10 research outputs found

    Improving Fairness and Utilisation in Ad Hoc Networks

    Get PDF
    Ad hoc networks represent the current de-facto alternative for infrastructure-less environments, due to their self-configuring and resilience characteristics. Ad hoc networks flexibility benefits, such as unrestrained computing, lack of centralisation, and ease of deployment at low costs, are tightly bound with relevant deficiencies such as limited resources and management difficulty. Ad hoc networks witnessed high attention from the research community due to the numerous challenges faced when deploying such a technology in real scenarios. Starting with the nature of the wireless environment, which raises significant transmission issues when compared with the wired counterpart, ad hoc networks require a different approach when addressing the data link problems. Further, the high packet loss due to wireless contention, independent of network congestion, requires a different approach when considering quality of service degradation and unfair channel resources distribution among competing flows. Although these issues have already been considered to some extent by researchers, there is still room to improve quality of service by reducing the effect of packet loss and fairly distributing the medium access among competing nodes. The aim of this thesis is to propose a set of mechanisms to alleviate the effect of packet loss and to improve fairness in ad hoc networks. A transport layer algorithm has been proposed to overcome the effects of hidden node collisions and to reduce the impact of wireless link contention by estimating the four hop delay and pacing packet transmissions accordingly. Furthermore, certain topologies have been identified, in which the standard IEEE 802.11 faces degradation in channel utilisation and unfair bandwidth allocation. Three link layer mechanisms have been proposed to tackle the challenges the IEEE 802.11 faces in the identified scenarios to impose fairness in ad hoc networks through fairly distributing channel resources between competing nodes. These mechanisms are based on monitoring the collision rate and penalising the greedy nodes where no competing nodes can be detected but interference exists, monitoring traffic at source nodes to police access to the channel where only source nodes are within transmission range of each other, and using MAC layer acknowledgements to flag unfair bandwidth allocation in topologies where only the receivers are within transmission range of each other. The proposed mechanisms have been integrated into a framework designed to adapt and to dynamically select which mechanism to adopt, depending on the network topology. It is important to note that the proposed mechanisms and framework are not alternatives to the standard MAC protocol but are an enhancement and are triggered by the failure of the IEEE 802.11 protocol to distribute the channel resources fairly. All the proposed mechanisms have been validated through simulations and the results obtained from the experiments show that the proposed schemes fairly distribute channel resources fairly and outperform the performance of the IEEE 802.11 protocol in terms of channel utilisation as well as fairness

    Modelling and Analysis of TCP Performance in Wireless Multihop Networks

    Get PDF
    Researchers have used extensive simulation and experimental studies to understand TCP performance in wireless multihop networks. In contrast, the objective of this paper is to theoretically analyze TCP performance in this environment. By examining the case of running one TCP session over a string topology, a system model for analyzing TCP performance in multihop wireless networks is proposed, which considers packet buffering, contention of nodes for access to the wireless channel, and spatial reuse of the wireless channel. Markov chain modelling is applied to analyze this system model. Analytical results show that when the number of hops that the TCP session crosses is fixed, the TCP throughput is independent of the TCP congestion window size. When the number of hops increases from one, the TCP throughput decreases first, and then stabilizes when the number of hops becomes large. The analysis is validated by comparing the numerical and simulation result

    A study of TCP performance in wired-cum-ad hoc environments

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Gateway Adaptive Pacing for TCP across Multihop Wireless Networks and the Internet

    Get PDF
    In this paper, we introduce an effective congestion control scheme for TCP over hybrid wireless/wired networks comprising a multihop wireless IEEE 802.11 network and the wired Internet. We propose an adaptive pacing scheme at the Internet gateway for wired-to-wireless TCP flows. Furthermore, we analyze the causes for the unfairness of oncoming TCP flows and propose a scheme to throttle aggressive wired-to-wireless TCP flows at the Internet gateway to achieve nearly optimal fairness. Thus, we denote the introduced congestion control scheme TCP with Gateway Adaptive Pacing (TCP-GAP). For wireless-to-wired flows, we propose an adaptive pacing scheme at the TCP sender. In contrast to previous work, TCP-GAP does not impose any control traffic overhead for achieving fairness among active TCP flows. Moreover, TCP-GAP can be incrementally deployed because it does not require any modifications of TCP in the wired part of the network and is fully TCP-compatible. Extensive simulations using ns-2 show that TCPGAP is highly responsive to varying traffic conditions, provides nearly optimal fairness in all scenarios and achieves up to 42% more goodput than TCP NewReno

    Practical Rate-based Congestion Control for Wireless Mesh Networks

    Get PDF
    We introduce an adaptive pacing scheme to overcome the drawbacks of TCP in wireless mesh networks with Internet connectivity. The pacing scheme is implemented at the wireless TCP sender as well as at the mesh gateway, and reacts according to the direction of TCP flows running across the wireless network and the Internet. TCP packets are transmitted rate-based within the TCP congestion window according to the current out-of-interference delay and the coefficient of variation of recently measured round-trip times. Opposed to the majority of previous work which builds on simulations, we implement a Linux prototype of our approach and evaluate its feasibility in a real 20-node mesh testbed. In an experimental performance study, we compare the goodput and fairness of our approach against the widely deployed TCP NewReno. Experiments show that our approach, which we denote as Mesh Adaptive Pacing (MAP), can achieve up to 150% more goodput than TCP NewReno and significantly improves fairness between competing flows. MAP is incrementally deployable since it is TCP-compatible, does not require cross-layer information from intermediate nodes along the path, and requires no modifications in the wired domain

    Elastic Rate Limiting for Spatially Biased Wireless Mesh Networks

    Get PDF
    International audienceIEEE 802.11-based mesh networks can yield a throughput distribution among nodes that is spatially biased, with traffic originating from nodes that directly communicate with the gateway obtaining higher throughput than all other upstream traffic. In particular, if single-hop nodes fully utilize the gateway's resources, all other nodes communicating with the same gateway will attain very little (if any) throughput. In this paper, we show that it is sufficient to rate limit the single-hop nodes in order to give transmission opportunities to all other nodes. Based on this observation, we develop a new rate limiting scheme for 802.11 mesh networks, which counters the spatial bias effect and does not require, in principle, any control overhead. Our rate control mechanism is based on three key techniques. First, we exploit the system's inherent priority nature and control the throughput of the spatially disadvantaged nodes by only controlling the transmission rate of the spatially advantaged nodes. Namely, the single-hop nodes collectively behave as a proxy controller for multi-hop nodes in order to achieve the desired bandwidth distribution. Second, we devise a rate limiting scheme that enforces a utilization threshold for advantaged single-hop traffic and guarantees a small portion of the gateway resources for the disadvantaged multi-hop traffic. We infer demand for multi-hop flow bandwidth whenever gateway resource usage exceeds this threshold, and subsequently reduce the rates of the spatially advantaged single-hop nodes. Third, since the more bandwidth the spatially disadvantaged nodes attain, the easier they can signal their demands, we allow the bandwidth unavailable for the advantaged nodes to be elastic, i.e., the more the disadvantaged flows use the gateway resources, the higher the utilization threshold is. We develop an analytical model to study a system characterized by such priority, dynamic utilization thresholds, and control by proxy. Moreover, we use simulations to evaluate the proposed elastic rate limiting technique

    TCP Performance in Mobile Ad hoc Networks

    Get PDF
    In this paper, we present a survey of TCP (Transmission Control Protocol) protocol for better performance in the MANET (Mobile Ad Hoc Network). After a short presentation of the main features of TCP, we give the most important problems from which TCP suffer in MANET. We present after that some approaches proposed in the literature in order to improve its performance. Our paper contains also a performance evaluation of TCP NewReno and TCP Vegas transport protocols under AODV and DSR routing protocols. The simulations are conducted under varying conditions of number of TCP connections, number of nodes and mobility.Hamrioui, S.; Lloret, J.; Lorenz, P.; Lalam, M. (2013). TCP Performance in Mobile Ad hoc Networks. Network Protocols and Algorithms. 5(4):117-142. doi:10.5296/npa.v5i4.4773S1171425

    Improving fairness among TCP flows crossing wireless ad hoc and wired networks

    No full text
    Proceedings of the International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc)57-6

    Centralized Rate Allocation and Control in 802.11-based Wireless Mesh Networks

    Get PDF
    Wireless Mesh Networks (WMNs) built with commodity 802.11 radios are a cost-effective means of providing last mile broadband Internet access. Their multihop architecture allows for rapid deployment and organic growth of these networks. 802.11 radios are an important building block in WMNs. These low cost radios are readily available, and can be used globally in license-exempt frequency bands. However, the 802.11 Distributed Coordination Function (DCF) medium access mechanism does not scale well in large multihop networks. This produces suboptimal behavior in many transport protocols, including TCP, the dominant transport protocol in the Internet. In particular, cross-layer interaction between DCF and TCP results in flow level unfairness, including starvation, with backlogged traffic sources. Solutions found in the literature propose distributed source rate control algorithms to alleviate this problem. However, this requires MAC-layer or transport-layer changes on all mesh routers. This is often infeasible in practical deployments. In wireline networks, router-assisted rate control techniques have been proposed for use alongside end-to-end mechanisms. We evaluate the feasibility of establishing similar centralized control via gateway mesh routers in WMNs. We find that commonly used router-assisted flow control schemes designed for wired networks fail in WMNs. This is because they assume that: (1) links can be scheduled independently, and (2) router queue buildups are sufficient for detecting congestion. These abstractions do not hold in a wireless network, rendering wired scheduling algorithms such as Fair Queueing (and its variants) and Active Queue Management (AQM) techniques ineffective as a gateway-enforceable solution in a WMN. We show that only non-work-conserving rate-based scheduling can effectively enforce rate allocation via a single centralized traffic-aggregation point. In this context we propose, design, and evaluate a framework of centralized, measurement-based, feedback-driven mechanisms that can enforce a rate allocation policy objective for adaptive traffic streams in a WMN. In this dissertation we focus on fair rate allocation requirements. Our approach does not require any changes to individual mesh routers. Further, it uses existing data traffic as capacity probes, thus incurring a zero control traffic overhead. We propose two mechanisms based on this approach: aggregate rate control (ARC) and per-flow rate control (PFRC). ARC limits the aggregate capacity of a network to the sum of fair rates for a given set of flows. We show that the resulting rate allocation achieved by DCF is approximately max-min fair. PFRC allows us to exercise finer-grained control over the rate allocation process. We show how it can be used to achieve weighted flow rate fairness. We evaluate the performance of these mechanisms using simulations as well as implementation on a multihop wireless testbed. Our comparative analysis show that our mechanisms improve fairness indices by a factor of 2 to 3 when compared with networks without any rate limiting, and are approximately equivalent to results achieved with distributed source rate limiting mechanisms that require software modifications on all mesh routers
    corecore