6,603 research outputs found

    Digging Deeper with Diffuse Correlation Spectroscopy

    Get PDF
    Patients with neurological diseases are vulnerable to cerebral ischemia, which can lead to brain injury. In the intensive care unit (ICU), neuromonitoring techniques that can detect flow reductions would enable timely administration of therapies aimed at restoring adequate cerebral perfusion, thereby avoiding damage to the brain. However, suitable bedside neuromonitoring methods sensitive to changes of blood flow and/or oxygen metabolism have yet to be established. Near-infrared spectroscopy (NIRS) is a promising technique capable of non-invasively monitoring flow and oxygenation. Specifically, diffuse correlation spectroscopy (DCS) and time-resolved (TR) NIRS can be used to monitor blood flow and tissue oxygenation, respectively, and combined to measuring oxidative metabolism. The work presented in this thesis focused on advancing a DCS/TR-NIRS hybrid system for acquiring these physiological measurements at the bedside. The application of NIRS for neuromonitoring is favourable in the neonatal ICU since the relatively thin scalp and skull of infants has minimal effect on the detected optical signal. Considering this application, the validation of a combined DCS/NIRS method for measuring the cerebral metabolic rate of oxygen (CMRO2) was investigated in Chapter 2. Although perfusion changes measured by DCS have been confirmed by various flow modalities, characterization of photon scattering in the brain is not clearly understood. Chapter 3 presents the first DCS study conducted directly on exposed cortex to confirm that the Brownian motion model is the best flow model for characterizing the DCS signal. Furthermore, a primary limitation of DCS is signal contamination from extracerebral tissues in the adult head, causing CBF to be underestimated. In Chapter 4, a multi-layered model was implemented to separate signal contributions from scalp and brain; derived CBF changes were compared to computed tomography perfusion. Overall, this thesis advances DCS techniques by (i) quantifying cerebral oxygen metabolism, (ii) confirming the more appropriate flow model for analyzing DCS data and (iii) demonstrating the ability of DCS to measure CBF accurately despite the presence of a thick (1-cm) extracerebral layer. Ultimately, the work completed in this thesis should help with the development of a hybrid DCS/NIRS system suitable for monitoring cerebral hemodynamics and energy metabolism in critical-ill patients

    Hyperspectral imaging solutions for brain tissue metabolic and hemodynamic monitoring: past, current and future developments

    Get PDF
    Hyperspectral imaging (HSI) technologies have been used extensively in medical research, targeting various biological phenomena and multiple tissue types. Their high spectral resolution over a wide range of wavelengths enables acquisition of spatial information corresponding to different light-interacting biological compounds. This review focuses on the application of HSI to monitor brain tissue metabolism and hemodynamics in life sciences. Different approaches involving HSI have been investigated to assess and quantify cerebral activity, mainly focusing on: (1) mapping tissue oxygen delivery through measurement of changes in oxygenated (HbO₂) and deoxygenated (HHb) hemoglobin; and (2) the assessment of the cerebral metabolic rate of oxygen (CMRO₂) to estimate oxygen consumption by brain tissue. Finally, we introduce future perspectives of HSI of brain metabolism, including its potential use for imaging optical signals from molecules directly involved in cellular energy production. HSI solutions can provide remarkable insight in understanding cerebral tissue metabolism and oxygenation, aiding investigation on brain tissue physiological processes

    Laser-induced generation of singlet oxygen and its role in the cerebrovascular physiology

    Get PDF
    For over 55 years, laser technology has expanded from laboratory research to widespread fields, for example telecommunication and data storage amongst others. Recently application of lasers in biology and medicine presents itself as one of the emerging areas. In this review, we will outline the recent advances in using lasers for the generation of singlet oxygen, traditionally used to kill tumour cells or induce thrombotic stroke model due to damage vascular effects. Over the last two decade, completely new results on cerebrovascular effects of singlet oxygen generated during photodynamic therapy (PDT) have been shown alongside promising applications for delivery of drugs and nanoparticles into the brain for therapy of brain cancer. Furthermore, a "gold key” has been found to overcome the limitations of PDT, such as low light penetration and high toxicity of photosensitizers, by direct generation of singlet oxygen using quantum-dot laser diodes emitting in the near infrared (NIR) spectral range. It is our motivation to highlight these pioneering results in this review, to improve understanding of the biological role of singlet oxygen and to provide new perspectives for improving clinical application of laser based therapy in further research

    Hyperspectral imaging of the haemodynamic and metabolic states of the exposed cortex

    Get PDF
    A hyperspectral imaging (HSI) system to measure and quantify in vivo haemodynamic and metabolic signals from the exposed cerebral cortex of small animals was designed, developed and investigated in this thesis. Imaging brain tissue at multiple narrow wavelength bands in the visible and near-infrared (NIR) range allows one not only to monitor cerebral oxygenation and haemodynamics via mapping of haemoglobin concentration changes, but also to directly target the spatial quantification of cerebral metabolic activity via measurement of the redox states of mitochondrial cytochrome-c-oxidase (CCO). Having both these sets of information in vivo at high resolution on the exposed cortex can provide impactful insight on brain physiology and can help validate corresponding data acquired non-invasively using broadband near-infrared spectroscopy (bNIRS). Several designs and HSI configurations were assessed and compared, including different customised benchtop setups. In the end, a bespoke spectral-scanning HSI system called hNIR, using a supercontinuum laser coupled with a rotating Pellin-Broca prism and a scientific complementary metal-oxide semiconductor (sCMOS) camera, was built, characterised and validated on liquid optical phantoms. In addition, an in-house Monte Carlo (MC) framework for simulating HSI of the haemodynamic and metabolic states of the exposed cortex was also developed using an open-source MC code package (Mesh-based Monte Carlo) and integrated with hNIR, for aiding image reconstruction and enhance quantification, as well as to run computational investigations on the performances of HSI for brain haemodynamic and metabolic monitoring. hNIR was finally applied in vivo on the exposed cerebral cortex of three mice during different levels of hyperoxic and hypoxic stimulation, demonstrating its capability to retrieve high resolution and accurate maps of the relative changes in the concentrations of oxyhaemoglobin (HbO₂), deoxyhaemoglobin (HHb) and the oxidative state of CCO (oxCCO)

    Hybrid Optical System for Studying the Dynamic Regulation of Blood Flow/Metabolism in the Adult Brain

    Get PDF
    Cerebral blood flow (CBF) and oxygen delivery are tightly controlled to meet neuronal energy demands; however, studying dynamic neurovascular coupling in the human brain is challenging due to the lack of methods that can measure rapid changes in CBF and tissue oxygenation. This report presents an in-house-developed hybrid time-resolved near-infrared spectroscopy/diffuse correlation spectroscopy (TR-NIRS/DCS) device and its use to track dynamic CBF and tissue oxygen saturation (StO2) responses simultaneously with sub-second resolution following a vasodilatory stimulus (i.e., a hypercapnic challenge). Cerebrovascular reactivity (CVR) experiments were performed on 10 healthy participants (mean age: 27 years) using a computer-controlled gas delivery system to manipulate breath-to-breath inspired CO2 levels. TR-NIRS and DCS data were acquired continuously at a sampling frequency of 3 Hz to capture dynamic CBF and oxygenation responses. CVR measurements derived from oxyhemoglobin and deoxyhemoglobin concentrations were 3.4 ± 2.6 and 3.0 ± 1.9 %/mmHg, respectively. Their dynamic component, a fitted exponential coefficient that defines the speed of the response as per the hemodynamic response function, was estimated to be 32 ± 16 and 33 ± 28 seconds. The corresponding CVR value and dynamic component derived from CBF was 3.5 ± 3.6 %/mmHg and 33 ± 18 seconds. These experiments demonstrated that the optical system had sufficient temporal resolution to capture the dynamics of the oxygenation and CBF responses to a vasodilatory stimulus

    Development of a novel diffuse correlation spectroscopy platform for monitoring cerebral blood flow and oxygen metabolism: from novel concepts and devices to preclinical live animal studies

    Full text link
    New optical technologies were developed to continuously measure cerebral blood flow (CBF) and oxygen metabolism (CMRO2) non-invasively through the skull. Methods and devices were created to improve the performance of near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) for use in experimental animals and humans. These were employed to investigate cerebral metabolism and cerebrovascular reactivity under different states of anesthesia and during models of pathological states. Burst suppression is a brain state arising naturally in pathological conditions or under deep general anesthesia, but its mechanism and consequences are not well understood. Electroencephalography (EEG) and cortical hemodynamics were simultaneously measured in rats to evaluate the coupling between cerebral oxygen metabolism and neuronal activity in the burst suppressed state. EEG bursts were used to deconvolve NIRS and DCS signals into the hemodynamic and metabolic response function for an individual burst. This response was found to be similar to the stereotypical functional hyperemia evoked by normal brain activation. Thus, spontaneous burst activity does not cause metabolic or hemodynamic dysfunction in the cortex. Furthermore, cortical metabolic activity was not associated with the initiation or termination of a burst. A novel technique, time-domain DCS (TD-DCS), was introduced to significantly increase the sensitivity of transcranial CBF measurements to the brain. A new time-correlated single photon counting (TCSPC) instrument with a custom high coherence pulsed laser source was engineered for the first-ever simultaneous measurement of photon time of flight and DCS autocorrelation decays. In this new approach, photon time tags are exploited to determine path-length-dependent autocorrelation functions. By correlating photons according to time of flight, CBF is distinguished from superficial blood flow. Experiments in phantoms and animals demonstrate TD-DCS has significantly greater sensitivity to the brain than existing transcranial techniques. Intracranial pressure (ICP) modulates both steady-state and pulsatile CBF, making CBF a potential marker for ICP. In particular, the critical closing pressure (CrCP) has been proposed as a surrogate measure of ICP. A new DCS device was developed to measure pulsatile CBF non-invasively. A novel method for estimating CrCP and ICP from DCS measurement of pulsatile microvascular blood flow in the cerebral cortex was demonstrated in rats.2018-03-08T00:00:00

    Interpreting Oxygenation-Based Neuroimaging Signals: The Importance and the Challenge of Understanding Brain Oxygen Metabolism

    Get PDF
    Functional magnetic resonance imaging is widely used to map patterns of brain activation based on blood oxygenation level dependent (BOLD) signal changes associated with changes in neural activity. However, because oxygenation changes depend on the relative changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2), a quantitative interpretation of BOLD signals, and also other functional neuroimaging signals related to blood or tissue oxygenation, is fundamentally limited until we better understand brain oxygen metabolism and how it is related to blood flow. However, the positive side of the complexity of oxygenation signals is that when combined with dynamic CBF measurements they potentially provide the best tool currently available for investigating the dynamics of CMRO2. This review focuses on the problem of interpreting oxygenation-based signals, the challenges involved in measuring CMRO2 in general, and what is needed to put oxygenation-based estimates of CMRO2 on a firm foundation. The importance of developing a solid theoretical framework is emphasized, both as an essential tool for analyzing oxygenation-based multimodal measurements, and also potentially as a way to better understand the physiological phenomena themselves. The existing data, integrated within a simple theoretical framework of O2 transport, suggests the hypothesis that an important functional role of the mismatch of CBF and CMRO2 changes with neural activation is to prevent a fall of tissue pO2. Future directions for better understanding brain oxygen metabolism are discussed

    Validation of diffuse correlation spectroscopy measurements of rodent cerebral blood flow with simultaneous arterial spin labeling MRI; towards MRI-optical continuous cerebral metabolic monitoring.

    Get PDF
    Cerebral blood flow (CBF) during stepped hypercapnia was measured simultaneously in the rat brain using near-infrared diffuse correlation spectroscopy (DCS) and arterial spin labeling MRI (ASL). DCS and ASL CBF values agree very well, with high correlation (R=0.86, p< 10(-9)), even when physiological instability perturbed the vascular response. A partial volume effect was evident in the smaller magnitude of the optical CBF response compared to the MRI values (averaged over the cortical area), primarily due to the inclusion of white matter in the optically sampled volume. The 8.2 and 11.7 mm mid-separation channels of the multi-distance optical probe had the lowest partial volume impact, reflecting ~75 % of the MR signal change. Using a multiplicative correction factor, the ASL CBF could be predicted with no more than 10% relative error, affording an opportunity for real-time relative cerebral metabolism monitoring in conjunction with MR measurement of cerebral blood volume using super paramagnetic contrast agents.R01 EB006385 - NIBIB NIH HHS; R01 EB001954 - NIBIB NIH HHS; R01 NS057476 - NINDS NIH HHS; P41 RR014075 - NCRR NIH HHS; R01 HD042908-07 - NICHD NIH HHS; R01 EB002066 - NIBIB NIH HHS; R01 HD042908-06 - NICHD NIH HHS; R01 HD042908 - NICHD NIH HHSPublished versio

    Developing novel fluorescent probe for peroxynitrite: implication for understanding the roles of peroxynitrite and drug discovery in cerebral ischemia reperfusion injury

    Get PDF
    Session 7 - Oral PresentationsSTUDY GOAL: Peroxynitrite (ONOO‐) is a cytotoxic factor. As its short lifetime, ONOO‐ is hard to be detected in biological systems. This study aims to develop novel probe for detecting ONOO‐ and understand the roles of ONOO‐ in ischemic brains and drug discovery ABSTRACT: MitoPN‐1 was found to be a ONOO‐ specific probe with no toxicity. With MitoPN‐1, we studied the roles of ONOO‐ in hypoxic neuronal cells in vitro and MCAO …postprin
    corecore