5 research outputs found

    Improving Learning Performance by Applying Economic Knowledge

    Get PDF
    Digital information economies require information goods producers to learn how to position themselves within a potentially vast product space. Further, the topography of this space is often nonstationary, due to the interactive dynamics of multiple producers changing their position as they try to learn the distribution of consumer preferences and other features of the problem's economic structure. This presents a producer or its agent with a difficult learning problem: how to locate profitable niches in a very large space. In this paper, we present a model of an information goods duopoly and show that, under complete information, producers would prefer not to compete, instead acting as local monopolists and targeting separate niches in the consumer population. However, when producers have no information about the problem they are solving, it can be quite difficult for them to converge on this solution. We show how a modest amount of economic knowledge about the problem can make it much easier, either by reducing the search space, starting in a useful area of the space, or introducing a gradient. These experiments support the hypothesis that a producer using some knowledge of a problem's (economic) structure can outperform a producer that is performing a naive, knowledge-free form of learning.

    Improving Learning Performance by Applying Economic Knowledge

    Full text link
    Digital information economies require information goods producers to learn how to position themselves within a potentially vast product space. Further, the topography of this space is often nonstationary, due to the interactive dynamics of multiple producers changing their positions as they try to learn the distribution of consumer preferences and other features of the problem's economic structure. This presents a producer or its agent with a difficult learning problem: how to locate profitable niches in a very large space. In this paper, we present a model of an information goods duopoly and show that, under complete information, producers would prefer not to compete, instead acting as local monopolists and targeting separate niches in the consumer population. However, when producers have no information about the problem they are solving, it can be quite difficult for them to converge on this solution. We show how a modest amount of economic knowledge about the problem can make it much easier, either by reducing the search space, starting in a useful area of the space, or by introducing a gradient. These experiments support the hypothesis that a producer using some knowledge of a problem's (economic) structure can outperform a producer that is performing a naive, knowledge-free form of learning.http://deepblue.lib.umich.edu/bitstream/2027.42/50435/1/improving-amec03-lncs04.pd

    Automated Bidding in Computing Service Markets. Strategies, Architectures, Protocols

    Get PDF
    This dissertation contributes to the research on Computational Mechanism Design by providing novel theoretical and software models - a novel bidding strategy called Q-Strategy, which automates bidding processes in imperfect information markets, a software framework for realizing agents and bidding strategies called BidGenerator and a communication protocol called MX/CS, for expressing and exchanging economic and technical information in a market-based scheduling system

    Improving learning performance by applying economic knowledge

    No full text
    � � � � � � � � � � � � ��Æ
    corecore