31,871 research outputs found

    Two-layer classification and distinguished representations of users and documents for grouping and authorship identification

    Get PDF
    Most studies on authorship identification reported a drop in the identification result when the number of authors exceeds 20-25. In this paper, we introduce a new user representation to address this problem and split classification across two layers. There are at least 3 novelties in this paper. First, the two-layer approach allows applying authorship identification over larger number of authors (tested over 100 authors), and it is extendable. The authors are divided into groups that contain smaller number of authors. Given an anonymous document, the primary layer detects the group to which the document belongs. Then, the secondary layer determines the particular author inside the selected group. In order to extract the groups linking similar authors, clustering is applied over users rather than documents. Hence, the second novelty of this paper is introducing a new user representation that is different from document representation. Without the proposed user representation, the clustering over documents will result in documents of author(s) distributed over several clusters, instead of a single cluster membership for each author. Third, the extracted clusters are descriptive and meaningful of their users as the dimensions have psychological backgrounds. For authorship identification, the documents are labelled with the extracted groups and fed into machine learning to build classification models that predicts the group and author of a given document. The results show that the documents are highly correlated with the extracted corresponding groups, and the proposed model can be accurately trained to determine the group and the author identity

    A Survey on Metric Learning for Feature Vectors and Structured Data

    Full text link
    The need for appropriate ways to measure the distance or similarity between data is ubiquitous in machine learning, pattern recognition and data mining, but handcrafting such good metrics for specific problems is generally difficult. This has led to the emergence of metric learning, which aims at automatically learning a metric from data and has attracted a lot of interest in machine learning and related fields for the past ten years. This survey paper proposes a systematic review of the metric learning literature, highlighting the pros and cons of each approach. We pay particular attention to Mahalanobis distance metric learning, a well-studied and successful framework, but additionally present a wide range of methods that have recently emerged as powerful alternatives, including nonlinear metric learning, similarity learning and local metric learning. Recent trends and extensions, such as semi-supervised metric learning, metric learning for histogram data and the derivation of generalization guarantees, are also covered. Finally, this survey addresses metric learning for structured data, in particular edit distance learning, and attempts to give an overview of the remaining challenges in metric learning for the years to come.Comment: Technical report, 59 pages. Changes in v2: fixed typos and improved presentation. Changes in v3: fixed typos. Changes in v4: fixed typos and new method
    • ā€¦
    corecore