are given in terms of transition sys-

tems. Relevant definitions, adapted from [17], are re-

ported in Sect. 2.1. The model-based test generation

approach by model checking, and coverage criteria for

transition systems are presented in Sect. 2.2.

2.1 Transition System Specifications

Definition 1 (Transition system). A transition system

M is a tuple xA,P,Θy where

‚ A is a first order structure representing the in-

stantaneous configuration of the system. A has a

first order signature G including a finite set of

variables V = tv1, . . . , vnu, a domain Dvi for each

variable vi, relations and functions, and an inter-

pretation function. The system state is uniquely

determined by the values of the variables.

‚ P is a program consisting of a sequence of next

assignments v11 :“ e1, . . . , v
1
n :“ en, being V 1 “

tv11, . . . , v
1
nu the next state variables; ei is a term

over G and it can contain variables of V and V 1.

‚ Θ “ tv1 “ e01, . . . , vn “ e0nu is the set of initial

assignments; e0i can contain only variables of V .

Terms ei and e0i in next and initial assignments

may contain conditional expressions. We assume that

G may contain a predefined function randompDq,

randomly returning a value taken from domain D.
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signature A:

V “ tSafInject , Overridden, Press,WaterPress, Valveu

DSafInject “ tOFF ,OFF VALVE ,ALERT ,ON u

DOverridden “ boolean

DPress “ tLow ,Mid ,High,Unknownu

DWaterPress “ t0, . . ., 1000u

DValve “ topen, closedu

program P :

SafInject 1 :=

if Press“Low^ Overridden^Overridden 1 then OFF VALVE

elsif Press = Low ^ Press 1 = Normal then ALERT

elsif Press 1 = High then ON else OFF ;

Overridden 1 := Press = Low ^ Press 1 = Unknown;

Press 1 := if Valve1 = open then Unknown

elsif WaterPress 1 < 300 then Low

elsif WaterPress 1 < 600 then Normal

else High;

WaterPress 1 = random(max(0, WaterPress ´ 5) . . .

min(1000, WaterPress + 5))

Valve1 = randompDValveq

initial state Θ:

SafInject = OFF , Overridden = FALSE , Press = Low ,

WaterPress = 0, Valve = closed

Code 1. Transition system example – SIS

Example 1. As explanatory example, we consider a

Safety Injection System (SIS), a simplified version of a

control system for safety injection [2]. The SIS is mod-

eled by the transition system M “ xA,P,Θy shown in

Code 1. The SIS monitors the water pressure (which can

change at most of ˘ 5 units at each step) and a valve. If

the valve is open, then the pressure level is unknown,

otherwise can be low, normal, or high depending on

water pressure. The safety system is overridden only

when the pressure from low becomes unknown. The

SIS injects coolant when pressure is high, it becomes

off valve when it is overridden, it alerts when the

pressure becomes normal from low, otherwise it is off.

Definition 2 (Computational step). Executing the pro-

gram P in a state s consists in evaluating terms

e1, . . . , en in s and assigning the computed values to

variables v1, . . . , vn obtaining the next state s1.

Note that, because of variables dependencies, a set

of assignments cannot be evaluated in any order. For

instance, x1 :“ y1 and y1 :“ x can be evaluated only

in one order. We suppose that P and Θ are well-

defined and thus there always exists an order that

permits to evaluate all the assigned terms (there are

no combinatorial loops [18], i.e., cycles of dependen-

cies not broken by delays). For example, program

P “ tx1 :“ y1, y1 :“ x1u is not well-defined as it

contains a combinatorial loop among variables tx, yu.

Definition 3 (System execution). An execution of a

transition system is a finite or infinite sequence of

states s0, s1, . . ., sn such that the initial state s0 is

obtained by evaluating the assignments in Θ and each

state si`1 is obtained by executing P at state si.

Note that transition systems allow modeling

nondeterministic systems. Because of the function

random , executing P twice from the same state s may

lead to two different next states.

Definition 4 (Variable dependency). Given two var-

iables vi, vj P V of a transition system, we say that

vi directly depends on vj if vj (primed or not primed)

occurs in ei or in e0i .

We denote by DirDeppvq the set of variables which

v directly depends on.

Definition 5 (Dependency graph). We call dependency

graph of a transition system M the directed graph

DG “ xV,Ey, where V is the set of variables of

M and pv, wq P E iff v directly depends on w, i.e.,

w P DirDeppvq.

Note that the dependency graph can contain cy-
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O

SI

P V

WP

M1
M2

Fig. 1. Variables dependency graph (O: Overridden, SI: SafInject,

P: Press, V : Valve, WP: WaterPress)

cles, even when a program is well-defined, i.e., it does

not contain combinatorial loops. For instance, in a

correct program that exchanges two variables x and

y by the assignments x1 :“ y and y1 :“ x, the two

variables are both dependent on the other.

We say that v depends on w if there exists a path

from v to w in DG . We denote Deppvq the set of all the

variables w, with w ‰ v, v depends on.

Example 2. Fig. 1 shows the dependency graph of the

transition system introduced in Ex. 1. For example,

variable SafInject directly depends on Overridden

and indirectly depends on Valve .

2.2 Model-Based Testing by Model Checking

In model-based testing [19], [20], testing activities ex-

ploit a model describing the expected behavior of the

system under test.

Definition 6 (Test). A test is a finite system execution

(as defined in Def. 3).

A test is usually built for covering a given testing

goal, i.e., a desired system behavior. Testing goals are

formally represented by test predicates.

Definition 7 (Test predicate). A test predicate is a

formula over the model, and determines whether a

particular testing goal is reached or not.

Testing goals are usually generated according to

some coverage criteria.

Definition 8 (Coverage criterion). A coverage criterion

C is a function that, given a formal model, produces

a set of test predicates. A test suite TS satisfies a

coverage criterion C if each test predicate generated

with C is satisfied in at least one state of a test

sequence in TS .

Some coverage criteria for transition systems are:

‚ value coverage: each value of each variable is cov-

ered;

‚ decision coverage: each decision in P and in Θ is

covered both to true and to false [21];

‚ condition coverage: i.e, each atomic condition in P

and in Θ is covered both to true and to false [21];

‚ Modified Condition/Decision Coverage (MCDC):

every atomic condition in a decision (belonging to

P or Θ) is shown to independently affect the final

value of the decision [22].

Example 3. The value coverage criterion applied to

the system shown in Ex. 1 produces the follow-

ing test predicates: F(SafInject = OPEN), F(SafInject

= CLOSED), F(Overridden), F( Overridden), F(Press =

Low), . . . , F(Press = Unknown), F(WaterPress = 0), . . .,

F(WaterPress = 1000), F(Valve = open), F(Valve = closed).

2.2.1 Test generation by model checking

Model-based test generation by model checking al-

lows automatic generation of test cases from models

by exploiting the capability of model checkers to re-

turn counterexamples [1], [2]. The technique works

as follows. Given a test predicate tp, the trap property

 tp is verified with the model checker, obtaining three

possible outcomes:

‚ The trap property is false, meaning that the test

predicate tp is feasible; the returned counterexam-

ple is the test that covers tp.
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‚ The trap property is true, meaning that the test

predicate tp is infeasible and there is no test that

can cover it.

‚ The model checker terminates without providing

any result, usually because of the state explosion

problem. In this case, the user does not know

whether the test predicate can be covered or not.

3 SYSTEM DECOMPOSITION

We are interested in decomposing the system M in

subsystems in order to improve the test generation

process and get a test for the whole system as suitable

combination of tests for the single subsystems. The

system M must be decomposed in a way that makes

the subsystems as much independent as possible from

each other and establishes their precise connection

links. Since subsystems dependency relies on variables

dependency, the dependency graph of M must be

analyzed in order to detect those variables that must

be kept together – in a unique subsystem – because

they are mutually dependent, and those variables that

are not part of cyclic dependencies but have depen-

dencies outside the subsystem. The latter represent

possible boundary points of the decomposition and

their programs can be abstracted.

Before the decomposition process, we place the

following definitions identifying classes of variables.

Definition 9. Given a subset W Ď V of variables, we

call external variables of W the variables EXT pW q “

V zW . Given a variable v PW , we call v as

‚ internal for W if v does not directly depend on

any external variable of W , i.e., if DirDeppvq X

EXT pW q “ H; INT pW q identifies the set of

internal variables of W ;

‚ input for W if it depends only on some external

variables of W , i.e., if H Ă Deppvq Ď EXT pW q;

INPpW q identifies the set of input variables ofW .

W
INP(W)

EXT(W)

INT(W)

Fig. 2. Variable decomposition

Given a variable set W , Fig. 2 depicts the sets

EXT pW q, INT pW q, and INPpW q.

Note that a variable v is neither internal nor input

if it depends both on some internal variable and on

some external variable. The square-patterned variable

in Fig. 2 is an example of such kind of variable. Our

decomposition process will guarantee to have only

internal and input variables.

Starting from M and a test predicate tp, we here

present a decomposition process on the subset of V

that is of interest for the evaluation of tp – leaving out

the rest of the variables – in a way that keeps together

the variables in tp, keeps together variables having

internal dependencies, and detects those variables

(input) that represent possible border points of the

decomposition and so linking points between subsets.

Decomposition process

The decomposition process is shown in Alg. 1. Proce-

dure BUILDDECOMP takes in input a test predicate tp

over M , and builds a set Dectp (initially empty) that

will contain subsets of V . Then, it adds all variables

varptpq of tp in the initial set V1 together with their

direct dependencies, and calls procedure BUILDSET on

V1 to enlarge the set. The procedure BUILDSET, over a

set Vi under evaluation, works as follows:

1) procedure ADDDEPENDENCIES is called on Vi.

The procedure checks whether there exists a v P

Vi that is neither internal nor input, and, if any,
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Algorithm 1 Variables decomposition construction
1: procedure BUILDDECOMP(TestPredicate tp)

2: Dectp ÐH

3: V1 Ð varptpq Y
Ť

vPvarptpqDirDeppvq

4: BUILDSET(V1)

5: procedure BUILDSET(Set Vi)

6: ADDDEPENDENCIES(Vi)

7: MERGEINPUTS(Vi)

8: Dectp Ð Dectp Y tViu

9: for all v P INPpViq do

10: BUILDSET(tvu YDirDeppvq)

11: procedure ADDDEPENDENCIES(Set Vi)

12: if Dv P Vi : v R INT pViq ^ v R INPpViq then

13: Vi Ð Vi YDirDeppvq

14: ADDDEPENDENCIES(Vi)

15: procedure MERGEINPUTS(Set Vi)

16: if Dv, w P INPpViq :DeppvqXDeppwq ‰ H then

17: Vi Ð Vi YDirDeppvq YDirDeppwq

18: MERGEINPUTS(Vi)

adds all its direct dependencies DirDeppvq to Vi,

and recursively calls itself on the modified set;

2) procedure MERGEINPUTS is called on Vi. The pro-

cedure checks whether there are two input vari-

ables v and w having common dependencies (i.e.,

Deppvq X Deppwq ‰ H), and, if any, adds all the

direct dependencies of v and w (i.e., DirDeppvq

and DirDeppwq) to Vi, and recursively calls itself

on the modified set;

3) Vi is added to the set Dectp ;

4) finally, for each input variable v of Vi, recursively

calls itself using, as new set, v and its direct

dependencies DirDeppvq.

Subsystems construction

Given a transition system M “ xA,P,Θy, a test

predicate tp over M , and the set Dectp , we can build a

subsystem Mi “ xAi, Pi,Θiy of M for each subset Vi

in Dectp , where

‚ Ai is the structure obtained from A by reducing

the set of variables V to Vi;

‚ Pi contains the next assignments of P for the

internal variables INT pViq, and the next assign-

ment v1 :“ randompDvq for each input variable

v P INPpViq;

‚ Θi contains the initial assignments in Θ for the

internal variables in INT pViq, and the initial as-

signment v “ randompDvq for each input vari-

able v P INPpViq.

Each Mi is a well-formed transition system by

construction: next and initial assignments in Pi and

Θi are well-defined and only contain variables of Vi.

Subsystems Dependency Tree

The decomposition in Alg. 1 guarantees that given two

subsystems Mi and Mj there is at most one common

variable v, input in one subsystem and internal in

the other. This leads to a dependency relation among

subsystems Mi.

Definition 10 (Subsystems dependency). A subsystem

Mi directly depends on another subsystem Mj if

INPpViq X INT pVjq “ tvu. We call v linking variable

from Mi to Mj , formally LpMi,Mjq.

The function DirDeppMiq returns the set of sub-

systems of M which Mi directly depends on.

The subsystems dependency relation induces a tree

structure among subsystems, defined as follows.

Definition 11 (Subsystems Dependency Tree (SDT)).

The root is given by the subsystem M1 containing

the variables of tp. Each node Mi has as children all

subsystems in DirDeppMiq. Leaf nodes are those Mi

having DirDeppMiq “ H.
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signature A1:

V1 “ tSafInject , Overridden, Pressu

DSafInject , DOverridden , DPress as before in Code 1

program P1:

SafInject 1 := as before in Code 1

Overridden 1 := as before in Code 1

Press 1 := randompDPressq

initial state Θ1:

SafInject = OFF , Overridden = FALSE , Press = Low

Code 2. Transition system example – SIS – Subsystem M1

signature A2:

V2 “ tPress,WaterPress, Valveu

DPress , DWaterPress , DValve as before in Code 1

program P2:

Press 1 := as before in Code 1

WaterPress 1 = as before in Code 1

initial state Θ2:

Press = Low , WaterPress = 0,Valve = closed

Code 3. Transition system example – SIS – Subsystem M2

Example 4. Let us consider the transition system

introduced in Ex. 1 and a test predicate tp such

that varptpq “ tSafInjectu. The subsystems ob-

tained through decomposition are M1 “ xA1, P1,Θ1y

(shown in Code 2) and M2 “ xA2, P2,Θ2y (shown in

Code 3). The linking variable is LpM1,M2q “ Press .

Fig. 1 shows the decomposition on the variables de-

pendency graph, and Fig. 3 the corresponding SDTtp .

Note that the decomposition technique presented

here and based on Alg. 1 improves that presented

in [8], since it directly leads to the dependency tree

required by the test generation, while the previous one

built a dependency graph of subsystems, that had to

be adapted to a tree for each test predicate.

V1 “

$

’

’

&

’

’

%

Overridden,

SafInject,

Press

,

/

/

.

/

/

-

M1

V2 “

$

’

’

&

’

’

%

Press,

WaterPress,

Valve

,

/

/

.

/

/

-

M2

Press

Fig. 3. Transition system example – SIS – SDTtp

4 TEST GENERATION BY DECOMPOSITION

We here recall from [8] the test generation algorithm

that computes tests for the whole system by operating

on subsystems dependency trees (see Sect. 3).

4.1 Test Generation Algorithm

In order to build a test for covering a test predicate

tp (generated by a coverage criterion) for the whole

system, the test generation algorithm traverses the

dependency tree SDTtp in pre-order, builds a partial

test for each subsystem, and merges these partial tests

together to obtain the final test. Each subsystem Mj

builds a test such that the value of the linking variable

between Mj and its father subsystem is as requested.

The algorithm starts by visiting the root of the tree

using tp as test predicate, and it recursively calls itself

by visiting the tree nodes with suitable test predicates.

Fig. 4 shows the generation for a generic subsystem

K of the tree and a test predicate p:

‚ It calls the model checker to build a test ρ “

s0, . . . , sn to cover the test predicate p.

‚ If the test is feasible, for each direct dependency

Mj of K:

– It extracts from ρ the input sequence inputSeq

for the linking variable LpK,Mjq “ v (see

Def. 10):

inputSeqÐπvpρq“pi0, . . . , inq

where πvpρq yields the projection of ρ with

respect to variable v, i.e., ik “ πvpskq “ vvwsk .
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ρ ← getWitness(p)

foreach Mj 
in DirDep(K)

inputSeq←getInputSeq(ρ, K, Mj)

reqInputsTp←buildTP(inputSeq)

ρj ←generateTest(Mj, reqInputsTp)

ρ←merge(ρ,ρj)

return ρ

ρj is found?

false

true

return
infeasible

Fig. 4. Test generation approach – generateTest(K, p)

The input sequence represents the inputs pro-

vided by Mj to K.

– From inputSeq , it computes the test predicate

reqInputsTp for Mj , defined as LTL property:

reqInputsTp Ð in0^X pin1 ^X p. . .X pinnq . . .qq

being inj “ pv “ ijq and X the next temporal

connective.

– It recursively visits subsystem Mj , using

reqInputsTp as test predicate; as a result (if

any), it gets the test ρj “ sj0, . . . , s
j
n for Mj and

its dependencies1.

– If a test ρj is returned, it is merged with ρ

through function merge enlarging the states of

ρ (sh Ð sh Y sjh, h “ 0, . . . , n); otherwise,

it means that the test predicate is considered

infeasible.

We call this technique StrongTP. Another version

of the technique (using a different test predicate struc-

ture) is described in the next section.

As an example, Fig. 5 reports a snapshot of the

test generation for a system with five subsystems. The

algorithm has generated partial tests for M1, M2, and

1. Note that ρj is guaranteed to be as long as ρ by the test

predicate construction.

Fig. 5. Test generation example

M3, and has already merged the partial tests of M2

and M3; in the recursive visit, the next subsystem that

must be visited is M4.

Example 5. Let us consider the transition system in-

troduced in Ex. 1 and the test predicate FpSafInject “

OFF VALVE q. The corresponding decomposition

and SDTtp are described in Ex. 4. The test predicate

is covered in M1 by the test

ρ1 “

SafInject : OFF OFF VALVE

Overridden : FALSE TRUE

Press : Low Unknown

The input sequence is pLow , Unknownq. The corre-

sponding test predicate for M2 is:

Press “ Low ^X pPress “ Unknownq

The test predicate is feasible in M2 and covered by the

test

ρ2 “

Press : Low Unknown

Valve : closed open

WaterPress : 0 2

The test ρ “ ρ1Yρ2 for the global system is as follows

ρ“

SafInject : OFF OFF VALVE

Overridden : FALSE TRUE

Press : Low Unknown

Valve : closed open

WaterPress : 0 2
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Soundness and Completeness

In [8], we provide the proof that StrongTP is sound,

i.e., each test produced by the technique is a valid

execution (called allowed sequence in [8]) of the entire

system M . However, in [8], we also show that this

technique is not complete, i.e., there exists a test pred-

icate not covered by StrongTP that can be covered

without decomposition.

In the next section, we provide a different version

of the approach that uses a different version of the test

predicate reqInputsTp and a different way of merging

sequences; such modified approach should permit to

obtain more completeness.

4.2 WeakTP technique

Technique StrongTP requires that sequences built over

the single machines have the same length, i.e., that

subsystem K receives, from its children subsystems,

the inputs exactly when it requires them. However,

the children subsystems may not be able to provide

the inputs when requested, but with some delay. We

modify technique StrongTP with technique WeakTP,

in which children subsystems of K can produce tests

ρj longer than the test ρ produced over K, and test ρ

is extended to match the length of tests ρj .

In this technique, the test predicate built with func-

tion buildTP is defined as LTL formula as follows:

in0 SXU pin1 SXU . . . pinn´1 SXU innq . . .q

where SXU is defined as: A SXU B ” A ^

X pA U Bq, being U is the until temporal connective.

A SXU B means that A is continuously true for at

least one state until B becomes true.

The test ρj is at least as long as ρ. ρj can be split

in n ` 1 sub-sequences σj0, . . . , σ
j
n having the same

values for the linking variable LpK,Mjq “ v. Function

merge merges each state st of ρ with all the states of

σjt in ρj . Note that this can be done only if st is stutter

prone when |σjt | ą 1; a state s is stutter prone if it is a

next state of itself, i.e., if, by executing P from s, s can

be obtained again.

Example 6. Consider the test predicate FpSafInject “

ALERT q for the transition system introduced in Ex. 1.

The test predicate is covered in M1 by the test

ρ1 “
SafInject :

s10
hkkikkj

OFF

s11
hkkkkkikkkkkj

ALERT

Overridden : FALSE FALSE

Press : Low Normal

(1)

The input sequence is pLow , Normalq. The StrongTP

test predicate Press “ Low ^ X pPress “ Normalq

is infeasible in M2, since WaterPress cannot reach

300 in one step. Using the WeakTP technique, the

corresponding test predicate built for M2 is

Press “ Low SXU pPress “ Normalq

The test predicate is feasible in M2 and covered by the

test

ρ2 “
Press :

σ2
0

hkkkkkkkkkkikkkkkkkkkkj

Low Low . . .

σ2
1

hkkkkikkkkj

Normal

Valve : closed closed . . . closed

WaterPress : 0 5 . . . 300

Note that variable Press remains Low in the first 60

states and becomes Normal only in the 61th state.

Therefore, we require state s10 of sequence ρ1 (see

Formula 1) to be stutter prone; since this is the case,

the technique is applicable.

The test ρ “ ρ1 Y ρ2 for the complete system is

ρ “

SafInject :

σ2
0ˆs

1
0

hkkkkkkkkkkkkikkkkkkkkkkkkj

OFF OFF . . .

σ2
1ˆs

1
1

hkkkkkikkkkkj

ALERT

Overridden : FALSE FALSE . . . FALSE

Press : Low Low . . . Normal

Valve : closed closed . . . closed

WaterPress : 0 5 . . . 300
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Soundness and Completeness

In [8], we show that WeakTP is sound, but not com-

plete: it covers more test predicates than StrongTP (see

Sect. 5.2.2), but still some test predicates not covered

by WeakTP can be covered without decomposition.

Example 7. Consider the test predicate FpSafInject “

ON q for the transition system introduced in Ex. 1. The

test predicate is covered in M1 by the test

ρ1 “
SafInject :

s10
hkkikkj

OFF

s11
hkkikkj

ON

Overridden : FALSE FALSE

Press : Low High

The input sequence is pLow , Highq. Both the StrongTP

test predicate Press “ Low^ XpPress “ Highq

and the WeakTP test predicate Press “ Low

SXUpPress “ Highq are infeasible in M2, since Press

can not directly go from Low to High .

5 EXPERIMENTS

In order to evaluate our approach2, we selected the

NuSMV (verification) system [16] for several reasons.

First of all, NuSMV models directly reflect the struc-

ture and the behavior of transition systems (as defined

in Sect. 2.1) in terms of a “possible next state” relation

between states that are determined by the values

of variables. Moreover, NuSMV comes together with

a symbolic model checker (supporting BDD-based

model checking of CTL and LTL properties and SAT-

based bounded model checking of LTL properties)

that can be directly used for test case generation; as

a matter of fact, NuSMV is widely used in model-

based test case generation [23]. The choice of NuSMV,

however, does not limit the validity of our evaluation,

as discussed in Sect. 6.

2. Benchmarks and experimental results are available at http:

//nuseen.sourceforge.net/decompositionBasedTestGenTSE.

html.

5.1 Benchmarks

We have gathered 87 NuSMV models from different

sources:

‚ 62 are taken from the NuSMV distribution3; note

that we do not support 10 out of the 72 models

of the NuSMV distribution, as they contain a

particular kind of DEFINE alias that does not

permit to identify its values statically and so to

build the subsystems in the decomposition;

‚ 20 have been retrieved from different sources on

the web (mainly models used in model checking

classes);

‚ 5 have been obtained using the AsmetaSMV

tool [24] that translates Abstract State Machine

(ASMs) models to NuSMV models; we selected

ASM models of real-life case studies as a landing

gear system [25], a hemodialysis device [26], and

a device for measuring amblyopia [27].

When necessary, models have been flattened in

order to eliminate modules and parameters. We have

used NuSeen4 [28], a tool framework for NuSMV,

for performing different operations: model parsing,

dependencies analysis, building of the dependency

graph, and the computation of the SDT.

To give an idea of the size and the complexity of

the benchmark models, Fig. 6 shows, for each model

(a point in the scattered plot), its number of variables

and number of states. We observe that, for most of the

models, the number of states grows with the number

of variables. However, since the state space depends

also on the domain size of the variables, the models

with the highest number of states are not those with

the highest number of variables, and also the other

way round.

3. http://nusmv.fbk.eu/

4. http://nuseen.sourceforge.net/
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Fig. 6. Benchmarks size

TABLE 1

Number of test predicates

Generated Selected for test generation

Criterion Total Max Min AVG

DC 6803 6803 348 0 78.20

VC 285072 8849 593 4 101.71

AllTP 291875 15652 831 6 179.91

For all the models, we generated test predicates for

achieving decision coverage (DC) and value coverage

(VC). The union of all the test predicates is denoted as

AllTP. Other coverage criteria, like condition coverage

and MCDC, are not supported yet by our implemen-

tation and, therefore, they have not been taken into

consideration in our analysis; we consider them for

future work. Table 1 reports the number of generated

test predicates for all the models. As expected, value

coverage produces the majority of test predicates,

since it builds a test predicate for each value of each

variable. In order to keep the number of test predicates

tractable for test generation, in value coverage we

selected (among those generated) maximum 10 test

predicates for each variable (i.e., for variables having

more than 10 values, we randomly selected 10 of these

values). Table 1 also reports the number of selected test

predicates; moreover, for the selected ones, it reports

the maximum, minimum, and average number of test

predicates over all the models.

5.2 Experimental results

In this section, we evaluate the effectiveness of the

proposed test generation approach by assessing how

much it is able to mitigate the state explosion problem.

We will consider three main measures: the decomposi-

tion of the system in Sect. 5.2.1, how much this affects

the coverage of test predicates in Sect. 5.2.2, and the

generation time in Sect. 5.2.3.

5.2.1 System decomposition

Our approach tries to tackle the state explosion prob-

lem by decomposing the system, so that the state space

that must be handled by the model checker is smaller.

We here compute how much our technique is able to

reduce the size of the system under test (in terms of

number of states). As size of a decomposed system,

we consider the maximum size among its subsystems.

Given a decomposed system, we compute the ob-

tained reduction as percentage change sd´sg
sg

between

the size sg of the global system and the size sd of the

decomposed system. Fig. 7 shows, for each model, the

average size reduction over all the decompositions for

all of its test predicates. We observe that, on average,

the decomposed system is 46.5% smaller than the orig-

inal system; we have obtained a maximum reduction

of nearly 100% when one subsystem per variable is

obtained, and no reduction when the system is not

decomposable at all.
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5.2.2 Test predicates coverage

We are here interested in measuring if and how much

the two techniques based on model decomposition

are able to improve the coverage w.r.t. the classical

technique without decomposition.

For each test predicate, we generated a test with-

out any decomposition (NoDecomp) and by using

the StrongTP and WeakTP techniques. We have ap-

plied SAT-based bounded model checking for the

reqInputsTp test predicate generated by the StrongTP

technique (as we are able to exactly specify the number

of steps necessary for violating the property) and

BDD-based model checking in all the other cases. For

NoDecomp, we have applied the COI abstraction [3]

that removes the variables that do not affect the test

predicate under test. We fixed a timeout of half an

hour for the generation for each test predicate.

Table 2 reports, for the NoDecomp, StrongTP, and

WeakTP techniques, the numbers of feasible and in-

feasible test predicates, and of those for which we

were not able to assess anything due to the timeout.

The table reports the results for the two coverage

criteria and all the test predicates. For StrongTP and

WeakTP, the table also reports the percentage change
A´N
N , being A the result of the decomposition-based

technique and N the result of NoDecomp. We can ob-

serve for StrongTP and WeakTP a « 4.5% increase of

the number of feasible test predicates and a « 17.5%

reduction of the number of timeouts; as expected, due

to decomposition, the two techniques also increase (by

« 6.7%) the number of infeasible test predicates (see

Sect. 4 regarding the completeness of the approach).

To better evaluate the change (due to the

decomposition-based techniques) of the percentages

of the feasible, infeasible and timed out test pred-

icates, in Table 3 we report those percentages and,

for StrongTP and WeakTP, the percentage point (pp)

change w.r.t. NoDecomp, computed as the difference

between the two percentages A-N , being A the re-

sult of the decomposition-based technique and N the

result of NoDecomp. StrongTP and WeakTP increase

the percentage of covered test predicates by « 3.1pp

and they reduce the percentage of those that are not

covered because of the timeout by « 3.75pp. Note that

they also slightly increase (« 0.65pp) the percentage of

infeasible test predicates; indeed, in addition to those

that are found infeasible also in NoDecomp (that are

actually impossible to cover), the proposed techniques

may fail in generating some tests for some feasible

test predicates because of the applied decomposition.

It seems that WeakTP performs slightly better than

StrongTP: the percentage of feasible test predicates

is increased, while the percentages of infeasible and

timed out ones are decreased.

We now analyze how the different models con-

tribute to the results. Fig. 8 reports, for each model,

the percentage point change in terms of feasible,

infeasible, and timed out test predicates of the

two decomposition-based techniques w.r.t. NoDe-

comp (Figs. 8a-8c report the results of StrongTP, and

Figs. 8d-8f those of WeakTP). The models are sorted

in increasing order by the number of states; for the

timeout result (Figs. 8c and 8f), we do not report mod-
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TABLE 2

Number of Feasible (F), Infeasible (I), and Timeout (TO) test predicates with percentage change w.r.t. NoDecomp (∆)

NoDecomp StrongTP WeakTP

F I TO F I TO F I TO

# # # # ∆ # ∆ # ∆ # ∆ # ∆ # ∆

DC 6069 535 199 6176 +1.76% 563 +5.23% 64 -67.84% 6175 +1.75% 564 +5.42% 64 -67.84%

VC 4705 988 3156 5050 +7.33% 1064 +7.69% 2735 -13.34% 5117 +8.76% 1059 +7.19% 2673 -15.30%

AllTP 10774 1523 3355 11226 +4.20% 1627 +6.83% 2799 -16.57% 11292 +4.81% 1623 +6.57% 2737 -18.42%

TABLE 3

Percentage of Feasible (F), Infeasible (I), and Timeout (TO) test predicates with percentage point change w.r.t. NoDecomp (∆pppq)

NoDecomp StrongTP WeakTP

F I TO F I TO F I TO

% % % % ∆pppq % ∆pppq % ∆pppq % ∆pppq % ∆pppq % ∆pppq

DC 89.21% 7.86% 2.93% 90.78% +1.57 8.28% +0.41 0.94% -1.98 90.77% +1.56 8.29% +0.43 0.94% -1.98

VC 53.17% 11.17% 35.67% 57.07% +3.90 12.02% +0.86 30.91% -4.76 57.83% +4.66 11.97% +0.80 30.21% -5.46

AllTP 68.83% 9.73% 21.43% 71.72% +2.89 10.39% +0.66 17.88% -3.55 72.14% +3.31 10.37% +0.64 17.49% -3.95

els without timed out test predicates both in NoDe-

comp and in the decomposition-based technique. We

observe a major increment of feasible test predicates

(on average, greater than 10pp) and reduction of timed

out ones (on average, lower than -8pp) for biggest

models (having between 5ˆ1016 and 8ˆ1087 states

and representing the 30% of the models) for which the

state explosion problem is a serious issue. However, it

seems that the correlation is negative; indeed, as the

size of the model increases, the improvement reduces.

Some models are so big that also the decomposed

subsystems are not small enough to be handled by

the model checker in the given timeout.

For some models (of different size), the number

of feasible test predicates decreases (see Figs. 8a and

8d) and the number of infeasible ones increases (see

Figs. 8b and 8e).

The results for the three measures have very sim-

ilar distributions between StrongTP and WeakTP, ex-

cept for the infeasible ones (see Figs. 8b and 8e), for

which we observe a reduction in some models of

average size by WeakTP.

Finally, we are interested in showing how all the

test predicates are differently classified (as feasible, in-

feasible, timeout) between two generation techniques.

The results are shown in Fig. 9 by means of Sankey

diagrams between NoDecomp and StrongTP, NoDe-

comp and WeakTP, and StrongTP and WeakTP. In the

diagrams, the left side shows how the test predicates

are partitioned by the first technique, and the right

side shows the partition by the second technique. A

line from left to right describes the percentage of all

the test predicates that are classified as specified by the

starting label in the first technique and as specified by

the ending label in the second technique: the width of

the line is proportional to the represented value. 3.24%

of all the test predicates are not covered by NoDe-

comp because of the timeout but covered by StrongTP;
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Fig. 8. Techniques comparison per model (ordered by number of states) – ∆ = percentage point change w.r.t. NoDecomp

(a) NoDecomp vs StrongTP (b) NoDecomp vs WeakTP (c) StrongTP vs WeakTP

Fig. 9. Comparison between techniques: baseline vs compared (F: Feasible, T: Timeout, I: Infeasible)

WeakTP improves even more (3.64%). We also observe

that the percentage of test predicates that are feasible

with NoDecomp and become infeasible because of the

decomposition is low: 0.33% for StrongTP and 0.3%

for WeakTP. Some test predicates that timed out with

NoDecomp are found infeasible (0.33% for StrongTP

and 0.34% for WeakTP) by the proposed techniques:

these may be either due to the fact that they are actu-

ally infeasible or because of the decomposition. There

are very rare cases in which feasible test predicates in

NoDecomp are timed out with StrongTP (0.02%) and

WeakTP (0.03%). We investigated these cases and we
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TABLE 4

Test generation time (∆ = percentage change w.r.t. NoDecomp)

NoDecomp StrongTP WeakTP

h h ∆ h ∆

DC 115.92 62.92 -45.72% 62.92 -45.72%

VC 1852.75 1631.38 -11.95% 1627.10 -12.18%

AllTP 1968.67 1694.31 -13.94% 1690.02 -14.15%

found that these anomalies are due to respectively 3

and 5 test predicates, that they belong to big models

with a low size reduction of the decomposed systems,

and that the generation time in NoDecomp is very

close to the timeout. We therefore cannot exclude that

these cases can happen.

WeakTP covers more than StrongTP mainly thanks

to test predicates that timed out in StrongTP and be-

come feasible in WeakTP (0.43% of all); the percentage

of infeasible ones that become feasible is negligible

(0.08% of all).

5.2.3 Generation time

The main consequence of the state explosion problem

is that the model checking time grows exponentially

with the model size. Indeed, symbolic model checking

is very time expensive in order to be efficient in

representing the state space in a compact way.

We are here interested in evaluating the test gener-

ation time of StrongTP and WeakTP, also in compari-

son with NoDecomp.

Table 4 reports the time taken (in hours) by the

three techniques and, for StrongTP and WeakTP, the

percentage change w.r.t. NoDecomp. Results are re-

ported for the two coverage criteria and for all the test

predicates (these are also reported in Fig. 10a).

The two proposed techniques improve NoDecomp:

StrongTP reduces the time of 13.94% and WeakTP of

14.15%. However, the time reduction depends on the

model size; Figs. 11a and 11b show the percentage

0 500 1,000 1,500 2,000

NoDecomp

StrongTP

WeakTP

hours

(a) All test predicates

0 50 100 150 200 250 300

NoDecomp

StrongTP

WeakTP

hours

(b) No timeout

Fig. 10. Test generation time – Overall results

change of generation time for each model (sorted in

increasing order by the number of states): we can see

that StrongTP and WeakTP always reduce the gener-

ation time for big models, but increase it for small

models: this is due to the fact that, when the model

is small, the overhead introduced by the techniques is

higher than the advantage due to the decomposition.

Fig. 10b reports the generation time considering

only test predicates not timed out in NoDecomp. It

shows that the time saving does not limit to those very

complex test predicates that timed out with NoDe-

comp; indeed, also in this case, StrongTP and WeakTP

improve NoDecomp (31.65% by StrongTP and 26.31%

by WeakTP).

5.3 Statistical analyses

In this section, we perform some statistical hypothesis

testing in order to assess the significance of the results

reported in Sect. 5.2. Since we compare measures ob-

tained by two treatments (two generation techniques)

applied to the same population (all the test predicates),

we are performing a paired comparison (also called

crossover) design [29]. All the statistical hypotheses

with corresponding probability value (p-value) and
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Fig. 11. Test generation time per model (sorted by number of

states)

result (acceptance, rejection, or not rejection) are re-

ported in Table 5.2.

5.3.1 Test predicates coverage

We first check whether StrongTP and WeakTP sig-

nificantly modify the number of feasible, infeasible,

and timed out test predicates. In order to do this, we

apply the non-parametric McNemar’s test that assesses

whether a statistically significant change in propor-

tions have occurred on a dichotomous trait (e.g., “be-

ing classified as feasible”) between two treatments on

the same population [30].

By the results of hypotheses HF1, HF2, HTO1,

HTO2, HI1, and HI2, and the results shown in Table 2,

we can state that the increase of the number of feasible,

the decrease of the number of timed out, and the

increase of the number of infeasible test predicates

due to the use of both StrongTP and WeakTP w.r.t.

NoDecomp are statistically significant.

Moreover, by hypotheses HF3 and HTO3, and the

results in Table 2, we can state that the increase of

feasible and the decrease of timed out test predicates

by using WeakTP instead of StrongTP are statistically

significant. On the other hand, although in Table 2 we

observe that the number of infeasible test predicates

slightly decreases in WeakTP, by hypothesis HI3 we

cannot assess that WeakTP is significantly more com-

plete than StrongTP.

5.3.2 Generation time

Now, we check whether StrongTP and WeakTP are

able to reduce the generation time w.r.t. NoDecomp

in a statistically significant way. Since we compare

a continuous measure (the time) obtained by two

treatments applied to the same population, we can use

the parametric hypothesis testing paired t-test [29].

By the results of hypotheses HT1, HT2, HT3, and

HT4, we can state that both StrongTP and WeakTP are

significantly faster than NoDecomp. By the results of

hypotheses HT5, HT6, HT7, and HT8, we can state

that the same holds also by considering only the test

predicates that are feasible with NoDecomp (as done

in Fig. 10b). We also compare StrongTP with WeakTP

to assess whether one is better than the other in terms

of generation time. We cannot reject hypothesis HT9

that the two techniques require the same time. This

means that we can elect WeakTP as the best of the

two, since it provides a better coverage.

6 THREATS TO VALIDITY

We have identified the following threats to the validity

of the empirical evaluation of the proposed approach.

Regarding external validity, it could be that the

obtained results can not be generalized to all transition

systems. For our experiments, we have used NuSMV,
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TABLE 5

Statistical testing results

Hypothesis – Name, type (null or alternative), description result p-value

Number of feasible, infeasible, timed out test predicates (tps) by McNemar’s test

HF1 Null: StrongTP has on average the same number of feasible tps as NoDecomp rejected ă 2.2ˆ10´16

HF2 Null: WeakTP has on average the same number of feasible tps as NoDecomp rejected ă 2.2ˆ10´16

HF3 Null: WeakTP has on average the same number of feasible tps as StrongTP rejected 2.025ˆ10´11

HTO1 Null: StrongTP has on average the same number of timed out tps as NoDecomp rejected ă 2.2ˆ10´16

HTO2 Null: WeakTP has on average the same number of timed out tps as NoDecomp rejected ă 2.2ˆ10´16

HTO3 Null: WeakTP has on average the same number of timed out tps as StrongTP rejected ă 2.2ˆ10´16

HI1 Null: StrongTP has on average the same number of infeasible tps as NoDecomp rejected ă 2.2ˆ10´16

HI2 Null: WeakTP has on average the same number of infeasible tps as NoDecomp rejected ă 2.2ˆ10´16

HI3 Null: WeakTP has on average the same number of infeasible tps as StrongTP not rejected 0.5224

Generation time by paired t-test

HT1 Null: StrongTP has on average the same generation time as NoDecomp rejected ă 2.2ˆ10´16

HT2 Alternative: StrongTP is faster than NoDecomp accepted 1

HT3 Null: WeakTP has on average the same generation time as NoDecomp rejected ă 2.2ˆ10´16

HT4 Alternative: WeakTP is faster than NoDecomp accepted 1

HT5 Null: StrongTP has on average the same generation time as NoDecomp (considering only

the test predicates that are feasible with NoDecomp)

rejected ă 2.2ˆ10´16

HT6 Alternative: StrongTP is faster than NoDecomp (considering only the test predicates that are

feasible with NoDecomp)

accepted 1

HT7 Null: WeakTP has on average the same generation time as NoDecomp (considering only the

test predicates that are feasible with NoDecomp)

rejected ă 2.2ˆ10´16

HT8 Alternative: WeakTP is faster than NoDecomp (considering only the test predicates that are

feasible with NoDecomp)

accepted 1

HT9 Null: WeakTP has on average the same generation time as StrongTP not rejected 0.1009

but this does not threaten the validity of our re-

sults. The mapping from transition systems to NuSMV

models is quite straightforward. Different transition

system specification languages have been translated

to NuSMV, as Statecharts [31], UML behavioural dia-

grams [13], SCR [2], RSML´e [32], SPIN/Promela [33],

and ASMs [24]; five models of our benchmarks have

been obtained by translating ASM models in NuSMV

models. Therefore, the NuSMV language can be con-

sidered as a good representative of different transition

system formalisms.

Regarding internal validity [29], we have adopted

several precautions with the intent of assuring that

the outcomes depend only on the proposed tech-

niques. First, our implementation may not be correct

and produce (in a faster way) sequences that are

not actual tests of the system. Therefore, we have

automatically checked that each generated test is an

actual system execution5. Moreover, we have per-

formed the experiments on the same computer and

using the same model checker settings6. We have also

5. We encode each test t as an LTL formula φt and we use the

model checker itself for checking whether φt describes a system

execution.

6. Except for -bmc that enables bounded model checking

which is part of the StrongTP technique.
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discarded 10 models for which we could not apply

our decomposition-based techniques (see Sect. 5.1), so

to have exactly the same benchmarks for all the three

techniques (i.e., we have a paired comparison design)

and be able to apply paired statistical analyses (see

Sect. 5.3).

Another threat to internal validity that could im-

pact the results is the chosen timeout of 30 minutes.

We have conducted a statistical analysis by varying

the timeout from the minimum value (about 24 sec-

onds) that guarantees to cover at least 50% of the

test predicates, to maximum 30 minutes. For all the

three techniques, we found that the number of test

predicates not in timeout grows with the increment of

the timeout value. However, the improvements due to

StrongTP and WeakTP do not depend on the timeout

(the variance of the improvement is around 5ˆ10´3).

Therefore, in our experiments, we report the results

with the maximum timeout because this maximizes

the number of covered test predicates.

Another threat to the internal validity is due to

the threshold on the number of value coverage test

predicates, as we may select only the test predicates

that are particularly easy/difficult to cover. How-

ever, the threshold is applied only to 49 variables

out of 11042 total variables; moreover, 94.89% of

the non-selected VC test predicates are due to a

single model (nusmvDistributionModels/abp/-

abp16_flat.smv) for which 262100 out of its 262175

value coverage test predicates are discarded. There-

fore, we believe that the choice of the threshold does

not introduce a bias in the results.

In our experiments, we have always used BDD-

based model checking, except for StrongTP for which

we applied SAT-based bounded model checking be-

cause, in that case, we knew the length of the re-

quired counterexamples. By always using SAT-based

bounded model checking we could obtain better re-

sults in some cases; however, we have already ob-

served that there is no better model checking algo-

rithm for test generation [1]. Moreover, we have used

NuSMV as it is integrated in the NuSeen framework

that we also use for model decomposition. The new

nuXmv implementation may give better results in

terms of number of timed out test predicates; how-

ever, we believe that it would not affect the drawn

conclusions, as it would improve the generation time

both for the baseline technique and the proposed

decomposition-based techniques.

Regarding construct validity [29], in this paper we

do not consider the implementation under test and

we cannot evaluate the effectiveness of the generated

tests over the implementation (for example, in terms

of fault detection or code coverage over the implemen-

tation); we refer to [19], [34], [35] for reports on the ef-

fectiveness of model-based testing. The test predicates

we do not cover because of decomposition could be

particularly important for test effectiveness; however,

as we cannot evaluate it, we assume that test predi-

cates are equally important and that model coverage

is a proxy for test effectiveness. Moreover, we want

to point out that the percentage of test predicates that

are feasible with NoDecomp and that we do not cover

because of the decomposition (0.33% with StrongTP in

Fig. 9a, and 0.3% with WeakTP in Fig. 9b) or timeout

(0.02% with StrongTP in Fig. 9a, and 0.03 with WeakTP

in Fig. 9b) is much lower than the percentage of test

predicates that are in timeout with NoDecomp and

that we are able to cover (3.24% with StrongTP in

Fig. 9a, and 3.64% with WeakTP in Fig. 9b): therefore,

StrongTP and WeakTP are performing better than the

baseline NoDecomp. This is confirmed by the statisti-

cal tests in Sect. 5.3 that assess a statistically significant

increment of feasible test predicates using StrongTP

and WeakTP.
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7 RELATED WORK

Different approaches have been proposed in the past

for handling the state explosion problem in property

verification. In the following, we review some of

them, compare them with our approach, and discuss

whether they could be used also for testing.

The cone of influence (COI) technique [3] reduces

the size of the model by removing the variables that

do not influence the property one wants to check. COI

is widely applied: for example, in [36] COI is used

for verification of fFSM models, a variant of Harel’s

Statecharts. COI can be useful for test generation when

the variables in the test goal have few dependencies;

instead, if the test goal involves most of the model

variables, COI is not so effective. Actually, our decom-

position technique subsumes COI, since the variable

decomposition described in Alg. 1 does not consider

variables that are not necessary for covering a test

predicate.

The data abstraction technique [3] creates a mapping

between concrete data values and some abstract data

values; such mapping is usually able to reduce the

state space, but it may not preserve properties. The

CEGAR technique [5] is an approach of this kind, that

iteratively refines an abstract model. The technique

guarantees that, whenever a property is true in the

abstract model, it is also true in the initial model;

however, if the property is false in the abstract model,

the counterexample may represent some behavior in

the abstract model not present in the original model

(the counterexample is called spurious in this case).

The spurious counterexample itself is used to refine

the abstraction in order to remove the wrong behavior.

CEGAR is not suitable for testing because the returned

counterexample (that should be used as test) usually

does not contain all the variables (due to abstraction),

and it may be spurious.

A different abstraction technique has been pro-

posed in [37]. The approach partitions the program

into a sequence of subprograms; the ending state of a

component contains the information to be passed to

the next subprogram. The approach performs model

checking by visiting the subprograms backwards and

trying to prove the property in each subprogram in

separation. The decomposition technique differs from

ours as we decompose the system in parallel subsys-

tems, while they decompose it sequentially.

Regarding abstraction techniques for test gener-

ation, in [38], the approach SMART is presented.

SMART performs test generation by decomposing se-

quential programs: given a program, all the functions

called in the program are singularly tested, and com-

plete tests are built at the end. The main difference

with our approach is that tests for sub-functions are

expressed as summaries using input preconditions and

output postconditions (and not as sequences), and re-

used when testing higher-level functions. The main

advantage is that SMART is both sound and complete

compared to the monolithic test generation, while our

approaches are only sound. A disadvantage is that

SMART must maintain the summaries and it can solve

them only at the end. Sometimes constraints on some

inputs can not be expressed (for instance a hash

function) and sometimes all the collected constraints

are very hard to solve, leaving some issues still open.

In the past, we already proposed techniques for

managing the state explosion problem in model-based

test generation by model checking. In [39], we pre-

sented a test generation approach for Decomposable

by Dependency Asynchronous Parallel (DDAP) sys-

tems, which are systems composed of several inter-

leaving subsystems, connected together in a way that

the inputs of one subsystem are provided by another

subsystem. That approach differs from the current

approach on the class of subsystems and on the way
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to build the test: in [39], the test for the whole system

is built by concatenating the tests of the interleaving

subsystems, while here the final test is the merge of the

tests of the parallel subsystems. We proposed a similar

approach in [40], [41] for sequential nets of Abstract

State Machines (ASMs), which are systems composed

of a set of ASMs where only one ASM is active at

a time. The approach builds a test suite for every

ASM of the net, and then combines these test suites

in order to obtain a test suite for the entire system.

Also in this case, the main difference w.r.t. the work

presented here is that the ASMs in [40], [41] run in

sequence, while here the subsystems run in parallel.

Moreover, in those works the system was expected to

be already decomposed, while here we also provide a

decomposition technique.

8 CONCLUSIONS

We have proposed a test generation approach, based

on model checking, that tries to mitigate the state

explosion problem. The approach first decomposes the

system under test into a tree of subsystems according

to the system variables dependency; the decompo-

sition guarantees that each child in the tree shares

a variable with its father: such variable is the input

received by the father subsystem from the child sub-

system. The test generation consists in visiting the

tree in pre-order, generating a test for each subsystem,

and merging these tests together in order to obtain

a test for the whole system. The approach is sound,

although not complete. We proposed two versions of

the approach (differing in the test goals that must

be covered in the subsystems) that provide different

degrees of completeness. Experiments show that the

proposed approach is able to increase the coverage

of testing goals by around 3 percentage points w.r.t.

the classical technique without decomposition in a

given timeout of half an hour. Moreover, the approach

speeds up the generation time of 14.15%.

Our approach allows the parallelization of the

test generation over the single subsystems. As future

work, we plan to exploit this opportunity, although

this would require an extension of the current tech-

nique in the extraction of the input sequences and in

the merging of the subsystems tests. Moreover, we

plan to evaluate the approach over other coverage

criteria as MCDC and condition coverage.
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