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Abstract 

Patients with neurological diseases are vulnerable to cerebral ischemia, which can lead to 

brain injury. In the intensive care unit (ICU), neuromonitoring techniques that can detect 

flow reductions would enable timely administration of therapies aimed at restoring adequate 

cerebral perfusion, thereby avoiding damage to the brain. However, suitable bedside 

neuromonitoring methods sensitive to changes of blood flow and/or oxygen metabolism have 

yet to be established. 

Near-infrared spectroscopy (NIRS) is a promising technique capable of non-

invasively monitoring flow and oxygenation. Specifically, diffuse correlation spectroscopy 

(DCS) and time-resolved (TR) NIRS can be used to monitor blood flow and tissue 

oxygenation, respectively, and combined to measuring oxidative metabolism. The work 

presented in this thesis focused on advancing a DCS/TR-NIRS hybrid system for acquiring 

these physiological measurements at the bedside. 

The application of NIRS for neuromonitoring is favourable in the neonatal ICU since 

the relatively thin scalp and skull of infants has minimal effect on the detected optical signal. 

Considering this application, the validation of a combined DCS/NIRS method for measuring 

the cerebral metabolic rate of oxygen (CMRO2) was investigated in Chapter 2. Although 

perfusion changes measured by DCS have been confirmed by various flow modalities, 

characterization of photon scattering in the brain is not clearly understood. Chapter 3 presents 

the first DCS study conducted directly on exposed cortex to confirm that the Brownian 

motion model is the best flow model for characterizing the DCS signal. Furthermore, a 

primary limitation of DCS is signal contamination from extracerebral tissues in the adult 

head, causing CBF to be underestimated. In Chapter 4, a multi-layered model was 

implemented to separate signal contributions from scalp and brain; derived CBF changes 

were compared to computed tomography perfusion. 

 Overall, this thesis advances DCS techniques by (i) quantifying cerebral oxygen 

metabolism, (ii) confirming the more appropriate flow model for analyzing DCS data and 

(iii) demonstrating the ability of DCS to measure CBF accurately despite the presence of a 

thick (1-cm) extracerebral layer. Ultimately, the work completed in this thesis should help 



 

ii 

 

with the development of a hybrid DCS/NIRS system suitable for monitoring cerebral 

hemodynamics and energy metabolism in critical-ill patients. 

Keywords 

Near-Infrared Spectroscopy, Diffuse Correlation Spectroscopy, Delayed Cerebral Ischemia, 

Cerebral Blood Flow, Cerebral Oxidative Metabolism. 
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Chapter 1  

1 Introduction 

The intention of this introductory chapter is to give a rationale for the experiments that 

comprise this thesis entitled: “Digging Deeper with Diffuse Correlation Spectroscopy”. 

First, the clinical rationale for developing a non-invasive device to monitor cerebral 

hemodynamics in patients in the intensive care unit (ICU) is presented. A description of 

current clinical methodologies and their limitations are outlined. This is followed by a 

description of a promising optical technique that may overcome some of the caveats of 

current methods. The theoretical basis of this optical technique, known as diffuse 

correlation spectroscopy (DCS), is provided, and followed by an extensive review of 

current applications and limitations of this technology. 

1.1 Clinical Rationale 

1.1.1 Intensive Care Patients 

In 1953, during the polio epidemic, hundreds of patients developed respiratory failure, 

requiring emergency tracheotomies. However, typical hospitals at that time had 

inadequate resources to accommodate the patient overload. As a result, the first ICU was 

established to perform tracheotomies quickly, ultimately reducing mortality (Kelly, Fong, 

C, & D, 2014). Generally, an ICU describes a location where critically ill patients obtain 

proper care from specialists. Over the past twenty years, the ICU has evolved into 

multiple sub-specialty treatment centers, such as the neonatal and neurological ICUs, that 

cater towards a particular disease or complication, with the aims of improving patient 

outcome and reducing mortality. 

 Common to both neonatal and neurological ICUs is the concern for maintaining 

adequate cerebral blood flow (CBF). Preterm infants make-up a large portion of patients 

in the neonatal ICU and their immature cerebral vasculature makes them susceptible to 

impaired autoregulation of CBF (Peeples, Mehic, Mourad, & Juul, 2015). Within the 

neurological ICU, patients who have experienced a neurological emergency, such as a 

stroke (Aries, Elting, De Keyser, Kremer, & Vroomen, 2010), a subarachnoid 
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hemorrhage (SAH) (Otite et al., 2014; Washington & Zipfel, 2011), or a traumatic brain 

injury (TBI) (Bouma & Muizelaar, 1992; White & Venkatesh, 2008), are vulnerable to 

further complications, including cerebral edema, cerebral vasospasm, and impaired 

cerebral autoregulation. 

1.1.2 Neurological Complications 

In patients requiring intensive care due to one of the various neurological emergencies 

mentioned earlier, further complications often cause elevated intracranial pressure (ICP) 

and a corresponding decrease in CBF. Therefore, the goal of current interventions that 

target ICP is ultimately to increase CBF. 

A primary concern with ICU patients is cerebral edema, which refers to the 

accumulation of excessive fluid in the brain. For instance, mortality for patients with 

large hemispheric strokes who have evidence of cerebral edema is up to 80% (Hacke et 

al., 1996; Ropper, 1984). Cerebral edema leads to elevated ICP due to volume constraints 

within the cranium. In turn, elevated ICP can impair CBF by reducing cerebral perfusion 

pressure (CPP), making patients susceptible to secondary ischemic brain injury. 

Management techniques to reduce ICP include the administration of hyperosmolar 

agents, such as mannitol or hypertonic saline, to promote osmotic flow outward from 

brain parenchyma (Singh & Edwards, 2013). Should a poor response be observed, more 

aggressive approaches, such as spinal taps and external ventricular drain (EVD) or 

decompressive craniectomy, are performed to drain excessive fluid or increase the 

volume capacity of the brain, respectively, both of which reduce ICP in order to restore 

cerebral perfusion. 

Another cause of delayed cerebral ischemia (DCI), which occurs in approximately 

60% of SAH patients, is cerebral vasospasm, which is caused by involuntary constriction 

of arteries in the brain (Weir, Grace, Hansen, & Rothberg, 1978). Between 20-50% of 

SAH patients develop secondary cerebral ischemia (Schmidt et al., 2008), which may 

progress into infarcted cerebral tissue. Symptoms of clinical deterioration and newly 

formed infarcts trigger the use of interventional strategies, such as administrating the 
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vasodilator nimodipine (Macdonald, 2014); however, about one-third develop infarction 

due to vasospasm asymptomatically (Schmidt et al., 2008). 

The maintenance of CBF over a wide range of systemic blood pressure is 

described by cerebral autoregulation (CA). During variations in blood pressure (Figure 

1-1), normal CBF is maintained (~50 mL/100g/min) by adjustments to cerebrovascular 

resistance (Steiner & Andrews, 2006). However, impairment to CA occurs in about one-

third of patients with TBI (Bouma, Muizelaar, Bandoh, & Marmarou, 1992; Muizelaar, 

Ward, Marmarou, Newlon, & Wachi, 1989), leaving patients susceptible to CBF 

fluctuations during spontaneous changes in systemic blood pressure (Robertson et al., 

1999), and ultimately, these patients are vulnerable to DCI. Similar therapeutic 

interventions to those mentioned earlier (i.e. surgical intervention, or administering 

hyperosmolar and/or vasodilating drugs) are employed to increase CBF. 

 

Figure 1-1: Cerebral Autoregulation Plateau; adapted from (White & Venkatesh, 

2008) 

1.1.3 Clinical Management 

Currently, there is no standard method of diagnosing DCI (Sanelli et al., 2014). The best 

predictor of negative outcome for ICU patients depends on neurological examinations of 
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their physical characteristics (Alonso et al., 2015; De Oliveira Manoel et al., 2015; 

English et al., 2013; Kirkman, Citerio, & Smith, 2014), such as level of consciousness as 

assessed by the Glasgow Coma Scale (Picciolini et al., 2015; Tyson, Parikh, Langer, 

Green, & Higgins, 2008). Clinical classification scales can help identify patients who are 

vulnerable to DCI, but they lack specificity and sensitivity (Vergouwen et al., 2010). 

Patient management would be strengthened by monitoring tools that could detect early, 

subtle, functional changes, such as impaired CA (De Oliveira Manoel et al., 2015). 

Furthermore, management of stroke patients has been shown to improve outcome and 

decrease mortality (Alonso et al., 2015; P. Langhorne et al., 2005) and is especially 

important during the early-onset of cerebral edema, which peaks a few days after 

infarction (Shaw, Alvord, & Berry, 1959). However, to diagnose the susceptibility of 

DCI in patients that are heavily sedated or comatose is not appropriate (Vergouwen et al., 

2010). A continuous bedside assessment of the neurological deterioration would improve 

sensitivity for early detection and prevention of DCI. 

In general, an ICU with specialized neurointensivists results in better efficiency 

and earlier discharge due to improved patient outcome (Bershad, Feen, Hernandez, Suri, 

& Suarez, 2008; Diringer & Edwards, 2001; Unit & Collaboration, 2013). Providing the 

specialized neurointensivists with proper tools for monitoring neurological deterioration 

can further improve patient outcome by aiding in early detection of DCI (Sarrafzadeh, 

Vajkoczy, Bijlenga, & Schaller, 2014). One approach for detecting DCI is by measuring 

CPP, which is defined as the difference between the mean arterial pressure (MAP) and 

ICP. When possible, current clinical management techniques detect low perfusion by 

monitoring a surrogate physiological parameter of perfusion, ICP, since common 

neurological complications result from elevated ICP. In adults, ICP is normally between 

7-15 mmHg, with pressures greater than 20 mmHg considered neurologically significant 

(Bratton et al., 2007). This would enable the intensivist team to determine if CBF falls to 

ischemic levels, which is typically defined as values below 15 mL/100g/min (Symon, 

Branston, Strong, & Hope, 1977). However, specific pressure thresholds presented in the 

literature have been inconsistent (Steiner & Andrews, 2006), suggesting that a method of 

directly measuring CBF would assist in the management of neurological emergencies. 

Early detection of low blood flow would provide the opportunity to administer 
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therapeutic treatments to restore CBF in order to prevent secondary brain injury (Coles et 

al., 2002; Surgeons., 2007). 

In addition to monitoring CBF, measuring the cerebral metabolic rate of oxygen 

(CMRO2) could help identify clinically significant blood flow reductions, i.e. decreases 

that exceed the compensatory increase in oxygen extraction. This is demonstrated in 

Figure 1-2, which shows the reduction in CMRO2 that occurs when the increase in the 

oxygen extraction fraction (OEF) is not sufficient to match the drop in CBF (Dhar et al., 

2012; Powers, Grubb, Darriet, & Raichle, 1985; Vespa et al., 2005). For example, in 

SAH patients, DCI is directly related to poor outcome (Vergouwen, Ilodigwe, & 

MacDonald, 2011); however, cerebral infarction can occur without any observable 

symptoms during normal pressure levels (Chen et al., 2011; Schmidt et al., 2008). 

Insufficient oxygen delivery to brain tissue results in failing ion pumps and deficiencies 

of energy required for cell survival (Boas & Franceschini, 2011; Powers et al., 1985). 

However, there is no ideal monitoring device of perfusion/metabolism at the bedside (Le 

Roux, 2013). 
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Figure 1-2: Stages of hemodynamic impairment as cerebral tissue perfusion fails; adapted 

from (Dhar & Diringer, 2016) 

1.2 Neuromonitoring Methods 

1.2.1 Invasive Techniques 

An important aspect of intensive care practice is monitoring ICP, which requires inserting 

an invasive fiberoptic probe into the brain parenchyma or a catheter into the 

intraventricular space. Elevated ICP is associated with the incidence of secondary 

ischemic brain injury as well as worse clinical outcome (Andrews et al., 2002; Juul, 

Morris, Marshall, & Marshall, 2000). Therefore, increased ICP indicates to a 

neurointensivist to administer therapeutics designed to improve CBF; however, 

observational studies question the benefits of monitoring ICP (Cremer et al., 2005; Shafi, 

Diaz-Arrastia, Madden, & Gentilello, 2008). It could be argued that this is not 

unexpected since ICP is only a surrogate marker of perfusion and that variations in 

cerebral vascular resistance could alter the relationship between the two. 
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Rather than monitoring ICP, cerebral perfusion can be measured by inserting laser 

Doppler flowmetry (LDF) or thermal diffusion flowmetry (TDF) probes directly into 

brain parenchyma. The former is a well established technique for real-time flow 

monitoring; however, it only measures relative flow changes. Although technically 

challenging, TDF provides quantitative measurements of local cerebral perfusion and has 

been shown to detect CBF changes associated with vasospasm (Vajkoczy, Horn, Thome, 

Munch, & Schmiedek, 2003). 

 In addition to flow monitoring, cerebral microdialysis (CMD) probes provide the 

capability to measure the biochemistry of tissue (Tisdall & Smith, 2006). In particular, an 

increase in the lactate/pyruvate ratio (LPR) has proven to be a reliable biomarker of tissue 

ischemia (Ståhl, Mellergård, Hallström, Ungerstedt, & Nordström, 2001). Also, brain 

tissue oxygen tension (PbtO2) can be measured by a Clark electrode. In TBI and SAH 

patients, PbtO2 monitoring has been shown to improve outcome compared to 

management based on ICP monitoring (Narotam, Morrison, & Nathoo, 2009; 

Ramakrishna et al., 2008). However, in an ischemic stroke population, approximately 

half of the patients who were treated for elevated ICP showed changes in the jugular 

venous oxygen saturation that did not reflect concurrent CBF measurements (i.e. 

oxygenation remained unchanged when CBF was altered, and vice versa), despite finding 

reductions of both parameters in non-survivors (Keller, Steiner, Fandino, Schwab, & 

Hacke, 2002). This suggests that monitoring jugular bulb oximetry alone should be 

interpreted with caution and highlights the importance of supplementing oxygenation 

values with a direct measurement of CBF to determine the efficacy of therapeutic 

treatments. 

Despite the ability of each technique to monitor a key physiological parameter at 

the bedside, all such devices are highly invasive since they require inserting a probe 

directly into the tissue. Invasive probes/catheters increase the risk of hemorrhage and 

ventriculitis (Narayan et al., 1982; Pfausler et al., 2004); the latter is susceptible to higher 

risk from repetitive catheter insertions (Arabi et al., 2005). Furthermore, these invasive 

techniques are limited to assessing a small tissue volume (~1 mm3) near the location of 

the probe. Due to their invasive nature, the use of these methods is typically restricted to 
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severe brain-injured patients. Nevertheless, the sensitivity of these methods to impaired 

CBF and energy metabolism highlights the potential value that non-invasive monitoring 

methods could provide to neuro-intensive care.  

1.2.2 Transcranial Doppler Sonography 

A non-invasive technique, known as transcranial Doppler (TCD), has proven to be 

valuable for diagnosing and monitoring cerebral vasospasm (Sekhar, Wechsler, Yonas, 

Luyckx, & Obrist, 1988), a known precursor to secondary brain injury in SAH patients 

(Connolly et al., 2012; Staalsø, Edsen, Romner, & Olsen, 2013). Principally, TCD is used 

to measure flow velocities in the middle cerebral artery (MCA) (Sloan et al., 2004; 

Washington & Zipfel, 2011), which supplies ~80% of hemispheric blood flow (Moore, 

David, Chase, Arnold, & Fink, 2006). In the MCA, vasospasms are identified by TCD 

with a high specificity (94-100%) but moderate sensitivity (38-91%), and its application 

to other cerebral arteries has proven less accurate (Lee et al., 2006; Washington & Zipfel, 

2011). Arterial blood flow velocities are related to perfusion in the macro-vasculature, 

and therefore, TCD velocity measurements do not reflect micro-vascular perfusion. This 

suggests a means to directly measure CBF would be beneficial, especially for detecting 

and monitoring secondary cerebral ischemia, since presence of vasospasms does not 

solely contribute to cerebral infarction and neurological worsening (Vergouwen et al., 

2011). 

1.3 Near-Infrared Spectroscopy 

The work completed in this dissertation is driven by the current lack of a means of 

measuring CBF in the clinic that is both non-invasive and direct; one promising 

technique is near-infrared spectroscopy (NIRS). Because of its low absorption in tissue, 

electromagnetic radiation within the near-infrared wavelength spectrum (700-1000 nm) 

can travel farther than visible light. Consequently, this wavelength range is often referred 

to as an “optical window” (Jöbsis, 1977). The interaction of electromagnetic radiation 

with tissue is governed by two fundamental interactions: absorption and scattering, which 

are described in the following sections.  
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1.3.1 Electromagnetic Radiation 

Electromagnetic radiation can be classified as either ionizing or non-ionizing depending 

on how energy is transferred to the surrounding medium. The former carries sufficient 

energy per quantum to liberate an electron from an atom or molecule, e.g. x-rays. Near-

infrared light is classified as the latter since it does not have sufficient energy to liberate 

an electron. Instead, energy is transferred non-destructively to an absorbing molecule in 

tissue by excitation of a vibrational state through a quantum event (i.e. all or nothing). If 

the frequency of a photon equals the energy required for a molecule to transition to an 

excited state, then the photon is absorbed, otherwise, a photon is re-emitted (i.e. 

scattered). 

The interactions incurred by a photon as it propagates through a medium is 

characterized by the scattering (µs) and absorption (µa) coefficients, which represent the 

reciprocal of typical distances traveled before a photon is either scattered or absorbed. 

These interactions may alter one or more of a photon’s characteristics: energy, phase, 

polarization, and direction, as described in the following sections. 

1.3.2 Photon Absorption 

In the 1700s, the mathematician Pierre Bouguer was the first to arithmetically describe 

light absorption in a non-scattering medium. He discovered that the intensity of 

transmitted light (I) is related exponentially to µa and the distance between source and 

detector (ρ) in a homogeneous medium:  

I = I e      (1.3.1) 

where I0 represents the source light intensity. In 1852, August Beer observed that light 

absorption was proportional to the concentration (ci) of a light-absorbing molecule in the 

medium, which is referred to as chromophore. In the presence of multiple chromophores, 

the absorption coefficient can be written as: 

μ λ = ln 10 ∑ ε λ c    (1.3.2) 
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where ε is the wavelength-dependent extinction coefficient of chromophore i. In tissue, 

the main absorbing chromophores of near-infrared (NIR) light are oxyhemoglobin, 

deoxyhemoglobin, water, and lipid. The wavelength-dependency of absorption 

characteristics are illustrated in Figure 1-3. 

 

Figure 1-3: Absorption coefficients of the main chromophores in tissue plotted as a 

function of wavelength; data adapted from Oregon Medical Laser Clinic 2013 

Figure 1-3 highlights that the dominant tissue chromophore in the NIR region is 

hemoglobin. It is important to realize that light absorption in the optical window is 

relatively weak compared to shorter wavelengths, due to the much greater absorption of 

hemoglobin, and longer wavelengths due to the increased absorption of water. In 

principle, the concentration of the main chromophores can be determined by applying 

Equation 1.3.2 to measured absorption coefficients obtained at different wavelengths. 

However, the challenge to applying this approach to tissue is the much larger effect of 

light scattering.  

1.3.3 Photon Scattering 

Light scattering may be thought of as a direction-altering event experienced by photons. 

Mie theory models scattering events by assuming that photons interact with particles that 

can be represented as homogeneous spheres with a refractive index different from the 

surrounding medium (Hergert & Wriedt, 2012). The result of the interaction is an elastic 
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scattering event, meaning the kinetic energy of the redirected photon remains the same 

before and after the interaction. 

Photons emitted into a media are directionally oriented, meaning they most likely 

travel in the forward direction following a scattering event since there is a higher 

probability for small-angle scattering events to occur due to the orientation of the 

scattering cross-section. However, forward directionality diminishes with each 

consecutive scattering event because with each interaction the probability of the 

scattering angle becomes more homogeneous. In a highly scattering medium, the photon 

direction quickly becomes isotropic or diffuse (i.e. the direction is random). The average 

distance traveled by a photon before its path becomes random is given by the inverse of 

the reduced scattering coefficient (µ́s): 

μ ≡ 1 − g ∙ μ      (1.3.3) 

where g is the anisotropy factor defined as the average cosine of the scattering angle. It is 

a measure of the directionality of elastic scattering (i.e. scattering efficiency) and varies 

between 0 and 1. 

Tissue is a highly scattering medium due to the many scattering particles (~108), 

such as cell membranes, nuclei and organelles, and changes in refractive indices within a 

small volume (1 mm3). Therefore, the number of photon scattering events greatly 

outnumbers absorption interactions (µ́s >> µa). The main three scattering constituents of a 

NIR photon, listed in order of scattering frequency, are lipoprotein membranes, 

mitochondria, red blood cells (RBCs), and other cellular components (Cope, 1991). 

These tissue scattering particles can be categorized into two types: static and dynamic; 

the difference is the variation in phase of the interacting photon over time. Although 

scattering events occur more often with static tissue constituents, such as lipoprotein 

membranes and mitochondria, the phase change is time invariant, and the major 

contribution to the temporal phase fluctuations of a NIR photon is due to moving RBCs 

(Bonner & Nossal, 1981; Durduran, Choe, Baker, & Yodh, 2010; Ninck, Untenberger, & 

Gisler, 2010). The variation in phase due to motion is an important phenomenon that can 
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be exploited to measure flow using NIR light and is explained in Section 1.5, but first, the 

mathematical description of light propagation in tissue will be outlined. 

1.3.4 Light Propagation in Tissue 

Maxwell’s equations describe the propagation of electromagnetic radiation in media. In 

tissue, as the electromagnetic radiation travels long distances many scattering events 

occur making solutions to Maxwell’s equations intractable. Simplifications and 

assumptions are required to solve light propagation in a highly scattering media. In this 

section, a brief theoretical derivation of photon diffusion in tissue is presented, 

highlighting important relationships. 

1.3.4.1 Radiative Transfer Equation 

Maxwell’s equations can be approximated by describing light propagation as a stream of 

photons. In particular, the complexities of light travel in tissue can be simplified by 

characterizing individual photon pathlengths with radiative transport theory (Ishimaru, 

1989; Profio, 1989). Radiance is defined as the power of light emitted in a direction per 

unit solid angle [W/cm2/sr]. As radiance travels within tissue, the radiative transport 

equation (RTE) mathematically models energy conservation by describing the 

interactions between particles and radiation: 

L r, t, Ω + s	∇	L r, t, Ω + μ + μ L r, t, Ω = μ L r, t, Ω P Ω, Ω′ dΩ′ + S r, t, Ω    (1.3.4) 

where L(r,t,Ω) is the radiance in a medium at position r, traveling in direction Ω, at time 

t. The scattering phase function, P(Ω,Ω՜ ), represents the probability of scattering into a 

direction Ω՜  from direction Ω. The speed of light in the medium is v, the source term is 

S(r,t,Ω), and dΩ՜  is the solid angle around Ω. 

In an infinitesimal volume, Equation 1.3.4 accounts for energy gains due to the 

light source and photon scattering into the volume. Also, Equation 1.3.4 accounts for 

energy losses due to absorption and scattering out of the volume. Although the RTE 

simplifies Maxwell’s equations, it remains complex with no analytical solution. Further 

approximations are required to solve the RTE. 
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1.3.4.2 Diffusion Approximation 

The diffusion approximation (DA) is the most common solution applied to radiative 

transfer theory for light propagation in tissue, which is assumed to be a highly diffusive 

process. Within the DA, a standard method, known as the P1 approximation, expands all 

angular dependent quantities (i.e. radiance, phase function, and light source) in a 

spherical Legendre series truncated at the first moment. To simplify the RTE, the P1 

approximation assumes the following: 

• A highly scattering medium (i.e. µ́s >> µa). 

• The scattering phase function, P(Ω,Ω՜ ), is isotropic. 

• For the normalized phase function, the scattering amplitude depends on the change 

in direction of the photon only. 

• The source-detector separation is much larger than the typical distance traveled by a 

photon before its direction becomes isotropic (i.e. ρ >> µś). 

• Slow temporal variations in photon flux (i.e. changes in photon flux occur quicker 

than a photon traveling in a single transport length). 

• Light is unpolarized. 

Linearly combining the total power of photons incident on a sphere of cross-sectional 

area [W/cm2], the photon fluence rate, Φ(r,t), is given by: 

Φ r, t ≡ L r, t, Ω dΩ    (1.3.5) 

and the vector sum of the radiance emerging from an infinitesimal volume [W/cm2] 

defined as the photon flux, J(r,t): 

J r, t ≡ Ω ∙ L r, t, Ω dΩ   (1.3.6) 

Derived in detail elsewhere (L. V. Wang & Wu, 2009), the P1 approximation gives 

radiance independent of direction as: 

L r, t, Ω = Φ r, t + J r, t Ω    (1.3.7) 
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Inserting Equation 1.3.5 into the RTE (Equation 1.3.4) and integrating over all solid 

angles, a relationship that is known as the continuity equation for the fluence rate is 

obtained: 

Φ r, t + ∇	J r, t + μ r, t Φ r, t = S r, t    (1.3.8) 

Fick’s law describes the diffusion of photons in a scattering medium and provides the 

relationship between fluence rate and flux of a photon by:  

J r, t = − , ∇	Φ r, t     (1.3.9) 

Where the photon diffusion coefficient is defined as: 

D r, t ≡      (1.3.10) 

To describe the radiance of the RTE (Equation 1.3.4) by the photon fluence rate alone, 

Fick’s law (Equation 1.3.9) is substituted into Equation 1.3.8 to obtain the photon 

diffusion equation (PDE). 

1.3.4.3 Photon Diffusion Equation 

In a low absorbing, high scattering medium, such as tissue, the photon fluence rate, 

Φ(r,t), can be described by the PDE: 

D r, t ∇ − μ r, t − Φ r, t = − S r, t   (1.3.11) 

In tissue, the path taken by many individual photons that scatter isotropically and travel 

with a constant velocity between scattering events can be characterized by Equation 

1.3.11. 

1.4 Quantitative Near-Infrared Spectroscopy Techniques 

Accurate modeling of photon propagation through tissue has enabled the development of 

various NIRS methods for quantifying physiological parameters, such as blood flow and 

tissue oxygenation, by use of the DA to estimate the absorption and scattering 
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coefficients (Boas & Yodh, 1997; Maret & Wolf, 1987; D. J. Pine, Weitz, Chaikin, & 

Herbolzheimer, 1988; A. Yodh & Chance, 1995). One method of categorizing the 

different NIRS methods is by the type of light source used, which leads to different 

analytical solutions to the PDE. 

1.4.1 Near-Infrared Techniques  

Near-infrared spectroscopy techniques typically couple the output of a light source to an 

optical fiber placed on the surface of a medium in order to deliver photons into the 

medium. A second optical fiber (or fiber bundle) placed on the same medium will collect 

photons that have escaped, either by reflection or transmission. These detected photons 

carry information about the interactions experienced with scattering particles as they 

travel through the medium. For a thick medium, such as the human head, collecting 

transmitted photons is not feasible due to light absorption and, therefore, reflection 

methods are used commonly. Utilizing this general approach, various NIR methods have 

been developed that are described below. 

1.4.1.1 Continuous-Wave NIRS 

Continuous-wave (CW), which is the simplest NIR method, uses a steady-state light 

source. The change in reflected light intensity measured a few centimeters from the 

source can be characterized by a modified Beer-Lambert Law or the steady-state solution 

to the PDE (Delpy et al., 1988; Wray, Cope, Delpy, Wyatt, & Reynolds, 1988). CW light 

sources can be either broadband (i.e. emits over a wide spectral range) or at multiple 

discrete wavelengths using light emitting diodes (LEDs). Although the equipment is 

inexpensive, measuring only light intensity at a few wavelengths does not provide 

sufficient information to separate the effects of absorption and scatter (Siegel, Marota, & 

Boas, 1999). Consequently, most CW NIRS methods are limited to measuring relative 

changes in the concentrations of chromophores. Estimations of the photon path length 

can be derived separately from Monte Carlo simulations or physical models (Delpy et al., 

1988), but quantification typically relies on more complex NIRS approaches to directly 

measure the effects of scattering (Matcher & Cooper, 1994; Matcher, Cope, & Delpy, 

1993; Nicklin, Hassan, Wickramasinghe, & Spencer, 2003).  
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1.4.1.2 Frequency-Domain NIRS 

This technique modulates the source intensity at a known frequency and uses detectors 

capable of detecting the amplitude and phase change of the modulated light (Fantini et 

al., 1995). Since the phase shift is linearly related to the mean photon pathlength 

(Arridge, Cope, & Delpy, 1992; Patterson, Chance, & Wilson, 1989), FD NIRS provides 

a means of quantifying both µa and µ́s. Knowledge of phase enables direct conversion of 

the detected changes in light attenuation into changes in chromophore concentration. The 

optical properties can be determined by applying a solution to PDE to the measured phase 

shift and modulation amplitude in the frequency domain (Delpy et al., 1988; Madsen et 

al., 1994). Although quantitative information is provided by FD NIRS, it is more 

technically complex than CW NIRS, requiring a frequency generator to modulate the 

emission light and a detector that detects both the changes in phase and amplitude of the 

reflected light. 

1.4.1.3 Time-Resolved NIRS 

Similar to FD NIRS, another method capable of determining the tissue optical properties 

is time-resolved (TR) NIRS. With this approach, pulsed light is emitted into a medium 

and the arrival times of photons, which vary depending on their pathlength, are measured 

(Delpy et al., 1988; Montcel, Chabrier, & Poulet, 2005; Patterson et al., 1989). Millions 

of detected photons are binned based on their arrival time to generate a histogram (Figure 

1-4), which is referred to as the temporal point spread function (TPSF). The dispersion of 

the time-of-flight of the detected photons is due to the difference of paths through the 

medium caused by photon scattering; however, some of the broadening of the TPSF is 

also a result of temporal dispersion within the instrumentation. Therefore, deconvolution 

of the measured TPSF and the measured instrument response function (IRF) isolates the 

true distribution of time-of-flights (DTOF) of the photons in the medium alone (Diop & 

St. Lawrence, 2012). The tissue optical properties can be determined using an analytical 

solution to the PDE (Equation 1.3.11) to characterize the DTOF (Patterson et al., 1989). 

Since late arriving photons have the highest probability of traveling deeper into the 

medium, TR NIRS provides improved depth sensitivity (Diop & St. Lawrence, 2013; 
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Kienle, Glanzmann, Wagnières, & Bergh, 1998; Selb, Stott, Franceschini, Sorensen, & 

Boas, 2005). 

 

Figure 1-4: Measured dispersion of photon arrival times due light interrogating the 

optical instrument components and medium (TPSF) 

1.4.2 Measuring Tissue Oxygen Saturation by NIRS 

As discussed above, the optical properties of tissue can be determined by the combination 

of different NIRS methods and the PDE (Delpy & Cope, 1997). Since absorption depends 

on wavelength (Equation 1.3.2), the concentration of deoxy- and oxy- hemoglobin (i.e. 

[Hb] and [HbO2], respectively) can be determined by measuring light absorption at two 

or more wavelengths (Figure 1-3). NIRS provides a means for assessing oxygen 

metabolism, which is the dominant source of tissue energy. The balance between oxygen 

supply and metabolic energy demands is reflected by tissue oxygen saturation (StO2) and 

is related to hemoglobin concentrations by the definition: 

StO ≡      (1.4.1) 

where StO2 represents the local average blood oxygenation of tissue and is related to the 

tissue constituents of arterial (SaO2) and venous (SvO2) hemoglobin by: 
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StO = a ∙ SaO + b ∙ SvO    (1.4.2) 

where a and b are fractional constants of the arterial and venous saturation in tissue that 

sum to 1 (Watzman et al., 2000). 

Reductions in StO2 have been shown previously in muscle during occlusion of the 

forearm and during muscle contractions (De Blasi, Fantini, Franceschini, Ferrari, & 

Gratton, 1995; Ferrari, Binzoni, & Quaresima, 1997). Also, in the neonatal ICU, expected 

reductions in StO2 during apnoea were detected (Brazy, Lewis, Mitnick, & Jobsis, 1985), 

and asphyxiated newborns that show an increase in cerebral StO2, relative to healthy 

controls, correlate with abnormal outcome (Zaramella et al., 2007). Tissue oxygen 

saturation is an indicator of metabolism in muscle and brain; however, this measurement 

may be confounded by the delivery of oxygen by blood flow (Boas & Franceschini, 

2011). Therefore, oxygen consumption is better assessed by measuring both StO2 and 

blood flow.  

1.4.3 Measuring Tissue Perfusion by Dynamic Contrast-Enhanced 
NIRS 

NIRS can quantify tissue perfusion by utilizing oxy-hemoglobin as an endogenous flow 

tracer (Edwards et al., 1988; Elwell et al., 1994) or with the aid of an exogenous contrast 

agent (Diop et al., 2010; Elliott et al., 2014). The latter provides superior signal-to-noise 

(SNR) since the absorption change related to perfusion is much greater. Perfusion is 

quantified by dynamic contrast-enhanced (DCE) NIRS using a tracer kinetic model to 

relate the concentration of dye in the tissue to the amount being delivered by arterial 

blood (Brown et al., 2002; Elliott, Diop, Tichauer, Lee, & St. Lawrence, 2010; St. 

Lawrence et al., 2013): 

C t = CBF ∙ C t − u ∙ R u du  (1.4.3) 

where Ct(t) is the dye concentration in tissue as a function of time (t) measured by NIRS, 

and Ca(t) is the arterial blood concentration measured by a dye oximeter (Brown et al., 

2002). R(t) is defined as the impulse residue function and it represents the fraction of 

tracer in the tissue at time t following an idealized bolus injection at t = 0 (i.e. the injected 
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tracer can be represented by a delta function with unit area). The flow-scaled impulse 

residue function, CBF·R(t), can be extracted by deconvolution, and its initial height 

equals CBF since by definition R(0) ≡ 1. This method can be used to quantify cerebral 

perfusion, but it does not provide a means for monitoring CBF since each measurement 

requires an injection of the contrast agent (Diop et al., 2010). 

1.4.4 Cerebral Metabolic Rate of Oxygen 

The ability of NIRS to quantify both cerebral oxygenation and CBF makes it possible to 

assess the CMRO2 (Elwell et al., 2005), which is considered a better indicator of tissue 

viability than CBF alone (Powers et al., 1985). The CMRO2 is related to CBF by the Fick 

principle (i.e. conservation of mass): 

CMRO = CBF ∙ O − O     (1.4.4) 

where [O2]a and [O2]v are the oxygen concentration in the incoming arteries and outgoing 

veins, respectively. The former can be determined by pulse oximetry while the latter can 

be estimated from StO2 (Section 1.4.2). Quantification of CMRO2 can be obtained by 

combining StO2 with absolute CBF measurements from DCE NIRS (Section 1.4.3) 

(Tichauer, Brown, Hadway, Lee, & St. Lawrence, 2006; Tichauer, Hadway, Lee, & St. 

Lawrence, 2006; Tichauer et al., 2010). However, real-time CMRO2 monitoring requires 

a perfusion technique capable of measuring CBF continuously. 

1.5 Diffuse Correlation Spectroscopy 

The recent emergence of an optical technique, known as DCS, provides a means of 

monitoring CBF that does not require the injection of an exogenous contrast agent (Boas, 

Campbell, & Yodh, 1995; Buckley, Parthasarathy, Grant, Yodh, & Franceschini, 2014). 

DCS is a variation of another technique, known as dynamic light scattering, which was 

developed in the 1960s to analyze speckle intensity fluctuations (Cummins & Swinney, 

1970; Pecora, 1972). The theory was investigated in dilute “single-scattering” 

experiments to characterize the size of particles (Berne & Pecora, 1976; Riva, Ross, & 

Benedek, 1972; Stern, 1975). Shortly after, “single-scattering” experiments evolved into 

“multiple-scattering” experiments in soft condensed matter by diffusing-wave 
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spectroscopy (DWS) (Bonner & Nossal, 1981; D. Pine, Weitz, Chaikin, & 

Herbolzheimer, 1988). Since DCS is an optical technique that uses NIR light, it has the 

same promising principles as NIRS (i.e. safe, non-invasive, fast temporal resolution, 

probes deep tissue, and is portable). However, it also provides the ability to monitor the 

motion of scatterers, which is dominated by the movement of RBCs in tissue. This 

following section provides the theory of DCS to measure blood flow changes. 

1.5.1 Measuring the Intensity Autocorrelation Function 

As described in Section 1.3, NIR photons propagating into tissue encounter many 

scattering interactions, including from dynamic erythrocytes (Figure 1-5A). At the 

location of a detector on the surface of the interrogated medium, the light electric fields 

constructively/destructively interfere to produce a speckle intensity (i.e. bright and dark 

spots). Due to the motion of RBCs, the phase of interacting photons is altered, which in 

turn, modulate the interference at the detector, causing transient intensity fluctuations 

(Figure 1-5B). Faster moving RBCs cause the speckle intensity fluctuations to occur 

more rapidly, inducing earlier decreases in the temporal coherence, which is a measure of 

the degree of phase correlation (Figure 1-5C).  

 

Figure 1-5: Illustration of diffuse correlation spectroscopy; adapted from (Wesley B 

Baker et al., 2014; Zhou, 2007) 

(A) Single photons are emitted into a homogeneous tissue where they propagate and experience multiple 
scattering events predominantly from moving RBCs. The solid and dotted lines represent the pathlengths of 
two photons measured at time t and at a later time delayed by  (i.e. t + ), respectively. (B) At the detection 
site, temporal intensity fluctuations are measured. (C) Normalized intensity autocorrelation function is 
computed by a correlator board; red and blue decay curves represent fast and slow blood flow, respectively. 

To assess tissue perfusion, a normalized intensity autocorrelation function is 

computed from the measured speckle light intensity fluctuations: 



21 

 

 g ρ, τ ≡ 〈 , , 〉
〈 , 〉            (1.5.1) 

where, τ is the correlation time and <I(ρ,t)> is the light intensity detected at the tissue 

surface at a distance ρ from the source at time t. Equation 1.5.1 is related to the 

normalized electric field autocorrelation function, g1(ρ,τ), by the Siegert relationship 

(Lemieux & Durian, 1999): 

	g ρ, τ = 1 + β|g ρ, τ |     (1.5.2) 

where β is the coherence factor of the detection system. 

For a high scattering, low-absorbing medium, the electric field autocorrelation 

function, g1(ρ,τ), satisfies the PDE (Section 1.3.4.3) for a continuous light source (Boas et 

al., 1995; Cheung, Culver, Takahashi, Greenberg, & Yodh, 2001): 

g ρ, τ = ,
〈 , 〉	 =

〈 , ∙ ∗ , 〉
〈| , | 〉	          (1.5.3) 

where the unnormalized electric field autocorrelation function, G1(ρ,τ), can be modeled 

by the correlation diffusion equation (CDE) (Boas et al., 1995; Skipetrov & Maynard, 

1996).  

1.5.2 Correlation Diffusion Equation 

In 1990’s, an equivalency between correlation transport and photon transport was 

introduced, which treats the transport of correlation through turbid medium similar to 

radiative transport theory (Ackerson, Dougherty, Reguigui, & Nobbmann, 1992). The 

difference between radiative and correlation transport is that the former maintains energy 

conservation whereas the latter accumulates correlation decay from each scattering event 

with dynamic particles resulting in a loss of coherence. This difference is described 

theoretically by scattering. Radiative transport assumes energy is conserved as a photon 

scatters in and out of an infinitesimal volume, whereas correlation transport similarly 

describes a transfer of correlation, except that a photon scattering into the infinitesimal 

volume has accumulated a loss of coherence (i.e. correlation decay). By mathematically 

applying this difference between radiative and correlation transport theory to Equation 
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1.3.4, similarly for a high scattering, low-absorbing medium, the PDE (Equation 1.3.11) 

can be modeled by the CDE (Boas et al., 1995; Skipetrov & Maynard, 1996): 

D r, t ∇ − μ r, t − μ τ G r, τ = − S r, τ          (1.5.4) 

where µD accounts for the loss of correlation due to dynamical processes (i.e. the motion 

of scatterers) and is given by:   

μ τ = μ + αµ′ k 〈r τ 〉            (1.5.5) 

where, k0 = 2πn/λ is the wavenumber of light (λ is wavelength and n is the refractive 

index), α is the proportion of moving scatters, which is predominantly RBCs in tissue 

(Bonner & Nossal, 1981; Ninck et al., 2010), to all scatterers and is related to the blood 

volume, and <∆r2(τ)> is the mean-square displacement of the moving scatterers during a 

correlation time τ. 

To relate g2(ρ,τ) to blood flow, the CDE is solved by an appropriate analytical 

model that characterizes the motion of RBCs and the interrogated geometry. This can be 

challenging as the motion of RBCs is not well understood and the geometry, such as the 

adult head, can be complex due to tissue heterogeneities. 

In tissue, the loss of coherence is predominately affected by the movement of 

erythrocytes in the microvasculature (Ninck et al., 2010). Originally, a photon is thought 

to have sequentially scattered off of moving RBCs within different vessels due to the 

torturous nature of microvasculature. Therefore, the direction of moving RBCs relative to 

the multiply-scattered photon is assumed to be random (i.e. <∆r2(τ)> = V2τ2, where V is 

the velocity of the moving scatterers). However, autocorrelation functions are best fit by 

assuming the motion of dynamic scatterers as Brownian diffusion (i.e.  <∆r2(τ)> = 6DBτ, 

where DB is the effective diffusion coefficient). The loss of coherence of the photon may 

be best explained by within-vessel scattering due to tissue shearing, tumbling, and rolling 

experienced by an erythrocyte as it moves within a vessel; however, characterizing the 

motion of dynamic scatterers requires further investigation. The Brownian diffusion flow 

model has been successfully applied to a wide range of tissue types to fit for the αDB term  

(Durduran, Choe, et al., 2010), which is commonly refferred to as a blood flow index 
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(BFI) in tissue. Most applications of DCS, such as the head of neonatal infants, assume a 

semi-infinite homogeneous medium, which is acceptable if the thickness of the 

extracerebral layers is relatively thin (Buckley et al., 2014; Durduran & Yodh, 2014).  

1.5.3 Analytical Solution for a Homogeneous Medium 

Currently, the most common analytical solution applied to analyze DCS data assumes 

light propagates in a semi-infinite (i.e. no light transmission) homogeneous medium. The 

solution for G1(ρ,τ) is given by: 

G ρ, τ = −     (1.5.6) 

where, r1 = [ρ2 + z0
2]½ and r2 = [ρ2 + (z0 + 2zb)

2]½. z0 is the effective depth of the source 

and is defined as 1/µ́s, zb is the extrapolated boundary and is defined as                                  

2D(1+Reff)(1-Reff)
-1 (Kienle & Glanzmann, 1999). D is the diffusion coefficient (Equation 

1.3.7) and Reff is the effective reflection coefficient given by 0.493 for the refraction 

indices of tissue and air (Haskell et al., 1994). This solution has been verified against 

many flow modalities to demonstrate quantitative flow changes in various tissues 

(Buckley et al., 2014; Mesquita et al., 2011). When applied to adults, cerebral perfusion 

can be underestimated due to partial volume errors from thick extracerebral layers 

(Durduran et al., 2004; Gagnon, Selb, & Boas, 2008).  

A few approaches have emerged to account for tissue heterogeneity in the adult 

head including the application of a correction factor based on partial volume estimates 

(Durduran et al., 2004). Another approach is to weight the fit of the semi-infinite 

homogeneous model towards shorter correlation times since these are most sensitive to 

longer photon pathlengths (i.e. photons that have most likely propagated in deep tissue) 

(Selb et al., 2014). However, these methods only enhance sensitivity to CBF from the 

measured DCS signal and do not completely separate the effects of light propagation in 

the various tissues. 

An analytical solution to the CDE (Equation 1.5.4) that separates flow in multiple 

tissue layers by accounting for extracerebral tissue thickness have been shown to improve 

the sensitivity to CBF (Gagnon, Desjardins, Jehanne-Lacasse, Bherer, & Lesage, 2008), 

and to detect CBF increases in the motor cortex during a functional task (Jun Li et al., 
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2005). To-date, only a few studies have employed a multi-layer model, and there have 

been no validations of this approach (Jaillon, Li, Dietsche, Elbert, & Gisler, 2007; J Li et 

al., 2008; Jun Li et al., 2005). 

1.5.4 DCS Instrumentation 

To measure g2(ρ,τ), some of the main components include: a continuous-wave, long-

coherent (>5 m) light source, a single-mode detection fiber, and a fast counting board and 

fast detection system (i.e. avalanche photodiode capable of detecting single photons on 

the order of µs). Regarding the source, a long coherence length (typically >5 m) is 

required to ensure the light emitted by the source are spatially in-phase for distances 

much greater than typical photon pathlengths through tissue (<1 m; estimated from 

Figure 1-4). Therefore, the decay of correlation is a result from multiple scattering 

interactions with RBCs in tissue and not due to the laser. A single-mode detection fiber 

has a very small core radius (~2 µm) comparable to the wavelength of light, which 

enables selection of a single scattered electric field component (i.e. receiver mode) to 

maximize speckle contrast. However, the small core diameter and low numerical aperture 

limit SNR, making it difficult to acquire DCS data at larger source-detector distances (>3 

cm), which is often used to improve depth sensitivity. Strategic use of a few-mode 

detection fiber can enhance SNR by increasing the photon count rate, but sacrifices 

speckle contrast (Dietsche et al., 2007; Gisler et al., 1995; He, Lin, Shang, Shelton, & Yu, 

2013). 

A fast detection system, such as a single-photon avalanche photodiode (SPAD), 

and a fast counting board are required for high temporal resolution and high SNR. 

Temporal resolution may be traded in to enhance SNR, but this is not ideal for real-time 

monitoring of tissue blood flow. A multi-tau correlator board bins the photons from a 

time range scale of µs to seconds and computes the autocorrelation function. Recent 

innovative techniques that efficiently select only relevant correlation times have shown to 

improve the speed of data acquisition and reduce noise (Baker et al., 2014; D. Wang et 

al., 2016). Ultimately, this may enhance the depth sensitivity of DCS techniques since 

long photon pathlengths are most likely to travel deep in the tissue and are best 
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representative of the autocorrelation function at early correlation times (Selb et al., 2014), 

which are most susceptible to noise. 

1.6 A Review of Current Applications and Limitations of 
DCS 

Over the past 10 years, the applications of DCS have grown rapidly due to its clinical 

promise (i.e. safe, non-invasive, inexpensive, good depth sensitivity, real-time data 

acquisitions, portability) as a bedside monitor of cerebral perfusion. The clinical 

applications have been supplemented by a plethora of validation studies, which have been 

summarized in a number of recent review articles (Buckley et al., 2014; Durduran, Choe, 

et al., 2010; Durduran & Yodh, 2014; Mesquita et al., 2011; Yodh, 2009). 



26 

 

Table 1-1: A list of DCS validation studies; modified from (Mesquita et al., 2011) 

Sample Perturbation 
Comparison 

Modality 
R

2
 Slope Reference 

Mouse 
tumour 

PDT 
Power Doppler 

ultrasound 
N/A 0.97 (Menon et al., 2003) 

Rat Hypocapnia Laser Doppler 0.94 1.3 (Durduran, 2004) 
Mouse 
tumour 

PDT 
Doppler 

ultrasound 
N/A Agreement 

(Yu, Durduran, Zhou, et 
al., 2005) 

Mouse 
tumour 

Antivascular therapy DCE ultrasound N/A Agreement (Sunar et al., 2007) 

Human calf 
muscle 

Cuff 
inflation/deflation 

ASL MRI >0.77 1.5-1.7 (Yu et al., 2007) 

Piglet TBI 
Fluorescent 

microspheres 
0.63 0.4 (Zhou et al., 2009) 

Premature 
neonates 

Absolute baseline TCD 0.91 0.9 
(Buckley, Cook, 

Durduran, & Kim, 2009) 
Premature 
neonates 

Absolute baseline TCD 0.53 N/A 
(Roche-Labarbe et al., 

2010) 
Term 

neonates 
Hypercapnia ASL MRI 0.7 0.85 

(Durduran, Zhou, et al., 
2010) 

Mouse 
Femoral artery 

occlusion 
Laser Doppler >0.8 0.96-1.07 (Mesquita et al., 2010) 

Rat Hypercapnia ASL MRI ~0.84 0.75 
(Carp, Dai, Boas, 

Franceschini, & Kim, 
2010) 

Adult 
human 

Pressors and 
hyperventilation 

Xenon CT 0.73 1.1 (Kim et al., 2010) 

Adult 
human 

Acetazolamide TCD N/A Agreement 
(Zirak, Delgado-Mederos, 

Martí-Fàbregas, & 
Durduran, 2010) 

Piglet Hypo-/hyper-capnia DCE NIRS 0.93 1.05 
(Diop, Verdecchia, Lee, & 

St Lawrence, 2011) 
Children 

(JV) 
Hypercapnia PC MRI 0.77 0.91 (Buckley et al., 2012) 

Children 
(SVC) 

Hypercapnia PC MRI 0.59 0.99 (Buckley et al., 2012) 

Neonates 
CHD 

Absolute 
Hypercapnia 

PC MRI 0.67 0.40 (Jain et al., 2014) 

Neonates 
CHD 

Hypercapnia PC MRI 0.62 1.01 (Jain et al., 2014) 

Neonates 
PDA 

Indomethacin 
Infusion 

DCE NIRS 0.68 0.43 
(Diop, Kishimoto, 
Toronov, Lee, & 
Lawrence, 2015) 

A list of the abbreviations in Table 1-1: A list of DCS validation studies; modified from (Mesquita et al., 
2011): Dynamic contrast enhanced (DCE) NIRS; Arterial spin labeling (ASL) MRI; Phase-contrast (PC) MRI; 
Photodynamic therapy (PDT); Transcranial Doppler ultrasound (TCD); Congenital heart defect (CHD); 
Patent ductus arteriosus (PDA); Superior vena cava (SVC); Jugular vein (JV). 
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Overall, the majority of validation studies listed in Table 1-1 have concluded that 

DCS can accurately track relative changes in blood flow in various tissues. Generally, 

DCS is used to measure relative flow since quantification requires accurate estimation of 

the tissue optical properties (Diop et al., 2011; Irwin et al., 2011; Z. Li et al., 2015). 

However, some validation studies (included in Table 1-1) have correlated BFIs measured 

by DCS with perfusion (i.e. transcranial Doppler ultrasound, ASL-MRI, DCE NIRS, and 

phase-contrast MRI) suggesting that the BFIs measured by DCS represent true perfusion, 

despite its diffusion units [cm2/s] (Buckley et al., 2009; Diop et al., 2011; Jain et al., 

2014; Roche-Labarbe et al., 2010; Yu et al., 2007). The conversion of a BFI obtained by 

DCS into perfusion units (mL/100g/min) can be achieved by calibrating DCS from an 

independent perfusion measurement, such as by DCE NIRS (Section 1.4.3) (Diop et al., 

2011; Gurley, Shang, & Yu, 2012; Z. Li et al., 2015). This combination of DCS and TR 

NIRS also provides a means of quantifying CMRO2 by combining StO2 (Section 1.4.2) 

and CBF measurements. 

1.6.1 Applications of DCS in Various Tissue Types 

Tissue hemodynamics are important for providing sufficient oxygen to meet metabolic 

demands. In particular, highly vascularized tissues, such as brain and tumour, are 

attractive applications to monitor changes in blood flow by DCS.  

Monitoring hemodynamics of skeletal muscle is another growing clinical 

application of DCS, particularly for peripheral artery disease. Following calf muscle 

ischemia, which was induced by ligating a femoral artery in mice, reperfusion was 

established by DCS in 90 % of healthy mice (Mesquita et al., 2010). Another study 

acquired optical data in healthy human arm and leg flexor muscles during arterial cuff 

occlusion detecting rapid drops in blood flow, but only gradual decreases of oxygen 

saturation were found (Yu, Durduran, Lech, et al., 2005). Recently, the BFI measured by 

DCS at baseline has been calibrated by a venous-occlusion technique, in which, the 

increase rate of blood volume following the release of an occluding artery is converted to 

perfusion units by assuming an average hemoglobin concentration and accounting for 

hemoglobin molecular weight (Gurley et al., 2012). Later this calibration technique was 

further investigated to confirm the total hemoglabin increase rate due to venous-occlusion 
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agrees well with BFIs measured by DCS (Z. Li et al., 2015). However, exercise protocols 

are susceptible to motion artifacts that can distort the DCS signal. Co-registration 

techniques are required to separate true blood flow response from motion artifacts 

(Gurley et al., 2012; Shang, Symons, Durduran, Yodh, & Yu, 2010). 

In oncology, DCS has been used to characterize tumour hemodynamics with the 

goals of detecting highly vascularized tumours and assessing the efficacy of therapeutic 

treatments in pre-clinical experiments (Becker, Paquette, Keymel, Henderson, & Sunar, 

2010; Sunar et al., 2007; Yu, Durduran, Zhou, et al., 2005) and clinical studies (Choe et 

al., 2014; Durduran et al., 2005; Sunar et al., 2010; Yu et al., 2006). In 2005, Durduran et 

al. observed increased blood flow in patients with breast tumours, likely due to 

angiogenesis (Durduran et al., 2005). Since this original study, cancer applications of 

DCS have extended to monitoring photodynamic therapy (PDT) of prostate cancer and 

basal cell carcinomas (Becker et al., 2010; Yu et al., 2006). In addition, the effects of 

chemotherapy on breast cancer, and head and neck tumours have been investigated 

(Sunar et al., 2010; Zhou et al., 2007). All studies observed significant flow effects early 

(from minutes to the first week) following cancer therapy treatment, highlighting the 

potential of DCS as a tool for monitoring cancer hemodynamic responses; however, all 

studies had relatively small sample sizes (<8). Recently, a moderate-sized clinical study 

(32 patients) measured significantly high flow in malignant breast cancer by a hand-held 

DCS probe (Choe et al., 2014). These studies illustrate the potential for DCS to identify 

malignant cancer and monitor optically accessible tumours in the clinic. 

1.6.2 Applications of DCS in Brain Tissue 

The primary application of DCS has been to monitor CBF. Due to the appeal that signal 

contamination from extracerebral tissue is minimal and photons predominantly 

interrogate cortical tissue, many animal studies have been conducted in rats, mice and 

piglets (Buckley et al., 2014; Durduran & Yodh, 2014). Animal models that mimic 

neurocritical conditions have been used to demonstrate the capability of DCS to track 

real-time flow changes. For example, in the rat brain, relative CBF during cortical 

spreading depression observed an initially strong increase followed by a sustained 

decrease (Zhou et al., 2006). Shang et al. showed that DCS could detect large reductions 



29 

 

in CBF (> 75%) during bilateral occlusion of the common carotid arteries in mice, as well 

as reperfusion following unclipping (Shang, Chen, Toborek, & Yu, 2011). A recent study 

using a TBI mouse model demonstrated that baseline CBF could be used as a biomarker 

of cognitive outcome following repetitive concussions (Buckley et al., 2015). DCS has 

also been used to detect the sizable CBF reduction that occurs following acute TBI in a 

nonimpact inertial rotational swine model (Zhou et al., 2009). 

Due to its good temporal resolution (i.e. order of seconds), DCS has been used to 

detect the CBF response to functional activation in humans. The first application was by 

Durduran et al. who measured the CBF increase in the motor cortex during a simple 

finger tapping task (Durduran et al., 2004). This study paved the way for investigations of 

functional monitoring of cerebral hemodynamics by DCS. For example, various oral 

tasks were investigated to better understand speech impediments, such as stuttering 

(Tellis, Mesquita, & Yodh, 2011). While its adaptation to functional activation tasks 

illustrated the versatility of DCS, its greatest promise is as a bedside monitor in the ICU.  

Clinical studies have investigated patient management techniques, such as 

administering medication and head-of-bed (HOB) strategies. First, administrated dose of 

NaHCO3, which is a common medication for acidemia in the ICU, was observed to 

linearly relate to CBF increases (Buckley et al., 2013). Also, HOB strategies were 

investigated in patients with acute ischemic stroke to observe the effects of CBF by 

adjusting the angle of recline of the patient (Durduran et al., 2009; Favilla et al., 2014). 

Typically, stroke patients resulted in significant increases of CBF by HOB techniques; 

however, some patients responded paradoxically, highlighting the importance of 

monitoring neurocritical management techniques to individualize patient care. 

1.6.3 Hybrid Optical Modality to Measure CMRO2 

As mentioned earlier, the combination of DCS and NIRS provides a safe and non-

invasive means to assess CMRO2 at the bedside (Boas & Franceschini, 2011; Buckley et 

al., 2014; Durduran, Choe, et al., 2010; Durduran & Yodh, 2014). The first study to 

combine photon diffusion methods by a hybrid DCS/NIRS technology measured regional 

blood flow, hemoglobin concentration and blood oxygen saturation in rat brain (Cheung 
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et al., 2001). The appeal for an all-optical hybrid system capable of measuring cerebral 

hemodynamics and cerebral oxygen metabolism in tissue has prompted extensive 

research. Next, a hybrid optical system was used to monitor CMRO2 changes during 

focal cerebral ischemia in rats (Culver et al., 2003), which was adapted to the adult brain 

(Durduran et al., 2004). 

Over the last few years, interest in the use of an all-optical hybrid modality has 

expanded towards studies measuring relative changes of cerebral metabolism in healthy 

infants (Buckley et al., 2009; Goff, Buckley, Durduran, Wang, & Licht, 2010; Roche-

Labarbe et al., 2010). The idea to measure cerebral metabolism with NIRS is not novel 

(Franceschini et al., 2007), but computing CMRO2 with the inclusion of DCS reduced 

intersubject variability (Roche-Labarbe et al., 2010). This combination has been used to 

map developmental changes in the early stages of life, in which the measured average 

metabolism increased by 40 % in newborns over their first 6 weeks of life (Roche-

Labarbe et al., 2010). Roche-Labarbe et al. later reported lower CMRO2 values at lower 

gestational ages (Roche-Labarbe et al., 2012). Furthermore, a couple studies observed 

increases in CMRO2 in the injured neonatal brain compared to healthy infants, and 

suggest CMRO2 is a better biomarker of brain injury than StO2 alone (Grant, Roche-

Labarbe, & Surova, 2009; Lin et al., 2013). Aside from monitoring brain development, a 

number of studies investigated effects of therapeutic treatments in sick infants. For 

example, one study found metabolism to be unaltered during hypercapnia in neonates 

with congenital heart disease, despite significant increases in CBF and oxyhemoglobin 

(Durduran, Zhou, et al., 2010). Recently, another study investigated infants with patent 

ductus arteriosus who underwent treatment by indomethacin, a well-known 

vasoconstrictor, and found reductions in CBF and StO2, despite no changes in CMRO2, 

before and after pharmaceutical ingestion (Diop et al., 2015). Monitoring the 

neurovascular coupling of a developing brain by DCS/NIRS provides a means for early 

detection of brain injury and monitoring the efficacy of therapeutic treatment. 

1.6.4 Limitations 

Despite the employment of DCS in a number of applications, both pre-clinical and 

clinical, there remain some limitations that prevent the translation of DCS to the ICU. 
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These include susceptibility to motion, sensitivity to probe pressure, low SNR, separation 

of blood flow in cerebral and extracerebral tissues, and flow quantification. 

Intensity fluctuations measured by DCS are caused primarily by photon 

interactions with dynamic scatterers in the interrogated medium. However, additional 

fluctuations are falsely detected from static scatterers due to the motion of probes, which 

increase the variability of the estimated BFI (Belau et al., 2010). A few possible solutions 

are suggested, including glueing the fibers with collodion (Yücel, Selb, Boas, Cash, & 

Cooper, 2014), time gating with a dynamometer (Shang et al., 2010), and analytical 

approaches that filter artifacts due to motion, similarly to functional NIRS techniques 

(Cooper et al., 2012). The latter idea is perhaps the most feasible but little work has 

focused on reducing errors due to motion. Current data acquisition setups require the 

optical probes to be secured strongly to the interrogated medium in order to limit motion 

artifacts. 

A more prominent source of error than motion is the effects of contact pressure 

between the skin and the DCS probes. Typical pressure (i.e. 20-55 mmHg) required to 

hold the optical probes in place on the surface of tissue have been shown to influence the 

DCS signal in scalp or muscle (Baker et al., 2015; Mesquita et al., 2013). To avoid errors 

caused by pressure variations, non-contact optical probes have been developed (Cheung 

et al., 2001; T. Li et al., 2013; Yu, Durduran, Zhou, et al., 2005). Although this technique 

is an interesting approach, there are limitations, including detection of stray light and loss 

of depth sensitivity. Recent advancements in non-contact probes show comparable 

performance to contact probes, (Han et al., 2015; He et al., 2015), but further 

technological advancements are required before a non-contact probe can be used to assess 

hemodynamics in deep tissue, such as cortical tissue in adults. Furthermore, applying a 

non-contact emission probe to the head would be highly susceptible to local 

inhomogeneities, such as hair, which limit measurements of the prefrontal cortex via the 

forehead. Advantageously, a contact probe provides optimal optical coupling through 

hair, especially by designs of the light collection tip, such as a funnel-shaped tip, which 

displaces hair from the detection field of view (Dietsche et al., 2007). 
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An unavoidable complication of optical methods is the limited depth penetration 

of NIR light in a highly scattering medium, such as tissue. The highly scattering medium 

makes it difficult to achieve excellent SNR at large source-detector distances since less 

light reflected from the medium is detected. A simple solution to improving the SNR is to 

increase the laser emission power, but to avoid excessive heating of the skin, the output 

power of a continuous laser must be below 28.4 mW (Baker, 2015). In addition, less light 

is collected in DCS compared to other NIRS techniques, due to the requirement of single-

mode detection fibers. Dietsche et al. improved SNR by collecting light from multiple 

fibers, but each fiber must be coupled to its own detector, which can become expensive 

(Dietsche et al., 2007).  

Another approach for improving SNR or depth sensitivity is by developing robust 

instrumentation or data analysis techniques. Rather than computing an autocorrelation 

curve at multiple delay times, single correlation times may be used to monitor flow 

changes, and the early correlation times may be utilized for better depth sensitivity 

(Baker et al., 2014). Also, combining DCS analysis with a software correlator, rather than 

the conventional hardware correlator, may provide better fitting results and is less 

expensive (Dong et al., 2012). Recently, a new software correlator that computes the 

autocorrelation function at selected correlation times was shown to provide temporal 

resolutions capable of detecting heart-rate fluctuations in CBF (Wang et al., 2016).  

The innovative DCS technologies that improve SNR provide a means to 

accurately measure flow changes in deep tissue, such as cortical tissue in the adult head. 

Extracerebral tissues are known to contaminate the optical signal, which underestimates 

the BFI measured by DCS (Durduran et al., 2004; Gagnon, Desjardins, et al., 2008). 

Partial volume errors are a complicated problem with NIR techniques due to the poor 

spatial resolution. Originally, a simple approach of applying a correction factor based on 

partial volume estimates was suggested (Durduran et al., 2004), but extracerebral tissue 

thickness differences between subjects vary the sensitivity of brain tissue. Furthermore, 

techniques that adjust the weight of the fit to early correlation times increase the 

sensitivity to deeper tissue (Selb et al., 2014); however, they do not separate light 

propagation in multiple tissue types. 
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 A method to separate flow indices in different tissue layers (scalp, skull, and 

brain) was used to measure functional activation due to finger tapping (Jun Li et al., 

2005), but only a few studies have investigated the feasibility of using layered models to 

improve the accuracy of CBF monitoring (Gagnon, Desjardins, et al., 2008; Jaillon et al., 

2007; Jun Li et al., 2005). The importance of separating scalp and brain is critical since 

flow in the scalp dominates the DCS signal (Mesquita et al., 2013). A recent algorithm 

has been proposed to separate scalp blood flow (SBF) and CBF by modulating the 

pressure between the tissue surface and optical probes (Baker et al., 2015); however, this 

technique relies on a pressure calibration stage that induces a flow change in the scalp 

only. The authors present an intriguing technique that would be strengthened by 

validation with independent flow measures. A model to separate flow estimates in the 

brain and the scalp without requiring calibration would be ideal. 

Another caveat of flow measured by DCS is the inability to assess absolute 

perfusion. Currently, DCS can only measure relative changes in blood flow due to the 

arbitrary units [cm2/s] of a BFI. Diop et al. proposed an all-optical approach to convert 

the DCS flow index into units of absolute perfusion by measuring CBF by DCE NIRS 

(Diop et al., 2011). This technique could also be extended to monitor CMRO2, which is 

one of the motivations of this thesis.  

1.7 Research Objectives 

The goal of this doctoral work was to develop a non-invasive optical imaging system 

capable of monitoring blood flow and oxygenation in the cerebral microvasculature of 

patients at the bedside. Considering the main goal to develop DCS towards the clinic, the 

following objectives were addressed:  

1. Design and construct an optical imaging system capable of measuring flow and 

oxygenation. 

2. Quantify CMRO2 by an all-optical method. 

3. Investigate the best model to characterize moving scatterers in the brain. 
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4. Develop a multi-layered model to improve depth sensitivity. 

5. Validate DCS with computed tomography perfusion (CTP). 

Each chapter in this dissertation represents an advancement in the field with the ultimate 

goal of developing a safe, non-invasive neuromonitoring device for patients in the ICU. 

1.8 Thesis Outline 

The remainder of the thesis is divided into three chapters that outline published studies 

and a final concluding chapter. 

1.8.1 Measurements of Absolute Cerebral Metabolic Rate of 
Oxygen by a Hybrid Optical Modality that Includes Diffuse 
Correlation Spectroscopy (Chapter 2) 

An all-optical imaging technique was employed to measure changes in absolute CMRO2 

in newborn piglets, which were validated against an invasive gold standard method. This 

chapter is based on the paper entitled “Quantifying the cerebral metabolic rate of oxygen 

by combining diffuse correlation spectroscopy and time-resolved near-infrared 

spectroscopy”, published in the Journal of Biomedical Optics in 2013 by Verdecchia K, 

Diop M, Lee T-Y, and St. Lawrence K. 

1.8.2 Measurements of Cerebral Blood Flow in Pigs by Diffuse 
Correlation Spectroscopy on the Exposed Cortex (Chapter 
3) 

Motivation for describing motion of RBCs as Brownian diffusion is not well understood 

but is applied frequently by DCS studies due to its superior fit than other models. This 

chapter investigates the best flow model to characterize blood diffusion in cortical tissue 

by placing the optical probes directly on the exposed brain of adolescent pigs in order to 

remove any confounding effects of extracerebral tissues. Furthermore, the validity of the 

CBF changes measured by DCS was compared to CTP. This chapter is based on the 

paper entitled “Assessment of the best flow model to characterize diffuse correlation 

spectroscopy data acquired directly on the brain”, published in Biomedical Optics 

Express in 2015 by Verdecchia K, Diop M, Morrison LB, Lee T-Y, and St. Lawrence K. 



35 

 

1.8.3 Measurements of Cerebral Blood Flow in Adolescent Pigs by 
Diffuse Correlation Spectroscopy (Chapter 4) 

In the adult head, the extracerebral tissues highly dominate an optical signal resulting in 

underestimating CBF changes by DCS. A multi-layered model was implemented in 

adolescent pigs to separate the blood flow in cerebral and extracerebral tissues. 

Furthermore, the validity of the CBF changes measured by a multi-layered DCS 

technique was compared to CTP. This chapter is based on the paper entitled “Assessment 

of a multi-layered diffuse correlation spectroscopy method to monitor cerebral blood 

flow changes in adults”, published in Biomedical Optics Express in 2016 by Verdecchia 

K, Diop M, Lee A, Morrison LB, Lee T-Y, and St. Lawrence K. 

1.8.4 Conclusion and Future Work (Chapter 5) 

In the final chapter, the main results from the thesis are summarized and a discussion is 

provided on their experimental and clinical implications. Based on the findings in this 

thesis, areas of interest for future work are discussed and principle conclusions are 

presented. 
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Chapter 2  

2 Measurements of Absolute Cerebral Metabolic Rate of 
Oxygen by a Hybrid Optical Modality that Includes 
Diffuse Correlation Spectroscopy 

This chapter is adapted from the paper entitled “Quantifying the cerebral metabolic rate 

of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared 

spectroscopy” by Verdecchia K, Diop M, Lee T-Y, St. Lawrence K, published in the 

Journal of Biomedical Optics vol. 18(12) pp. 27007 (2013). 

2.1 Introduction 

Improvements in neonatal intensive care have reduced the mortality rate associated with 

preterm birth, but unfortunately these infants remain at a high risk of neurological 

complications, including learning disabilities and cerebral palsy (Behrman, 2006). 

Preterm infants are vulnerable to ischemic and hemorrhagic brain injury in part because 

of an underdeveloped cerebral vasculature, including limited or impaired autoregulation 

(Volpe, 1990). As a result, unstable arterial blood pressure could lead to dangerous 

fluctuations in cerebral blood flow (CBF). Recent studies using near-infrared 

spectroscopy (NIRS) to monitor cerebral blood oxygenation have reported that periods of 

impaired autoregulation are not uncommon in preterm infants; however, a correlation 

between the occurrence of impaired autoregulations and brain lesions was not observed 

(O’Leary et al., 2009; Soul et al., 2007; Wong et al., 2008). 

Using cerebral blood oxygenation to identify critical CBF thresholds is potentially 

confounded by the indirect relationship between cerebral blood oxygenation and CBF, as 

the former also depends on the cerebral metabolic rate of oxygen (CMRO2), the cerebral 

blood volume (CBV) and arterial oxygen saturation (J. Cooper et al., 2011). An 

alternative approach would be to combine NIRS with diffuse correlation spectroscopy 

(DCS), an emerging optical method sensitive to CBF (Boas & Yodh, 1997; Cheung, 

Culver, Takahashi, Greenberg, & Yodh, 2001; Durduran et al., 2010). This combination 

has the advantage of providing a means of monitoring both CBF and CMRO2 (Durduran 
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et al., 2004; Roche-Labarbe et al., 2010, 2012). The latter can be determined from blood 

oxygenation and flow measurements and is considered a more sensitive indicator of 

tissue viability (Boas & Franceschini, 2011; Powers, Grubb, Darriet, & Raichle, 1985). 

For example, CMRO2 has been shown to be more sensitive to the severity of cerebral 

hypoxia-ischemia than NIRS oxygenation measurements alone (Tichauer, Brown, 

Hadway, Lee, & St. Lawrence, 2006; Tichauer, Elliott, Hadway, Lee, & St. Lawrence, 

2009). The combination of NIRS and DCS could therefore help identify clinically 

significant passive-pressure CBF by detecting flow fluctuations large enough to affect 

cerebral energy metabolism. 

The purpose of this study was to demonstrate that changes in absolute CMRO2 

could be measured by combining NIRS and DCS. In order to quantify CMRO2, 

techniques for measuring absolute CBF and cerebral blood oxygenation are required. In 

this study, relative blood flow changes measured by DCS were converted into units of 

CBF using a bolus-tracking time-resolved (TR) NIRS technique to measure baseline CBF 

(Diop, Verdecchia, Lee, & St. Lawrence, 2011). Cerebral blood oxygenation was 

determined from multi-wavelength TR NIRS measurements. The accuracy of the 

oxygenation measurements was assessed by directly measuring blood oxygenation in the 

sagittal sinus. The sensitivity of the hybrid approach to changes in CMRO2 was 

investigated by manipulating cerebral metabolism in newborn piglets by altering the 

anesthetics and by injecting sodium cyanide, a mitochondrial inhibitor (C. Cooper et al., 

1999; Tichauer, Hadway, Lee, & St. Lawrence, 2006). 

2.2 Methods 

2.2.1 Animal Model 

This study was approved by the Animal Use Subcommittee at Western University. 

Experiments were carried out on newborn Duroc pigs (<3 days old). All surgical 

procedures were performed while piglets inhaled 3-4% isoflurane. Piglets were 

tracheotimized and mechanically ventilated on an oxygen/medical air mixture. Catheters 

were inserted into an ear vein, the left femoral artery, and superior sagittal sinus through 

a burr hole drilled into the skull. The ear catheter was used to inject the light absorbing 
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dye, indocyanine green (ICG) (Sigma-Aldrich, Missouri, US), and the different drugs 

used in the experiment. The femoral and sagittal sinus catheters were used to acquire 

blood samples in order to determine the oxygen saturation of arterial blood (SaO2) and 

cerebral venous blood (SvO2), respectively. The superior sagittal sinus primarily drains 

the cerebral cortex, which is the brain region interrogated by the optical probes (Scremin, 

Sonnenschein, & Rubinstein, 1982). The femoral line was also used to monitor heart rate 

(HR), blood pressure, blood gases (paCO2 and paO2), and blood glucose (BG). A 1-2 ml 

infusion of a 25% glucose solution was administered intravenously if glucose levels fell 

below 4.5 mmol/L. A heated water mattress was used to maintain rectal temperature 

between 37.5 and 38.5°C throughout the experiment. After surgery, the optical probes 

were positioned on the scalp using a custom-made probe holder with a source-detector 

separation of 20 mm. A separation of 10 mm between the probes from the two optical 

systems ensured that they interrogated roughly the same brain region. No data were 

acquired for at least 30 minutes following surgery to ensure the piglet was 

physiologically stabile. Baseline conditions were identified by blood samples revealing 

normal paCO2 and paO2: 38-42 mmHg and 100-170 mmHg, respectively (Reivich, 1964). 

2.2.2 Experimental Procedure 

Five different cerebral metabolic states were induced by manipulating the anesthetics and 

by injecting sodium cyanide. Following a change of condition, data acquisition was 

delayed by approximately 5 min to allow time for cerebral metabolism to stabilize. Under 

each condition, DCS was used to measure the blood flow index (BFI) and multi-

wavelength TR NIRS was used to measure the oxygen saturation of cerebral tissue 

(ScO2) (see instrumentation section). Blood samples (0.3-0.5 ml) were drawn from the 

femoral artery and the sagittal sinus to determine SaO2 and SvO2, by hemoximetry 

(ABL80 Flex Co-ox, Radiometer, Copenhagen, DK). The DCS and TR NIRS data were 

acquired in three blocks during each condition (Figure 2-1). In each block, 96 TR NIRS 

measurements were acquired with an integration time of 1 s and 20 DCS measurements 

were acquired with an integration time of 30 s. All data sets for each condition were 

acquired within approximately 45 minutes. 
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Figure 2-1: Diagram of the experimental protocol 

An experimental protocol diagram showing the induced metabolic conditions in chronological order with the 
sequence of measurements acquired at each condition. The solid boxes are distinctive steps, whereas the 
dotted box is recurring for each induced condition numbered I-V. 

Initial baseline measurements were acquired under 1.75-2% isoflurane mixed with 

a combination of medical air and oxygen to maintain normal paO2. In addition to the 

standard data acquisition protocol, CBF was measured by a dynamic contrast-enhanced 

TR NIR method using ICG as an intravascular contrast agent (Brown et al., 2002). This 

method requires injecting an intravenous bolus of ICG (0.01 mg/kg), followed by 

measuring the time-varying concentration of ICG in arterial blood and the brain. The 

brain ICG concentration curve was determined by acquiring a series of TR NIR 

measurements at a sampling rate of 400 ms. The arterial concentration curve was 

measured using a pulse dye densitometer (DDG 2001, Nihon Kohden, Tokyo, JP) 

attached to a foot. Three successive sets of ICG data were acquired to improve the 

precision of the baseline CBF measurement. Successive ICG injections were separated by 

10 min to allow time for ICG clearance from the previous injection. The average value of 

CBF was used to convert subsequent DCS BFI measurements into units of CBF (Diop et 

al., 2011). 

Following the baseline measurements, TR NIRS and DCS were used to measure 

ScO2 and the BFI, respectively, under four conditions. First, CMRO2 was increased by 

discontinuing isoflurane and starting an intravenous infusion of fentanyl (0.02 mg/kg/h) 

combined with inhalation of 70% nitrous oxide (N2O). Second, the barbiturate 

pentobarbital (5 mg/kg) was injected intravenously to decrease CMRO2. Cerebral energy 

metabolism was further reduced by switching off the fentanyl/N2O mixture, returning the 

piglet to isoflurane (1.75-2%), and administering another 5 mg/kg of pentobarbital. For 

the final condition, sodium cyanide was injected intravenously at a dose of 5 mg/kg. This 
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non-lethal dosage of cyanide is insufficient to completely inhibit mitochondrial function 

(Sakamoto et al., 2001); however, it is sufficient to reduce mitochondrial respiration (C. 

Cooper et al., 1999). 

2.2.3 Instrumentation 

2.2.3.1 Time-Resolved NIRS System 

The TR instrument for the ScO2 measurements consisted of three picosecond diode lasers 

emitting at 760, 802 and 830 nm (LDH-P-C-810, PicoQuant, Berlin, DE). The output and 

pulse repetition rate of each laser were set to 1.4 mW and 29.3 MHz, respectively. A 

variable neutral density filter (NDC-50-4M, Thorlabs, Newton, New Jersey, US) was 

placed in front of each laser to adjust the intensity of the beam before the light was 

coupled into a multimode fiber (emission probe: N.A. = 0.22, core = 400 µm, 4.7 mm 

outer diameter; Fiberoptics Technology, Pomfret, Connecticut, US). Fibers of different 

lengths, forming a bundle, were used to provide time multiplexing (Contini et al., 2006). 

For the ICG bolus-tracking measurements, only the 802 nm laser was used at a repetition 

rate of 80 MHz to optimize the signal-to-noise ratio (SNR) (Diop, Tichauer, Elliott, 

Migueis, & Lee, 2010). 

Reflected light from the head was collected with a 1.5 m long multimode fiber 

placed 20 mm from the emission fiber bundle on the piglet’s intact head. The collected 

photons were then sent to a Peltier-cooled photomultiplier tube (PMT) (PMC-100, 

Becker & Hickl, Berlin, DE), coupled to a time-correlated single photon counting module 

(SPC-134, Becker & Hickl, Berlin, DE). Temporal point spread functions (TPSFs) were 

computed by synchronizing the photon detection with the laser pulse trigger provided by 

the driver (PDL 828, PicoQuant, Berlin, DE). Each TPSF was acquired for one second 

for the oxygenation measurements and 400 ms for the ICG bolus-tracking method. 

Temporal dispersion caused by the system was corrected for by measuring the instrument 

response function (IRF) (Diop, Tichauer, Elliott, Migueis, Lee, et al., 2010). To avoid 

artifacts such as instrument temporal drift, the TR NIRS system was allowed a 1.5 h 

warm up delay period prior to the experiment (Diop, Tichauer, Elliott, Migueis, & Lee, 

2010; Ntziachristos & Chance, 2001). 
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2.2.3.2 Diffuse Correlation Spectroscopy 

The DCS light source was a continuous-wave laser emitting at 785 nm (DL785-100-S, 

CrystalLaser, Nevada, US) with a maximum output power of 100 mW and a coherence 

length greater than 5 m. Similar to the time-resolved setup, the laser beam was first 

attenuated by a variable neutral density filter (NDC-50-4M, Thorlabs, New Jersey, US) 

and then coupled into an emission fiber (emission probe: N.A. = 0.22, core = 400 µm, 4.7 

mm outer diameter; Fiberoptics Technology, Connecticut, US). Photons scattered from 

tissue were detected at a distance of 20 mm away from the emission probe using a 4-m 

single-mode fiber (SMF-28e+, N.A. = 0.14, core = 125 µm, single-mode cutoff 

wavelength at 1260 nm). Since the detection fiber is a few-mode fiber at the laser 

emission wavelength, the fiber was wrapped into a 15 cm coil to attenuate the higher-

order modes by converting them into non-propagating modes (Dietsche et al., 2007; Diop 

et al., 2011; Gisler et al., 1995). Photons were detected by a single photon counting 

module (SPCM-AQR-15-FC, PerkinElmer Canada Inc, Quebec, CA). The output from 

the detector was sent to a correlator board (DPC-230, Becker & Hickl, Berlin, DE) to 

compute the normalized intensity autocorrelation function. 

2.2.4 Data Analysis 

2.2.4.1 Measuring Cerebral Oxygen Saturation by TR NIRS 

Brain tissue optical properties (i.e. the absorption and reduced scattering coefficients, µa 

and µ́s, respectively) were quantified using the solution to the diffusion approximation for 

a semi-infinite turbid medium with extended boundary conditions (Kienle & Patterson, 

1997). The three sets of TPSFs collected at each condition were averaged together and 

were fit by the theoretical model convolved with the measured IRF (Ntziachristos & 

Chance, 2001). Initial values for µa, µś, and an amplitude scaling factor were obtained by 

analyzing the baseline data with a three-parameter non-linear fitting routine (Diop, 

Tichauer, Elliott, Migueis, Lee, et al., 2010). The amplitude term was included in the 

fitting to take into account variations in laser power, detection gain and coupling 

efficiency (Diop, Tichauer, Elliott, Migueis, Lee, et al., 2010; Ntziachristos & Chance, 

2001). To improve the stability of the fitting algorithm, the TPSFs were analyzed for each 
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metabolic condition using only µa as a fitting parameter; µś and the amplitude scaling 

factor were fixed to the values retrieved from the three-parameter fit at baseline. This 

approach was reasonable since the metabolic changes only affect blood oxygenation and 

not tissue scattering properties. However, in more extreme conditions that could also alter 

light scattering, such as large changes in the total hemoglobin concentration (Paunescu et 

al., 2001), µś could be included as a fitting parameter. The concentrations of oxy- and 

deoxy-hemoglobin ([HbO2] and [Hb], respectively) were derived from the measured µa 

values using the known wavelength-dependent extinction coefficients and assuming a 

cerebral water content of 85% for neonatal pig (Holland, Haas, Norman, Brant-Zawadzki, 

& Newton, 1986). Cerebral oxygen saturation, ScO2, was defined as: 

ScO =       (2.1) 

2.2.4.2 Measuring Absolute CBF by TR NIRS 

The methodology underlying the TR NIRS bolus-tracking technique for quantifying 

CBF, which is used extensively with imaging modalities such as magnetic resonance 

imaging and computed tomography (Wintermark et al., 2005), assumes that the 

microvasculature can be modeled as a linear time-invariant system. For this application, 

linearity means that the contrast agent concentration in brain tissue is linearly 

proportional to the concentration in arterial blood, and time-invariance implies that the 

hemodynamic properties must remain constant during the acquisition period. Under these 

assumptions, the time-varying concentration of ICG in tissue, Ct(t), is related to the 

arterial blood ICG concentration curve, Ca(t), by the convolution operator: 

C t = CBF C t − u R u du    (2.2) 

where CBFTR denotes the CBF measurement obtained by the TR NIRS method and R(t) 

is the impulse residue function, which represents the fraction of ICG in the tissue at time t 

following an idealized unit impulse injection at t = 0 (Zierler, 1965). Ct(t) is determined 

from change in µa due to the passage of ICG through the cerebral microvasculature and 

Ca(t) was measured by the DDG as outlined in Section 2.2 (Diop, Tichauer, Elliott, 

Migueis, Lee, et al., 2010). The flow-scaled impulse residue function, CBFTR R(t), was •
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extracted from Ca(t) and Ct(t) by performing a deconvolution and its initial height equals 

CBFTR, since by definition R(0) = 1 (Brown et al., 2002). 

2.2.4.3 Measuring Changes in CBF and CMRO2 by TR NIRS 

The DCS data from each cerebral metabolic condition were analyzed by the solution to 

the correlation diffusion equation for a semi-infinite homogeneous medium assuming 

Brownian motion of scatterers (Boas, Campbell, & Yodh, 1995; Boas & Yodh, 1997; 

Cheung et al., 2001). The model was fit to the normalized intensity autocorrelation 

function (g2) using the µa and µś values obtained by TR NIRS. The fitting parameters 

were a scaled diffusion coefficient, which is referred to as the BFI, and a coherence factor 

(β) (Diop et al., 2011). The change in the BFI at a given condition relative to baseline, 

denoted rCBF, is given by: 

rCBF =     (3.3) 

The BFI can be converted into units of CBF (ml/100g/min) using the baseline CBF 

measurement determined by the TR NIRS bolus-tracking method: 

CBF = CBF · 1 + rCBF      (3.4) 

The CMRO2 (ml O2/100g/min) for each metabolic state was determined by conservation 

of mass (i.e. the Fick principle), which assumes that the amount of oxygen consumed in 

the tissue is equal to the arteriovenous oxygen difference (Siesjo, 1978): 

CMRO = CBF ∙ K ∙ tHb ∙ SaO − SvO     (3.5)  

where, SaO2 and SvO2 are the arterial and venous oxygen saturations, respectively, K is 

the oxygen carrying capacity of hemoglobin (1.39 ml of O2 per g of Hb) (Dominguez de 

Villota, Ruiz Carmona, Rubio, & de Andrés, 1981), and [tHb] is the total hemoglobin 

concentration. In these experiments, SaO2 was measured by pulse oximetry, [tHb] was 

determined from the average of two baseline arterial blood samples and CBF was 

determined from the calibrated DCS blood flow measurements. The remaining parameter 

SvO2 was determined directly from the sagittal-sinus blood samples and also from the TR 
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NIRS ScO2 measurements. Equation 3.5 neglects the contribution of dissolved oxygen in 

plasma, which is reasonable at normal paO2 values (Brown, Hadway, & Lee, 2003; 

Elwell et al., 2005). For TR NIRS, SvO2 was determined from ScO2 by assuming the 

cerebral blood volume is comprised of a known venous volume fraction (fv) since ScO2 

represents the average cerebral blood oxygenation: 

SvO =     (3.6)  

For this study fv was set to 0.75 (Brun, Moen, & Borch, 1997; Ijichi et al., 2005; 

Mchedlishvili, 1986; Watzman et al., 2000) and using Equation 3.6, the Fick principle for 

the optical measurements is given by: 

CMRO = ∙ ∙ ∙ SaO − ScO     (3.7) 

2.2.5 Statistical Analysis 

Statistical analyses were conducted using SPSS 20.0 (SPSS, Chicago, IL). A repeated 

measures analysis of variance (ANOVA) was used to identify significant differences in 

SvO2 and CMRO2 between metabolic conditions and between the NIRS and blood-

sampling methods. Bland-Altman analysis was used to compare corresponding CMRO2 

measurements from the two methods (Altman & Bland, 1983). Post-hoc analyses were 

conducted to identify significant differences at each condition, with respect to baseline 

values, for all measured parameters. Statistical significance was defined as p < 0.05 and 

all data are presented as mean ± standard error of the mean (SEM) unless otherwise 

noted. In one animal, measurements were not acquired during the fentanyl/N2O-

pentobarbital condition, which was corrected for by using the Missing Value Analysis 

(MVA) regression algorithm (Graham, 2009). 

2.2.6 Error Analysis 

A Monte Carlo type approach was conducted to investigate how errors in the baseline 

parameters would affect subsequent µa measurements from the one-parameter fitting 

routine. First, a theoretical TPSF was generated using the solution to the diffusion 

approximation for a semi-infinite homogeneous medium and a set of typical experimental 
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values of the scaling amplitude, µa and µś (8000, 0.255 cm-1 and 8.62 cm-1
, respectively) 

(Kienle & Patterson, 1997). The simulated TPSF was convolved with an experimental 

IRF and Poisson noise added to reflect typical experimental data. The noisy TPSF was 

analyzed by the same non-linear fitting routine used with the experimental data to 

generate best-fit estimates of the baseline parameters. Next, another noisy TPSF was 

generated using the initial input values, and a one-parameter fit performed to extract an 

estimate µa. In this step the values of the amplitude factor and µś were set to the estimates 

from three-parameter fit. The entire procedure was repeated 5000 times to generate a 

distribution of best-fit values for each fitting parameter. 

To determine the error in CMRO2 due to uncertainties in the two parameters 

measured under each condition (i.e. BFI and ScO2), the SEM of each parameter was 

determined from the series of measurements acquired at baseline (i.e. 60 and 288 

measurements for BFI and ScO2, respectively). A repeated measures ANOVA was used 

to determine the precision of the baseline CBF values measured by the TR NIRS bolus-

tracking method. 

2.3 Results 

A total of 12 piglets were studied; however, 3 were excluded because the sagittal sinus 

was inadvertently punctured during the insertion of the catheter. A puncture caused blood 

to leak into the cerebral spinal fluid, resulting in erroneous NIRS measurements of 

[HbO2] and [Hb] (Tichauer, Hadway, et al., 2006). One additional experiment was 

excluded due to technical errors with the TR NIRS system, which results in incomplete 

TPSFs. The average physiological parameters at each metabolic condition from the 8 

successful experiments (3 male, 5 female, mean weight = 1.62 ± 0.09 kg, mean age = 

1.88 ± 0.35 days) are given in Table 2-1. 
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Table 2-1: Physiological parameters during different cerebral metabolic levels 

Physiological 

 Parameter 
Baseline Fentanyl/N2O 

Fentanyl/N2O 

+ Pentobarbital 
Pentobarbital Cyanide 

Temperature (°C) 37.8 ± 0.2 37.9 ± 0.1 37.9 ± 0.2 37.4 ± 0.2 37 ± 0.2* 

pH 7.47 ± 0.02 7.46 ± 0.02 7.46 ± 0.01 7.46 ± 0.01 7.35 ± 0.02* 

paCO2 (mm Hg) 40.1 ± 0.4 39.6 ± 0.8 38.7 ± 0.7 39.8 ± 0.6 43.3 ± 2.1 

paO2 (mm Hg) 124 ± 8 72 ± 5* 76 ± 5* 97 ± 8 135 ± 22 

MAP (mm Hg) 42 ± 2 69 ± 2* 82 ± 4* 35 ± 3 27 ± 2* 

HR (min-1) 157 ± 9 241 ± 12* 250 ± 14* 165 ± 11 176 ± 7 

pH = arterial pH; paCO2 = partial pressure of carbon dioxide in the blood; paO2 = partial pressure of oxygen 
in the blood; MAP = mean arterial blood pressure; HR = heart rate 
* p<0.05 compared to parameter value under baseline conditions. 
Average ± SEM 

Of all the measured parameters, only paCO2 showed no significant differences 

between conditions. Blood pH and rectal temperature were significantly different after 

injecting sodium cyanide due to the systemic effect of the drug on metabolism. 

Significant differences in paO2 were found under the two conditions involving 

fentanyl/N2O, which can be explained by a reduction in the inhaled oxygen fraction 

during 70% N2O inhalation. Both HR and MAP showed general changes with the 

different anesthetics as expected (Siesjo, 1978). The average [tHb] measured under 

baseline conditions from the hemoximeter was 8.6 ± 0.8 g/dl. The tissue optical 

properties measured under baseline conditions at 760, 802 and 830 nm, were 7.99 ± 0.47, 

8.63 ± 0.59, and 8.55 ± 0.86 cm-1 for µ s' and 0.251 ± 0.016, 0.240 ± 0.012, and 0.248 ± 

0.009 cm-1 for µa, respectively. 
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Figure 2-2: Measured DCS decay curves during various levels of cerebral 

metabolism 

A sample of DCS decay curves taken from an experiment collected with a sampling time of 30 seconds and 
average count rate of 441 ± 17 kHz. Each curve shown was obtained from the same piglet at a different 
induced metabolic condition. The steeper the decay curve the larger the BFI retrieved and ultimately the 
faster CBF. 

Figure 2-2 shows a sample of DCS intensity autocorrelation curves collected from 

each induced metabolic condition during a single experiment. A steeper DCS decay curve 

is represented by a larger BFI value, indicating faster blood flow. Typical arterial and 

brain ICG concentration curves obtained with the DDG and TR NIRS, respectively, are 

shown in Figure 2-3. The derived baseline CBF value obtained from the ICG data sets 

were used to calibrate all subsequent BFI values obtained by DCS. The measured CBF 

values obtained from the dynamic contrast-enhanced technique ranged from 19 to 50 

ml/100g/min with an average of 32 +/- 4 ml/100g/min. 
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Figure 2-3: Dynamic contrast-enhanced arterial/tissue time-course curves of ICG 

A sample of raw data showing a tissue and an arterial curve measured during the ICG bolus tracking 
experiment. The black curve represents the tissue curve measured with the TR NIRS technique whereas the 
red curve is the arterial curve obtained from the DDG. 

Significant differences were observed in all the BFI values listed in Table 2-2 

compared to baseline, except when pentobarbital was injected while under fentanyl/N2O 

anesthesia. No statistical significant differences were observed between conditions for the 

retrieved baseline β value of 0.157 ± 0.001 which was also in agreement with the 

measured value obtained by Diop et al. (Diop et al., 2011). No significant differences 

were observed in SaO2 at any of the conditions. A repeated measures ANOVA showed a 

significant overall effect by condition for SvO2 [F3,36 = 8.596, Power > 0.99, p<0.01], but 

there was no significant effect by technique [F1,14 = 0.007, p>0.9]. Similarly, there was a 

significant effect by condition for CMRO2 [F3,36 = 59.707, Power > 0.99, p<0.01], but no 

significant effect by technique [F1,14 = 0.014, p>0.9]. These results indicate that the 

various conditions altered cerebral energy metabolism, but there were no significant 

differences in the SvO2 and CMRO2 measurements between the sagittal sinus blood 

measurements and the DCS/NIRS method. 
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Table 2-2: NIRS and blood sample measurements 

Parameter Baseline Fentanyl/N2O 
Fentanyl/N2O 

+ Pentobarbital 
Pentobarbital Cyanide 

BFI (cm2/s) x 109 61 ± 6 92 ± 10* 62 ± 6 30 ± 5* 28 ± 4* 

SaO2 (%) 99.9 ± 0.1 98.8 ± 0.7 98.7 ± 0.7 99.7 ± 0.6 95.8 ± 2.3 

ScO2 (%) 69 ± 2 65 ± 3 61 ± 2 57 ± 3* 59 ± 4 

SvO2 – Blood (%) 62 ± 5 55 ± 5 41 ± 5** 42 ± 6** 46 ± 8** 

SvO2 – NIRS (%) 58 ± 3 54 ± 4 48 ± 3** 42 ± 4** 46 ± 5** 

CMRO2 – Blood 

(ml O2/100g/min) 
1.31 ± 0.21 2.25 ± 0.25** 2.01 ± 0.22 0.99 ± 0.18 0.76 ± 0.15** 

CMRO2 – NIRS 

(ml O2/100g/min) 
1.45 ± 0.18 2.41 ± 0.32** 1.81 ± 0.21 0.99 ± 0.17 0.80 ± 0.15** 

BFI = blood flow index; SaO2 = saturated arterial oxygen; ScO2 = saturated cerebral oxygen; SvO2 = 
saturated venous oxygen; NIRS = near-infrared spectroscopy; CMRO2 = cerebral metabolic rate of oxygen 
* p<0.05 compared to parameter value under baseline conditions. 
** p<0.05 compared to parameter value under baseline conditions for both techniques combined. 
Average ± SEM 

 

Figure 2-4: Mean values of SvO2 and CMRO2 after intake of various 

anesthetics/drugs 

Average SvO2 and CMRO2 values at each induced condition comparing both techniques. The darker grey 
bars represent the NIRS technique, the lighter grey bars represent the blood oxygen sample method, and 
the error bars are standard error of the mean. Here * indicates p<0.05 compared to the parameter value 
under baseline conditions for both techniques combined. 
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Figure 2-4 illustrates the average SvO2 and CMRO2 measurements obtained from 

the blood sample and DCS/TR-NIRS techniques under the different conditions. 

Measurements were obtained over a range from 25 to 70 % for SvO2 and from 0.3 to 4 ml 

O2/100g/min for CMRO2. A Bland-Altman plot of the difference between individual 

CMRO2 measurements from the two techniques is shown in Figure 2-5. The mean 

difference was 0.027 ml O2/100g/min with limits of agreement (i.e. 95% boundaries) of 

0.861 and -0.807 ml O2/100g/min. 

 

Figure 2-5: Bland-Altman analysis of CMRO2 

A Bland-Altman plot demonstrating the difference between NIRS and blood oxygen sample CMRO2 
measurements plotted against the average. Each colour represents a different piglet. The dotted line 
represents the average difference between the two techniques; 0.027 ml O2/100g/min. The solid lines are 
the bias lines which represent the region boundaries for which 95% of the differences lie within; 0.027 ± 
0.834 ml O2/100g/min. 

Figure 2-6 shows the predicted relationship between errors in the baseline optical 

properties to the errors in the amplitude factor as determined from the Monte Carlo 

simulations. The figure demonstrates that at typical experimental noise levels, µś and µa 

were relatively insensitive to errors in the amplitude factor. For example, the error in 

either µ́s or µa was only 6% in the extreme case of a 30% error in the amplitude factor. 
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From the Monte Carlo simulations, the coefficient of variation of µa for the one-

parameter fitting routine was 1.7%. The small magnitude of this error was also reflected 

in the SEM of ScO2 (0.1%) determined from the series of baseline measurements. 

Similarly, the SEM of the baseline BFI was 2%. The repeat measurements of absolute 

CBF from the bolus tracking method indicated that this was the greatest source of error 

with an estimated precision of 11.7%. 

 

Figure 2-6: An error analysis of a three-parameter fit (µa, µ́s, and amplitude factor) 

of the diffusion approximation to TR NIRS data 

An error analysis comparing the effects of noisy experimental data on a three parameter fit (µa, µ́s, and 
amplitude factor) from the diffusion approximation. Black represents µa and red represents µs', while each 
data point represents the error in optical properties corresponding to the error in the amplitude factor from 
the three parameter fit. The generated noise for 5000 simulated TPSFs had an average variance of 16.41 ± 
0.05. 

2.4 Discussion 

The main finding of this study was that changes in absolute CMRO2 could be measured 

by combining two near-infrared techniques: DCS and TR NIRS. This was accomplished 

by combining quantitative CBF and SvO2 measurements obtained by a previously 
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validated DCS/TR-NIRS approach and multi-wavelength TR NIRS, respectively. The 

accuracy of the SvO2 measurements was verified by comparison to direct measurements 

of cerebral blood oxygenation obtained from sagittal sinus blood samples. CBF, SvO2 

and CMRO2 were measured over a metabolic range from approximately 0.3 to 4 ml 

O2/100g/min with no evidence of any level-dependent bias in either the SvO2 or CMRO2 

measurements (Figure 2-4 and Figure 2-5). DCS and NIRS have been combined 

previously to measure relative changes in CMRO2 (Durduran et al., 2004, 2010; Roche-

Labarbe et al., 2010, 2012; Zirak, Delgado-Mederos, Martí-Fàbregas, & Durduran, 

2010); however, this is the first study to use this combination to quantify CMRO2. The 

success of this combined optical approach ultimately depends on the accuracy of the 

underlying CBF and ScO2 measurements. A number of studies have demonstrated the 

ability of DCS to track relative CBF (Buckley, Cook, Durduran, & Kim, 2009; Carp, Dai, 

Boas, Franceschini, & Kim, 2010; Diop et al., 2011; Kim et al., 2010; Zhou et al., 2009). 

In particular, Zhou et al., reported a strong correlation between changes in CBF measured 

by DCS compared to those measured by fluorescent microspheres in newborn piglets 

(Zhou et al., 2009). Similarly, we previously reported a strong correlation between CBF 

measurements obtained by the bolus-tracking TR NIRS technique and the BFI 

determined from DCS (R2 = 0.93) (Diop et al., 2011). 

In our previous study, a single pulsed laser was used to measure the absorption 

changes caused by the flow of ICG through brain tissue (Brown et al., 2002). 

Determining [HbO2] and [Hb], and thereby ScO2, requires measuring the tissue optical 

properties at multiple wavelengths. For this purpose, the TR system was expanded to 

three pulsed lasers, and time multiplexing was used to acquire the corresponding three 

TPSFs within the same time window (Contini et al., 2006). The disadvantage of this 

approach is a lower count rate per channel due to the reduced pulse repetition rate (29.3 

compared to 80 MHz); however, for steady-state oxygenation measurements this was not 

a concern as the SNR can be improved by increasing the integration time. To quantify the 

wavelength-dependent µa and µ́s values, the IRF was measured for each laser at similar 

count rates to those obtained experimentally. Temporal drift and variations in the laser 

pulse width (i.e. jitter) are potential sources of error when measuring tissue optical 

properties by TR NIRS (Ntziachristos & Chance, 2001). To minimize the former, every 
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experiment was preceded by a 1.5 h delay to allow sufficient time for the TR NIRS 

system to stabilize in order to avoid instrument drift during the course of an experiment 

(Diop, Tichauer, Elliott, Migueis, & Lee, 2010). The results displayed in Figure 2-6 

indicate that the baseline µa and µś values could be determined with reasonable accuracy 

even if there were large fluctuations in the amplitude factor, such as due to jitter. A 

possible improvement to the system would be to correct for both drift and jitter by 

acquiring reference data throughout the experiment (Tichauer et al., 2011). 

The precision of CMRO2 will depend on the uncertainties in the baseline optical 

properties, CBF and ScO2. The Monte Carlo simulations demonstrated that the 

uncertainties in the optical properties were small for noise levels typical of the 

experimental TPSFs and had little effect on subsequent µa values determined from the 

one-parameter fitting routine. These predictions were in good agreement with the SEM of 

ScO2 (0.1%) determined from the series of TPSFs acquired during the 5-min baseline 

period. Errors in CBF determined by the calibrated DCS approach will depend on the 

precision of both the baseline CBF determined by the bolus-tracking method and the 

relative BFI obtained by DCS. From repeat bolus injections at baseline, the precision of 

the former was estimated to be 11.7%, which is similar to the value determined 

previously (9.7%) with a continuous-wave NIRS system (Brown et al., 2002). In these 

experiments, the SEM of the BFI was less than 2% due to the large number of 

acquisitions obtained in each condition. A variability of less than 5% would still have 

been achieved if the acquisition time had been reduced to 5 min (i.e. 10 measurements). 

Maintaining the same precision at shorter acquisitions would require increasing the 

number of detectors (Buckley et al., 2009; Dietsche et al., 2007), as only a single SPCM 

was used to acquire the DCS data in these experiments. In addition to the uncertainties in 

the measurements parameters, the accuracy of the CMRO2 measurements will depend on 

the assumed value of the cerebral venous blood volume fraction (fv). The need to assume 

a value is a common limitation with CMRO2 measurements obtained by NIRS and 

positron emission tomography (Elwell et al., 2005; Mintun, Raichle, Martin, & 

Herscovitch, 1984; Tichauer, Hadway, et al., 2006). The good agreement between the 

NIRS CMRO2 measurements and the values derived from sagittal-sinus blood samples 
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(Figure 2-5) indicate that the assumed value of 75% is reasonable. However, any 

variation in fv across animals or subjects will clearly reduce the accuracy of the 

measurements. It may be possible to circumvent this potential source of error by using 

NIRS spiroximetry to measure venous oxygen saturation (Franceschini et al., 2002). 

The retrieved µ́s values at baseline were similar with Diop et al. and Ijichi et al. 

(Diop et al., 2011; Ijichi et al., 2005). However, the average µa at 802 nm was greater than 

the values given in the two previous studies: 0.2 ± 0.009 cm-1
 (Diop et al., 2011) and 

0.189 ± 0.005 (Ijichi et al., 2005). The cause of this difference is uncertain; however, the 

average ScO2 value (69 ± 2 %) was similar to baseline values previously reported in 

piglets (Fantini et al., 1999; Kurth, McCann, Wu, Miles, & Loepke, 2009; Kusaka et al., 

2002; Springett, Newman, Cope, & Delpy, 2000). In addition, the SvO2 values 

determined from the absorption changes at the different metabolic conditions ranging 

from 25 to 70% were in good agreement with the corresponding SvO2 values measured 

directly from sagittal sinus blood samples (Table 2-2, Figure 2-4). Both sets displayed the 

same trend in venous oxygenation as cerebral metabolism was initially increased under 

fentanyl/N2O anesthesia and subsequently decreased with successive injections of 

pentobarbital. 

The overall agreement between CMRO2 measurements derived from TR NIRS 

and sagittal sinus SvO2 values is similar to our previous validation study, which was 

conducted using newborn piglets, but involved a broadband CW NIRS system (Tichauer, 

Hadway, et al., 2006). In that study, the mean difference between the two techniques was 

0.006 ml O2/100g/min and the 95% confidence interval was ± 0.74 ml O2/100g/min. The 

latter is slightly smaller than the boundaries shown in Figure 2-5. However, this 

difference can be explained by the outlier that had an average CMRO2 difference greater 

than the 95% confidence interval. Removing this point reduced the range to ± 0.704 ml 

O2/100g/min, in excellent agreement with the previous results. It is interesting that the 

overall trends reported in the two studies were in good agreement considering the 

different approaches used to quantify cerebral blood oxygenation. The CW NIRS spectral 

data from the previous study were characterized by second derivative spectroscopy, 

which can only estimate [Hb] and not [HbO2] since the latter has no definitive features in 
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the derivative spectrum (Matcher, Cope, & Delpy, 1993). Consequently, CMRO2 was 

determined by normalizing [Hb] by the cerebral blood volume. This step is not required 

for TR NIRS since both [Hb] and [HbO2] are determined from the measured optical 

properties. A further advantage to directly measuring µa and µ́s by TR NIRS is these 

values can also be used in the analysis of DCS data rather than assuming known values. 

Another advantage with TR NIRS is its superior depth sensitivity, which could prove 

useful when adapting these optical technologies to measuring CBF and CMRO2 in adult 

patients (Elliott, Diop, Tichauer, Lee, & St. Lawrence, 2010; Liebert, Wabnitz, 

Steinbrink, Obrig, & Mo, 2004). 

Although both studies demonstrate similar agreements between the NIRS and 

sagittal sinus CMRO2 measurements, there was a large difference in the initial baseline 

CMRO2 values between the two studies: 1.48 ± 0.17 ml O2/100g/min in the current study 

and 2.60 ± 0.28 ml O2/100g/min from Tichauer et al. (Tichauer, Hadway, et al., 2006). 

One possible explanation is the difference in baseline anesthetics in the two studies. 

Baseline measurements in the current study were acquired using a higher concentration of 

isoflurane (1.75-2% compared to 1.5%), which will reduce cerebral energy metabolism. 

Another contributing factor could be the difference in CBF measurements from CW and 

TR NIRS techniques. Previously, we have demonstrated that the CBF values from TR 

NIRS underestimated the CW NIRS values, although the reason for this difference was 

unclear (Diop, Tichauer, Elliott, Migueis, Lee, et al., 2010). Adjusting the current 

CMRO2 values for this difference would increase the mean baseline value to 2.00 ± 0.22 

ml O2/100g/min, which is still below our previous results. Most likely, the overall 

difference between the two studies is a combination of both factors.  

In addition to the different anesthetics, measurements were also conducted after 

administering sodium cyanide. This drug was used to alter cerebral oxidative metabolism 

by an alternative means, namely, the inhibition of mitochondrial cytochrome oxidase. 

Overall, the agreement between the DCS/TR-NIRS and sagittal sinus CMRO2 values 

under this condition was similar to that observed under the different anesthetics. 

However, the metabolic effect of cyanide was smaller than expected based on a previous 

study involving newborn piglets (C. Cooper et al., 1999). This muted effect is likely a 
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result of injecting the sodium cyanide while the animals were under the deepest 

anesthetic (pentobarbital plus isoflurane). Nevertheless, cyanide did cause a small 

reduction in CMRO2, which was observable by both techniques. 

A potential limitation with the current study is that the CBF measurements 

obtained by the calibrated DCS technique were used to convert both the sagittal-sinus and 

NIRS venous oxygenation measurements into CMRO2. Consequently, any systemic error 

in the optical CBF measurements would not be observed in this study. We previously 

demonstrated a very strong correlation between relative flow changes measured by DCS 

and CBF values measured by TR NIRS with a slope from the linear regression of 1.05 

(Diop et al., 2011). This comparison was conducted over a range of CBF values from 17 

to 90 ml/100g/min, which is very similar to the range observed in the current study. 

However, more validation studies would be required if the combined DCS/TR-NIRS 

approach were used to measure CMRO2 under pathological conditions such as during 

ischemia or severe hypoxia that could result in greater changes in either CBF or SvO2 

(Ijichi et al., 2005; Tichauer, Brown, et al., 2006).  

2.5 Conclusion 

In summary, this study demonstrated that the combination of DCS and TR NIRS can be 

used to measure CMRO2, as verified by the comparison to CMRO2 values derived from 

cerebral venous blood samples. Experiments were conducted using piglets because they 

are similar in size to human newborns and, therefore, the DCS/TR-NIRS system could be 

used in clinical studies. Adapting this approach to the neonatal intensive care unit will 

require synchronizing the two optical systems to provide truly continuous CBF and 

CMRO2 measurements. Extending this approach to adult patients represents a significant 

challenge as it requires depth-resolved techniques, such as the use of multi-layered 

modeling approaches, to measure CBF, cerebral oxygenation and the BFI accurately 

(Gagnon, Desjardins, Jehanne-Lacasse, Bherer, & Lesage, 2008; Jaillon et al., 2006; 

Wabnitz et al., 2010). Incorporating sensitivity functions for the different tissue layers 

into the analysis of bolus tracking data has been shown to improve the accuracy of CBF 

measurements in animal models; however, clinical studies will require validating this 

approach in human subjects (Elliott, Diop, Lee, & Lawrence, 2012; Elliott et al., 2010). 
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Chapter 3  

3 Measurements of Cerebral Blood Flow in Pigs by 
Diffuse Correlation Spectroscopy on the Exposed 
Cortex 

This chapter is adapted from the paper entitled “Assessment of the best flow model to 

characterize diffuse correlation spectroscopy data acquired directly on the brain” by 

Verdecchia K, Diop M, Morrison L, Lee T-Y, St. Lawrence K, published in Biomedical 

Optics Express, vol. 6(11) pp. 4288-4301 (2015). 

3.1 Introduction 

Near-infrared spectroscopy (NIRS) methods based on the quantification of light 

absorption at specific wavelengths have been developed for measuring key physiological 

parameters, such as tissue perfusion, blood volume and oxygenation (Boas & 

Franceschini, 2011; Durduran & Yodh, 2014; Mesquita et al., 2011). For example, blood 

flow can be measured by manipulating arterial oxygenation saturation or injecting a light-

absorbing contrast agent (Diop, Verdecchia, Lee, & St Lawrence, 2011; Kyle Verdecchia, 

Diop, Lee, & St. Lawrence, 2013; Weigl et al., 2014); however, these techniques only 

enable single time-point measurements. An alternative approach that provides continuous 

blood flow monitoring is diffuse correlation spectroscopy (DCS) (Durduran & Yodh, 

2014). This method indirectly measures changes in blood flow by monitoring light 

intensity fluctuations caused by the movement of erythrocytes in tissue (Boas, Campbell, 

& Yodh, 1995; Ninck, Untenberger, & Gisler, 2010). More specifically, the propagation 

of photons through extravascular tissue, where they endure multiple scattering events that 

randomize their direction, and within vessels, which contain moving erythrocytes, 

induces decorrelation of the light that manifests as intensity fluctuations. Blood flow is 

assessed by characterizing light intensity decorrelation using a model that describes the 

movement of erythrocytes. 

Currently, the most common approach for analyzing DCS data is by modeling 

erythrocyte motion as a Brownian diffusion-like process, which has previously been 
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shown in various species (swine, rodent and human) to provide a better characterization 

of the normalized temporal intensity autocorrelation function than the expected random 

flow model (RFM) (Binzoni & Martelli, 2015), which describes the motion of erythrocytes 

as ballistic (Carp, Dai, Boas, Franceschini, & Kim, 2010; Diop et al., 2011; Kim et al., 

2010; Yu et al., 2007; Zhou et al., 2007). To explain this unexpected finding, Carp et al. 

proposed a hybrid model, referred to as the hydrodynamic diffusion model (HDM), that 

accounts for both the possibility of multiple light-scattering events within a vessel, 

characteristic of diffusive motion, and light-scattering events across vessels, 

characteristic of random ballistic motion (Carp et al., 2011). Furthermore, Carp et al. 

demonstrated that the DCS measurements are best fit by the HDM for data acquired on 

premature newborns (Carp et al., 2011). 

Although DCS has been shown to be a promising tool for blood flow monitoring, 

the most appropriate flow model for characterizing perfusion is still debatable. The 

purpose of the current study was to compare the ability of the three flow models to 

characterize DCS data acquired directly on the exposed cerebral cortex of juvenile pigs. 

This approach removes signal contributions from the extracerebral tissues (scalp and 

skull) that can alter the shape of DCS autocorrelation curves due to partial volume errors 

caused by tissue heterogeneity (Gagnon, Desjardins, Jehanne-Lacasse, Bherer, & Lesage, 

2008). In addition, cerebral blood flow (CBF) was independently measured by computed 

tomography perfusion (CTP) for comparison to the flow estimates obtained by each of 

the three flow models. 

3.1.1 Diffuse Correlation Spectroscopy 

To assess dynamics of light scatterers, DCS measures the normalized intensity 

autocorrelation function, g2(ρ,τ) given by (Cheung, Culver, Takahashi, Greenberg, & 

Yodh, 2001): 

g ρ, τ ≡ 〈 , , 〉
〈 , 〉     (3.1) 
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where <I> , ρ and τ represents the average detected intensity, the source-detector distance 

(SDD) and the correlation time, respectively. Equation 3.2 is related to the electric field 

autocorrelation function by the Siegert relation (Lemieux & Durian, 1999): 

g ρ, τ = 1 + β | , |2
〈 , 〉      (3.2) 

where, β is the coherence factor of the detection channel and G1(ρ,τ) is the electric field 

autocorrelation function. Previously shown, G1(ρ,τ) satisfies a diffusion equation (Boas et 

al., 1995; Boas & Yodh, 1997). Assuming a point light source with unit intensity, the 

analytical solution to the correlation diffusion equation for a semi-infinite homogeneous 

medium is given by (Cheung et al., 2001; Diop et al., 2011; Durduran, Choe, Baker, & 

Yodh, 2010): 

G ρ, τ = −     (3.3) 

Where, r1 = [ρ2+(z0)
2]1/2, r2 = [ρ2+(z0+2zb)

2]1/2, zb is the effective depth of the source, and 

zb = 2D(1+Reff)/(1-Reff) is the distance above the tissue surface at which the fluence 

vanishes, where D is the diffusion coefficient given as (3µ s')
-1 and Reff is the effective 

reflection coefficient calculated to be 0.493 for the refraction indices of tissue and air 

(Haskell et al., 1994). Furthermore, in Equation 3.3, µD is given by: 

μ τ = μ + αμ k 〈r τ 〉             (3.4) 

The coefficients µa and µś are the absorption and reduced scattering coefficient, 

respectively, k0 is the wavenumber of light in the medium, α is the proportion of moving 

scatters (predominantly red blood cells) to all scatterers and is related to the blood 

volume, and <∆r2(τ)> is the mean-square displacement of the moving scatterers during a 

correlation time τ. In the analysis of measured g2(ρ,τ), the specific expression for 

<∆r2(τ)> is given by one of the following flow models. 
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3.1.2 Random Flow Model 

The RFM is based on the assumption that photon scattering events associated with motion 

occur from scatterers that are uncorrelated (i.e. in separate vessels). In this case, the 

mean-square displacement is given by: 

〈Δr τ 〉 = V τ      (3.5) 

where, V is the velocity of the moving erythrocytes. The product αV2 is referred to as the 

random blood flow index (BFIR). 

3.1.3 Brownian Diffusion Model 

The Brownian diffusion model (BDM) assumes incoherent motion caused by multiple 

interactions of moving scatterers, such as erythrocytes within the same vessel. It is the 

most commonly used model in DCS analysis and the Brownian displacement formula is 

given by: 

〈Δr τ 〉 = 6D τ     (3.6) 

where, DB is the effective diffusion coefficient, and αDB is referred to as the Brownian 

blood flow index (BFIB). 

3.1.4 Hydrodynamic Diffusion Model 

Carp et al. proposed using the Langevin formula for red blood cell mean squared 

displacement to account for the occurrence of both Brownian and random flow motion 

(Carp et al., 2011): 

〈Δr τ 〉 = 6D τ − τ 1 − exp −     (3.7) 

required to establish diffusive motion. Unlike the Brownian diffusion model, τc accounts 

for possible ballistic motion at short delay times. For the HDM, the two fitting parameters 

are τc and αDH, the hydrodynamic blood flow index (BFIH). 
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3.2 Methods 

3.2.1 Experimental Procedure 

Animal experiments were conducted in accordance with the guidelines of the Canadian 

Council of Animal Care (CCAC) and approved by the Animal Use Committee at Western 

University. Juvenile pigs (~6 weeks old) were obtained from a local supplier on the day 

of the experiment. Following anesthetic induction with 5% isoflurane, the animals were 

tracheotomized and mechanically ventilated on a mixture of oxygen and medical air. A 

catheter was inserted into a femoral artery for blood gas analysis. After surgery, the 

isoflurane was reduced to 3-4% and the animal was transported to the computed 

tomography (CT) suite where the experiments were conducted using a portable 

NIRS/DCS system. 

The animal was placed prone on the bed of the CT scanner on top of a heated 

blanket used to maintain rectal temperature between 38 and 39 ºC throughout the 

experiment. To place the optical probes directly on the brain, a rectangular piece of scalp 

tissue (~10 cm2) located laterally to the midline on the right hemisphere was first excised. 

A caustic pencil was used to cauterize the incised scalp tissue to prevent bleeding. Lastly, 

a handheld dremel was used to drill two burr holes, which were the size of optical fibers, 

into the skull parallel to the midline. Care was taken to ensure that the dura mater was not 

punctured by the dremel. Contact pressure on the dura was minimized since the fibers fit 

tightly in the holes, which carried their weight. Furthermore, the distance to the dura 

could be measured on the CT images (Figure 3-1) and used to guide the distance that the 

fibers were inserted. The burr holes were 7 mm apart, with the exception of one animal 

for which the separation was 20 mm. A scout CT scan with an anatomical marker on top 

of the skull was used to define the location of the burr holes. 

Following surgery, the emission and detection fibers were placed in the posterior 

and anterior burr holes, respectively. The head of the pig was covered by an opaque 

blanket to reduce ambient light contamination. During the experiment, arterial oxygen 

saturation, heart and respiration rates, mean arterial pressure, and rectal temperature were 

continuously monitored. Arterial blood samples were obtained to measure arterial pH, 
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partial carbon dioxide tension (paCO2), partial oxygen tension (paO2) and blood glucose 

(BG) concentration. Samples were acquired before and after each set of measurements to 

assess physiological stability during the data acquisition period. Intermittent dextrose 

injections were administered to maintain normal BG levels (between 5 and 7 mmol/L). 

Two sets of CT, time-resolved (TR) NIRS, and DCS data were acquired in each 

experiment: first at normocapnia (paCO2 between 38 and 42 mmHg) and then at 

hypocapnia (paCO2 between 20 and 25 mmHg). Each capnic level was maintained by 

adjusting the ventilation volume and rate. The sequence of data acquisition during 

normocapnia consisted of CT perfusion, TR NIRS measurements of optical properties 

and DCS. For the hypocapnic condition the sequence of data acquisition was reversed in 

order to avoid removing the optical probes from the burr holes between the two 

conditions. 

3.2.2 Computed Tomography 

The dynamic CT protocol consisted of a bolus injection of 1.0 mL/kg of iodine-based 

contrast agent (iopamidol [370-Isovue®], Bracco S.p.A., Milan, Italy) at a rate of 3 mL/s 

into the cephalic vein once during each capnic condition. The first five animals were 

scanned by a Lightspeed QXi multislice scanner (General Electric Company, Waukesha, 

WI) and the last three animals were scanned by the Revolution CT scanner (General 

Electric Company, Waukesha, WI) due to scanner availability. Each scan (slice thickness 

= 2.5 mm, current = 200 mA, energy = 80 kVp, FOV=140×140×40 mm) provided sixteen 

coronal slices, once every second, for a period of 40 s. The field of view covered the 

entire head of the pig. Functional maps of CBF were calculated using the clinical CT 

perfusion software package (PERFUSION 5, General Electric Healthcare Worldwide), 

which was developed and validated in house (Cenic, Nabavi, Craen, Gelb, & Lee, 1999). 

Region of interest (ROI) analysis was performed using an in-house developed software 

that performed pixel thresholding to remove signal contributions from large vessels that 

can lead to overestimation of CBF (Murphy et al., 2006). Five sequential slices between 

the burr holes that were visible on the anatomical CT images were chosen as they 

correspond to the “banana-shaped” path of the near-infrared light between the emission 

and detection optical fibers, as seen in Figure 3-1. For each slice, an ROI (~5 cm 
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diameter) was drawn on the cerebral cortex near the skull, since NIRS is most sensitive to 

superficial tissue. The CBF values were obtained by averaging over the ROIs in the five 

slices. 

 

Figure 3-1: Single slice of the exposed cortex of a pig: perfusion map and anatomical 

CT images 

A CT image of a single slice for a blood flow map (A) and the corresponding anatomical map (B). The ROI, 
shown in black for A and white for B, was manually drawn on the superficial cortex using in-house software. 
The burr hole, which exposed the cortex and held the optical fiber, is identified by the white arrow.  

3.2.3 Optical Methods 

3.2.3.1 Time-Resolved NIRS 

The TR NIRS systems consisted of a picosecond pulsed diode laser (LDH-P-C 764, 

PicoQuant, Germany) emitting at 764 nm, with an average output power and pulse 

repetition rate of 1.4 mW and 80 MHz, respectively. The light was attenuated using 

electronically controlled variable neutral density filters (NDC-50C-4M, Thorlabs) and 

coupled to a multimode emission fiber used for both DCS and TR NIRS (emission probe: 

N.A. = 0.22, core = 400 µm; Fiberoptics Technology, Pomfret, CT). A 2-m fiber (N.A. = 

0.22, core = 400 µm; Fiberoptics Technology, Pomfret, CT) was used to detect light at a 

SDD of 7-mm. The TR NIRS detection fiber was coupled to a fast hybrid photomultiplier 

detector with Peltier cooling (PMA Hybrid, PicoQuant, Germany). The output of the 

detector was sent to a multichannel picosecond event timer and time-correlated single-

photon counting (TCSPC) module (HydraHarp 400, PicoQuant, Germany). The system 

was given at least a 2-hour warmup period to stabilize the laser and detection system 
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before acquiring data (Verdecchia, Diop, Lee, & St. Lawrence, 2015). Under each capnic 

condition, a distribution of times of flight of photons (DTOF) was recorded for 30 

seconds. At the end of the study, the instrument response function (IRF) was measured to 

account for systemic temporal dispersion (Ntziachristos & Chance, 2001). 

Tissue optical properties (µa and µś) were acquired for each condition to reduce 

inter-subject variability when extracting blood flow indices from DCS (Diop et al., 2011; 

Irwin et al., 2011). A three-parameter fitting routine, described in detail elsewhere (Diop 

et al., 2010), was used to extract estimates of µa,	µ́s and an amplitude scaling factor during 

normocapnia. The model used to fit the DTOF was the solution of the diffusion 

approximation for a semi-infinite homogeneous medium convolved with the measured 

IRF. The short SDD was calibrated with a phantom of known optical properties. The 

fitting range was set to 95% and 30% of the peak DTOF value for the ascending and 

descending sides, respectively. The measured µ́s for normocapnia was fixed when 

analyzing the DTOF acquired during hypocapnia to reduce the number of fitting 

parameters to µa and amplitude scaling factor. 

3.2.3.2 Diffuse Correlation Spectroscopy 

The light source of the DCS system consisted of a continuous-wave laser (DL785-100-S, 

CrystalLaser, Nevada) emitting at 785 nm with a maximum output power of 100 mW and 

a coherence length >5 m. As with the TR NIRS system, the emitted light was attenuated 

by electronically controlled variable neutral density filters and coupled to the multimode 

emission fiber. A single-mode fiber (SMF-28e+, N.A. = 0.14, length = 4 m, core = 8.2 

µm, single-mode cutoff wavelength at 1260 nm) was placed in the anterior burr hole of 

the animal and was used for detecting the temporal light intensity fluctuations. The SMF 

was tightly wrapped into a 5-cm coil to increase the losses of the higher-order modes 

before being coupled to the input-channel of the avalanche photodiode of a single photon 

counting module (SPCM-AQ4C, Excelitas Canada Inc, QC, Canada) (Dietsche et al., 

2007; Gisler et al., 1995). The output of the SPCM was sent to a photon correlator board 

(DPC-230, Beker & Hickl, Germany) that computed the normalized intensity 

autocorrelation functions (g2). 
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For each animal, two g2 curves were acquired, one during normocapnia and one 

during hypocapnia, over an acquisition period of 90 s. The µa and µ́s measured by TR 

NIRS were used in the DCS fitting routine. Each g2 curve was analyzed three times using 

the solution of the diffusion approximation for a semi-infinite homogeneous medium 

including one of the three flow models (BDM, RFM and HDM). The start and end limits for 

the fitting were defined by correlation times of 0.6 µs and 1 ms, respectively. In the 

fitting procedure, the coherence factor β was set to the value determined by averaging the 

first 10 data points of each g2 curve. 

3.2.4 Statistical Analysis 

All errors are given as the standard errors of the mean (SEM), unless stated otherwise. 

All statistics were computed with the IBM SPSS Statistics 20 software package. For the 

measured physiological parameters, a multivariate analysis of variance (ANOVA), which 

included pH, paCO2, paO2, cGlu, ctHb, MAP, HR, temperature, and SpO2, was computed 

to determine significant changes between capnic conditions. For two experiments, the TR 

NIRS data set was not experimentally collected due to overheating of the detector and 

therefore were determined by the average optical properties of the remaining animals 

during normocapnia. For the hypocapnia optical properties, the µa values were estimated 

from the average change in absorption from normocapnia to hypocapnia measured by all 

animals in this study. A one-way ANOVA compared capnic conditions for measured µa 

and BFI values, and, for the former, a post-hoc test [Tukey’s honest significant difference 

(HSD)] identified any significant light absorbing outliers between subjects. 

A direct comparison between the sums of squares (SS) determined the best fit of 

the BDM and RFM, since both models included one fitting parameter. However, the extra 

fitting parameter (τc) included in the HDM is expected to reduce the variance in the fit of 

the measured g2(ρ,τ). Therefore, an F-test was used to compare whether the 

improvements by the HDM to fit the measured g2(ρ,τ) curves, due to the additional fitting 

parameter, exceeded the reduction in variance similarly to the approach used by Carp et 

al. (Carp et al., 2011). The degree of freedom used in the F-test was determined by the 

number of correlation bins that the individual fit required, which was 164. For the HDM to 

better characterize the data compared to either the BDM or the RFM, the calculated F-
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number had to exceed a critical F-value of 3.9, as determined by the finv function in 

MATLAB (Mathworks, Natick, MA) for a p<0.05. 

Linear regression analysis was performed to assess the correlation between CBF 

measured by CTP, and the blood flow index obtained by each of the three DCS models 

and τc for the HDM. A Bland-Altman plot was used to assess the difference in the percent 

flow reductions measured by DCS and CTP (Altman & Bland, 1983). For the Bland-

Altman plot, a one-sample t-test identified differences between the two modalities (DCS 

and CTP), and a linear regression was used to determine any proportionality bias. 

3.3 Results 

3.3.1 Physiological Parameters and Optical Properties 

Eleven juvenile pigs (ten females, one male) were used in the study with an average 

weight of 16.0 ± 0.7 kg; however, only nine animals were scanned by CTP due to limited 

access to the CT scanner for the first two experiments. 

Table 3-1: Physiological parameters during normocapnia and hypocapnia 

Condition *pH 
*paCO2  

[mmHg] 

paO2 

[mmHg] 

ctHb 

[g/dL] 

MAP 

[mmHg] 

HR 

[bpm] 

Normocapnia 7.45 ± 0.01 40.2 ± 0.3 182 ± 11 10.2 ± 0.3 43.6 ± 1.9 128 ± 8 

Hypocapnia 7.62 ± 0.02 22.1 ± 0.4 213 ± 12 9.8 ± 0.4 38.1 ± 1.9 121 ± 7 

Note: Data are presented as average ± SEM. paCO2, partial pressure of carbon dioxide in the blood; paO2, 
partial pressure of oxygen in the blood; MAP, mean arterial blood pressure; HR, heart rate. 
* p<0.05 between conditions. 

Table 3-1 lists the physiological parameters measured during normocapnia and 

hypocapnia. A multivariate ANOVA indicated significant differences between capnic 

conditions for blood pH [p<0.001, partial-η2=0.84, power=1.00] and arterial carbon 

dioxide pressure (paCO2) [p<0.001, partial-η2=0.98, power=1.00] as expected. All other 

physiological parameters, including BG concentration, temperature and arterial oxygen 

saturation, did not change. Their mean values were 4.0 ± 0.2 mmol/L, 38.4 ± 0.1 º°C, and 

95 ± 1%, respectively. 
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Figure 3-2: Tissue absorption measured by TR NIRS directly on the brain 

Average µa values for the 10 animals included in this study and the µa value of the excluded outlier. 
Absorption values are presented for normocapnic (black) and hypocapnic (grey) conditions. The large µa for 
the outlier was attributed to excessive blood in the emission burr hole. Error bars represent the SEM. 

Figure 3-2 presents the average µa values measured by TR NIRS during 

normocapnia and hypocapnia. No significant difference between the two conditions was 

observed [p>0.55, partial-η2=0.02, power=0.09]. Following surgery, visible 

hemorrhaging in the emission burr hole was observed in one animal, which resulted in 

high µa values, as confirmed by a Tukey HSD post-hoc analysis (Figure 3-2). 

Consequently, the data from this animal were removed from further analysis, unless 

stated otherwise. The mean µ́s for all animals was 10.7 ± 1.3 cm-1. 
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Figure 3-3: Hemodynamics measured by CTP and DCS during normocapnia and 

hypocapnia 

Measured flow by (A) CTP (N = 9) and (B) DCS using the BDM (N = 10), during normocapnia and 
hypocapnia. The line of best fit and CI95% are represented by the dashed red line and blue lines, 
respectively. 

Figure 3-3 presents CBF values measured by CTP and the BFIB derived from the 

DCS data, both plotted as a function of paCO2. The outlier identified in Figure 3-2 was 

excluded from the DCS data. The results from the BDM are presented since it is the model 

most commonly used to analyze DCS data. Regression analysis resulted in a slope of 1.4 

± 0.20 mL/min/100g/mmHg (CI95%: 0.94, 1.8, p<0.001), an intercept of 7.1 ± 6.6 

mL/min/100g (CI95%: -6.8, 21.1, p>0.29) and correlation coefficient (R) of 0.86 for CBF 

versus paCO2. Likewise, the line of best fit from Figure 3-3B had a slope of (1.2 ± 0.3) x 

10-9 cm2/s/mmHg [CI95%: (0.45, 1.86) x 10-9, p<0.003], an intercept of (1.7 ± 10.9) x 10-9 

cm2/s [CI95%: (-21.2, 24.6) x 10-9, p>0.88] and R of 0.63. 

Table 3-2 lists the mean CBF values measured by CTP and corresponding BFI 

values derived from the DCS data using each of the three flow models. All values (CBF, 

BFIB, BFIR and BFIH) were significantly different (p<0.05) between the two capnic 

conditions. 
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Table 3-2: Hemodynamic parameters measured by CTP and DCS during 

normocapnia and hypocapnia 

Condition 
*CBF 

[mL/min/100g] 

*BFIB 

[10
-9

 cm
2
/s] 

*BFIR 

[10
-3

 cm
2
/s] 

*BFIH 

[10
-9

 cm
2
/s] 

*τc 

[µs] 

Normocapnia 62.5 ± 2.5 47.6 ± 4.9 37.2 ± 8.0 70.0 ± 8.2 2.72 ± 0.34 

Hypocapnia 37.7 ± 2.6 27.9 ± 4.1 12.5 ± 3.3 38.2 ± 6.4 3.52 ± 0.29 

Note: Values represent the average ± SEM. CBF, cerebral blood flow quantified by CTP; BFIB, blood flow 
index determined by the Brownian flow model; BFIR, blood flow index determined by the random flow model; 
BFIH, blood flow index determined by the hydrodynamic flow model; τ , the time scale for the randomization 
of velocity vectors associated with RBC scattering events.  
* p<0.05 between conditions. 

Included in Table 3-2 is τc from the HDM, which was also significantly different 

(p<0.05) between conditions. Not given in Table 3-2 are the average value of β, which 

was 0.152 ± 0.002 for all models; no significant differences were observed between 

capnic conditions. 
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3.3.2 Example of the Best-Fit of the Flow Models 

Figure 3-4 shows normalized intensity autocorrelation curves obtained on the exposed 

cerebral cortex of one animal during normocapnia (blue) and hypocapnia (red).  

 

Figure 3-4: Measured DCS decay curves acquired during normocapnia and 

hypocapnia 

DCS autocorrelation curves during normocapnia (red dots) and hypocapnia (blue dots) from one animal. 
Also shown are the best-fit to the three DCS flow models: BFIB (solid line), BFIR (dotted line) and BFIH 
(dashed line). Data were acquired with a count rate of ~600 kHz for a total acquisition time of 30 seconds. 
To visually enhance the differences between the fits of the three models, a portion of the graph is displayed 
that focuses on correlation times between 2 to 12 µs, which encompass the initial decay of the measured 
intensity autocorrelation functions.  

The normalized intensity autocorrelation curves decayed faster during 

normocapnia than during hypocapnia, reflecting the higher blood flow in the former 

condition. For the example shown in Figure 3-4, the blood flow reductions measured by 

BFIB, BFIR and BFIH were 48.9%, 74.0% and 50.0%, respectively. Figure 3-4 illustrates 

the poor fit of the RFM model. A statistical analysis by the F-test, as was described earlier, 

indicated that the fit of the HDM was significantly better than for the BDM for all 

autocorrelation curves. No differences were observed in the extracted BFI values by 
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including more of the tail component of the correlation curves in the fitting routine (data 

not shown). 

To further investigate the fits of the three DCS flow models, Figure 3-5 presents 

continuous BFI values during the transition from normocapnia to hypocapnia. The BFI 

was determined from autocorrelation curves generated every two seconds. The flow 

reductions measured by the three models were 34.1%, 54.6% and 34.6% for the BDM, 

RFM and HDM, respectively. 

 

Figure 3-5: Real-time change of BFI measured during the transition from 

normocapnia to hypocapnia directly on the brain 

Real-time change in BFI measured during the transition from normocapnia to hypocapnia in one pig. DCS 
data were acquired at a count rate of 780 ± 3 kHz and analyzed by each flow model. The dashed line 
represents the end of the normocapnic period before the respirator was adjusted to induce hypocapnia. 

3.3.3 Computed Tomography Perfusion Comparison 

Linear regression between the CBF change measured by CTP and the corresponding BFI 

change measured by each of the three DCS models was conducted on eight experiments 

after the outlier was removed (Figure 3-2). Also, linear regression between the CBF 

change measured by CTP and τc was conducted. The resulting regression slopes, 

intercepts and R-values are listed in Table 3-3. 
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Table 3-3: Linear relationship between CTP and corresponding DCS indices from 

different flow models 

Parameter Units Slope (CI95%) Intercept (CI95%) R-value 

BFIB cm2/s *1.03 ± 0.23 (0.54, 1.52)  -13.9 ± 12.1 (-39.9, 12.1) 0.78 

BFIR cm2/s *1.24 ± 0.33 (0.52, 1.95) -36.8 ± 17.7 (-74.8, 1.1) 0.70 

BFIH cm2/s *1.66 ± 0.36 (0.89, 2.44) -27.9 ± 19.1 (-68.9, 13.0) 0.78 

τc µs *-0.030 ± 0.015 (-0.061, -0.001)  *4.86 ± 0.76 (3.24, 6.48)  0.46 

Note: BFIB, blood flow index determined by the DCS Brownian flow model; BFIR, blood flow index 
determined by the DCS random flow model; BFIH, blood flow index determined by the DCS hydrodynamic 
flow model; CI95%, 95% confidence intervals. Estimated slope and intercept (± SEM) for linear regression 
between CTP and BFI for each flow model along with the correlation coefficient (R) and p-values calculated 
by SPSS. * represents coefficients that are significantly different (p<0.05) from the null. 

Table 3-3 demonstrates that the BFI values from each of the three models were 

correlated with CBF measured by CTP as indicated by a slope significantly different 

(p<0.01) from the null but a y-intercept not significantly different from zero. The 

displacement time constant τc, from the HDM also correlated with CBF, but its R-value 

was not as strong and the y-intercept was significantly different from the zero. 

Figure 3-6 presents the relative CBF decrease from normocapnia to hypocapnia as 

measured by CTP and DCS. The box-plot presents the results from all three DCS flow 

models, whereas only the results from the BDM are presented in the Bland-Altman plot. In 

Figure 3-6A, the average CBF change measured by CTP was -39.7 ± 3.7%, which was 

only significantly different from the change in BFIR (-63.2 ± 4.7%) and not from the BFI 

changes measured by the other two models (-41.0 ± 4.3% for BFIB and -44.2 ± 5.0% for 

BFIH). In Figure 3-6B, the mean difference between BFIB and CTP, indicated by the solid 

line, was 9.0 ± 5.1%, which was not significant (CI95%: -19.1 and 37.0, as indicated by 

the two solid lines). 
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Figure 3-6: Comparison between the percent difference of CBF measured by CTP 

and different DCS flow models acquired on the exposed cortex of pigs 

Flow percent differences measured by CTP and DCS directly on exposed cortical tissue. (A) Box plots of the 
reductions in flow from normocapnia to hypocapnia measured by CTP (N = 9) and the three DCS flow 
models (N = 10). The center line, box edges, error bars, and the cross represents the median, 1

st
 and 3

rd
 

quartiles, CI95%, and outliers, respectively. (B) Bland-Altman plot comparing the reductions in CBF measured 
by CTP and BFIB (N = 8). Each symbol represents a single animal. The mean difference between the two 
modalities, the standard error of the mean, and the CI95% are indicated by the solid line, the dotted line and 
the dashed line, respectively. 

In Figure 3-6B the animals that did not undergo CTP and the optical outlier for 

DCS were removed due to listwise deletion. For clarity, Table 3-4 summarizes all of the 

pigs in this study with their acquired modalities (CTP, TR NIRS and DCS) and SDD. 

Table 3-4: A summary of all animals with acquired modalities. 

Animal Number CTP TR NIRS DCS SDD [mm] 

1 No Yes Yes 7 

2 No Yes Yes 7 

3 Yes No (Unstable System) Yes 7 

4 Yes No (Unstable System) Yes 7 

5 Yes Yes Yes 7 

6 Yes Yes Yes 20 

7 Yes Yes Yes 7 

8* Yes Yes Yes 7 

9˟ Yes Yes Yes 7 

10 Yes Yes (Identified Outlier) Yes (Removed Outlier) 7 

11^ Yes Yes Yes 7 

Note: ˟, * and ^ represents the animal used in Figure 3-1, Figure 3-4 and Figure 3-5, respectively. An 
unstable TR NIRS system occurred by an overheated detector prior to acquisitions. The identified outlier 
was described in detail above by Figure 3-2. 
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3.4 Discussion 

The main aims of this study were to assess which DCS flow model best characterized 

‘brain’ autocorrelation curves and to compare measured flow reductions obtained with 

the different models to an independent measure of CBF. These experiments were 

conducted with the optical probes placed directly on the exposed cortex in order to collect 

DCS data without any signal contamination from extracerebral tissues. To verify that the 

interrogated cortical region was relatively homogeneous with regards to blood flow, the 

autocorrelation curves were re-analyzed using only the early portion (i.e. between 

correlation times of 0.3 and ~10 µs) since this range is considered more sensitive to 

deeper propagating photons (Selb et al., 2014). No significant differences in blood flow 

indices were observed compared to the larger range of correlation times (0.6 µs to 1 ms) 

used in the Methods section, indicating that it was reasonable to consider the exposed 

cerebral cortex as a homogeneous medium (Verdecchia, Diop, & St. Lawrence, 2015). 

Of the three models used to characterize normalized intensity autocorrelation 

functions, the hybrid model, HDM, which accounts for both diffusive and ballistic motion, 

provided the best fit as determined by the F-test. This was evident at early correction 

times, which represents the transition from the ballistic to diffusion regime (Figure 3-4). 

This finding is in agreement with Carp et al., who found that the HDM provided a superior 

fit to DCS data acquired from premature infants (Carp et al., 2011). The additional 

constant τc, which represents the time scale to transition from ballistic to diffusive 

motion, was found to be significantly greater (~29%) at hypocapnia compared to 

normocapnia. This inverse relationship with CBF would be expected considering that 

within a given period fewer interactions between RBCs within a vessel would occur as 

flows decreases. Despite the better fit provided by the HDM, differences in blood flow 

indices from this model and the more commonly used BDM were small. No significant 

differences were observed between the two models in terms of absolute BFI values and 

relative changes. This agreement indicates that the ballistic range of photons detected by 

DCS is relatively small, suggesting that most detected photons undergo correlated 

scattering events (i.e. scattering events occurring within a single vessel). 
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A practical limitation with using the HDM is the addition of an extra fitting 

parameter, τc, which leads to a greater sensitivity to noise in the measured autocorrelation 

curves. This was demonstrated visually by the continuous monitoring example shown in 

Figure 3-5, in which data were acquired every two seconds. To characterize the noise 

sensitivity of each model, the coefficient of variation of the BFI over the baseline period 

was computed. The coefficient for BFIH was 38.5% larger than for BFIB. Furthermore, 

the linear regression analysis between the blood flow indices and CBF measurements 

from CTP showed less uncertainty and a tighter confidence interval range for the BDM 

than the HDM (Table 3-3). Therefore, the BDM model, which is more robust and provides 

similar BFI measurements to the HDM, is the more practical model to use, particularly for 

data with a lower signal-to-noise ratio, such as the real-time DCS monitoring displayed in 

Figure 3-5. 

For the second aim of this study, CTP was used to measure CBF at normocapnia 

and hypocapnia. The latter causes a substantial reduction in CBF because of the tight 

coupling between cerebrovascular tone and arterial blood carbon dioxide tension. 

Hypocapnia rather than hypercapnia was used in these experiments because decreases in 

blood flow are clinically relevant to the management of critical care patients due to the 

incidence of delayed cerebral ischemia. Flow reductions caused by hypocapnia are not as 

great as caused by ischemia; however, the good agreement with the CTP results is further 

evidence of the ability of DCS to measure CBF changes accurately. The cerebral vascular 

reactivity measured with the BDM was (-2.3 ± 0.2)% per mmHg of paCO2, which is in 

good agreement with our previous study, which used the same animal model (juvenile 

pigs) and a contrast-enhanced NIRS technique to measure CBF (Elliott et al., 2014). 

Likewise, these findings confirm previous validation studies involving both animal 

models and human subjects that have shown a good correlation between BFIB and CBF 

changes measured by other modalities (Yu et al., 2007; Zhou et al., 2006). Considering 

that the DCS data in the current study were collected directly on the brain, this agreement 

is evidence that DCS is relatively insensitive to extracerebral signal contamination in 

applications in which the scalp and skull are thin. These would include animal models, 

such as piglets and rats (Carp et al., 2010; Diop et al., 2011), but more importantly, also 
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applies to newborns (Diop, Kishimoto, Toronov, Lee, & Lawrence, 2015; Jain et al., 

2014). 

A possible limitation with this study is the potential for CTP to overestimate CBF 

due to the presence of pixels with extremely high flow estimates. These ‘vascular’ pixels 

are attributed to high contrast enhancement in vessels and were removed in the current 

study by setting perfusion thresholds (Murphy et al., 2006). This procedure has been 

shown to significantly improve the correlation with CBF measurements from positron 

emission tomography (Kudo et al., 2003) and from magnetic resonance imaging (Koziak, 

Winter, Lee, Thompson, & St. Lawrence, 2008). Another potential limitation was the 

possibility of variations in CBF between measurements from the different modalities. To 

minimize this, paCO2 was monitored frequently to ensure it remained stable during each 

capnic level. 

3.5 Conclusion 

In summary, contributions from the superficial layers (scalp and skull) were eliminated 

by exposing the cerebral cortex of juvenile pigs and acquiring DCS directly on the brain. 

In agreement with Carp et al., the flow model that demonstrated the best fit to the 

intensity autocorrelation functions was the hybrid flow model, as evident at early 

correlation times. However, BFI values from the BDM and the HDM were very similar and 

both were in agreement with the CBF changes measured by CTP, indicating that the 

diffusion-like flow of erythrocytes dominates. Furthermore, the BDM is the more practical 

model for characterizing DCS data due to its greater robustness. 
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Chapter 4  

4 Measurements of Cerebral Blood Flow in Adolescent 
Pigs by Diffuse Correlation Spectroscopy 

This chapter is adapted from the paper entitled “Assessment of a multi-layered diffuse 

correlation spectroscopy method for monitoring cerebral blood flow in adults” by 

Verdecchia K, Diop M, Morrison L, Lee T-Y, St. Lawrence K, published in Biomedical 

Optics Express, vol. 7(9) (2016). 

4.1 Introduction 

Patients requiring intensive care due to life-threatening neurological emergencies, such as 

ischemic stroke, traumatic brain injury and subarachnoid hemorrhage, are at high risk of 

secondary brain injury (De Oliveira Manoel et al., 2015; English et al., 2013; Kirkman, 

Citerio, & Smith, 2014). Although multiple factors contribute to poor outcome, a major 

focus is preventing delayed cerebral ischemia. For example, approximately one-third of 

patients with subarachnoid hemorrhage will develop secondary brain injury within two 

weeks of the initial event primarily due to cerebral vasospasm (Al-Tamimi, Orsi, Quinn, 

Homer-Vanniasinkam, & Ross, 2010). Consequently, a major focus of neurointensive 

care is maintaining adequate cerebral blood flow (CBF) through treatments such as 

administering nimodipine, inducing hypertension, and intervening with surgical or 

pharmacological angioplasty (Macdonald, 2014). A key component of patient 

management is the use of monitoring techniques to detect signs of impaired CBF, such as 

elevated flow velocities in cerebral arteries as measured by transcranial Doppler. 

However, this is not a direct measure of CBF and cerebral ischemia can occur without 

evidence of arterial narrowing (Dhar et al., 2012). Cerebral blood flow can be monitored 

directly by thermal diffusion and laser Doppler flowmetry (Kirkpatrick, Smielewski, 

Czosnyka, & Pickard, 1994; Vajkoczy et al., 2000), but these are invasive methods, 

which has hindered their wider applicability. To date, there remains no established 

bedside technique capable of monitoring CBF. 
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Near-infrared spectroscopy (NIRS) is a portable, non-invasive technology that can 

be used to monitor cerebral oxygenation at the bedside of critical-care patients (Obrig & 

Steinbrink, 2011; Zweifel et al., 2010). Cerebral blood flow can be measured directly 

using the optical dye indocyanine green as an intravascular contrast agent (Brown et al., 

2002; Steinkellner et al., 2010; Weigl et al., 2014). With the application of light 

propagation models to account for absorption in extracerebral tissues, this contrast-

enhanced approach can also provide quantitative CBF measurements (Elliott et al., 2014), 

but it is limited to single time point measurements. An alternative approach is diffuse 

correlation spectroscopy (DCS) that monitors changes in CBF by detecting speckle 

patterns caused by the motion of red blood cells (Baker et al., 2014; Boas, Campbell, & 

Yodh, 1995; Buckley, Parthasarathy, Grant, Yodh, & Franceschini, 2014). A normalized 

intensity autocorrelation curve is determined from the measured temporal speckle pattern, 

and a blood flow index is obtained by fitting the autocorrelation curve with an analytical 

solution to the correlation diffusion equation for a semi-infinite homogeneous medium 

(Cheung, Culver, Takahashi, Greenberg, & Yodh, 2001). A number of validation studies 

involving alternative methods of measuring blood flow have shown that DCS can track 

perfusion changes in the brain accurately (Buckley et al., 2014; Durduran & Yodh, 2014). 

Modeling DCS data in this manner is reasonable if contributions from extracerebral 

tissues are small such as for neonates and certain animal models (Buckley et al., 2014; 

Diop, Kishimoto, Toronov, Lee, & Lawrence, 2015; Lin et al., 2013). However in the 

adult head, reflected light measured on the scalp must travel through more substantial 

extracerebral layers (i.e. scalp and skull), leading to partial volume errors and 

underestimations of CBF. 

A number of approaches have been proposed to account for tissue heterogeneity 

when applying DCS to monitor CBF in adults, starting with the use of a correction factor 

based on partial volumes estimates (Durduran et al., 2004). Another approach is to weight 

the model fit to shorter correlation times since these represent longer photon pathlengths 

(i.e. photons that have a greater chance of having propagated deeper into tissue) (Baker et 

al., 2015; Selb et al., 2014). However, these methods can only enhance the sensitivity to 

CBF but do not completely separate the effects of light propagation and blood flow in the 

various tissues. A more direct approach is to adapt a multi-layered solution to the 
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diffusion approximation that accounts for the contribution of the extracerebral layers. 

Using Monte Carlo simulations and layered tissue phantom, this approach has been 

shown to improve the sensitivity to CBF (Gagnon, Desjardins, Jehanne-Lacasse, Bherer, 

& Lesage, 2008), and it has been used to analyze DCS data acquired from participants 

performing a functional task (Li et al., 2005). These studies highlight the importance of 

using a theoretical model that accounts for extracerebral tissue layers to improve 

sensitivity to cerebral tissue when analyzing DCS data acquired on the adult head.  

The current study investigates the application of a multi-layered (ML) DCS model 

to data acquired at multiple source-detector distances with the aim of separating brain and 

scalp blood flow. Two sets of experiments were conducted to assess the improved depth 

sensitivity of the ML modeling approach. First, a two-layered tissue-mimicking phantom 

was constructed in which the pseudo-flow property of each layer could be independently 

altered. Data were acquired at two source-detector distances while the diffusion 

coefficient in the deeper layer was gradually increased. Second, the approach was applied 

to measuring CBF in a juvenile swine model, which was chosen because the thickness of 

the extracerebral layers is similar to that of the adult human head. Cerebral blood flow 

was reduced by altering blood CO2 tension from normocapnia to hypocapnia. For 

validation, CBF was independently measured by computed tomography perfusion (CTP) 

(Elliott et al., 2014; Lee, 2002). 

4.2 Theory 

With DCS, the measured temporal intensity fluctuations are used to compute the 

normalized intensity autocorrelation function, g2(ρ,τ) (Cheung et al., 2001): 

g ρ, τ ≡ 〈 , , 〉
〈 , 〉     (4.1) 

where, <I(ρ,t)> is the light intensity measured by a detector located at a distance ρ from 

the source at time t, and τ is the correlation time. Equation 1 is related to the electric field 

autocorrelation function, G1(ρ,z,τ) ≡ <E(ρ,z,τ) • E*(ρ,z,t+τ)>, by the Siegert relation 

(Lemieux & Durian, 1999): 
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g ρ, τ = 1 + β | , , |
〈 , 〉     (4.2) 

where, β is the coherence factor of the detection system. It has been shown for a high 

scattering, low-absorbing medium, such as tissue, that G1(ρ,z,τ) can be modeled by the 

correlation diffusion equation at a depth z in the medium (Boas et al., 1995; Skipetrov & 

Maynard, 1996). By modeling the medium as a series of parallel slabs over a semi-

infinite medium, the diffusion equation is given by (Boas et al., 1995; Skipetrov & 

Maynard, 1996): 

P ∇ − μ τ G ρ, z, τ = − Sδ −    (4.3) 

where, Pi = v/(3µai + 3µ́si) is the photon diffusion coefficient in layer i, v is the speed of 

light, µai is the absorption coefficient and µ́si is the reduced scattering coefficient. S is the 

light source defined at an effective depth z0 (= 1/µś1) by the delta function δ − . 

Finally, µPi accounts for the loss of correlation due to dynamical processes (i.e. the 

motion of scatterers) and is given by: 

μ τ = μ + 2μ k αD τ     (4.4) 

where, k0 = 2πn/λ is the wavenumber of light (λ is wavelength and n is the refractive 

index, which is set to 1.4 for all tissues), α represents the fraction of scattering events 

related to motion, which in tissue represents the fractional blood volume, and Di is the 

diffusion coefficient of the ith layer. If blood flow is modeled as a pseudo-Brownian 

process (Cheung et al., 2001), which is valid for brain (Verdecchia, Diop, Morrison, Lee, 

& St. Lawrence, 2015), then the blood flow index, Fi, is given by αDi. 

Modeling tissue as a semi-infinite homogeneous medium, the analytical solution 

to Equation 4.3 is given as [16,18]: 

G ρ, z, τ = −    (4.5) 

where, r1 = [ρ2 + z0
2]½, r2 = [ρ2 + (z0 + 2zb)

2]½, and zb is the extrapolated boundary defined 

by 2P1(1 + Reff)(1 – Reff)
-1 (Kienle & Glanzmann, 1999). The effective reflection 
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coefficient, Reff, is given by 0.493 for the refraction indices of tissue and air (Haskell et 

al., 1994). In the general case consisting of parallel slabs on a semi-infinite medium, the 

field autocorrelation function at the surface (i = 0), G s, z, τ , can be determined by 

solving Equation 4.3 in the Fourier domain (Li et al., 2005): 

G s, z, τ = G ρ, z, τ e d ρ         (4.6) 

Similar to Li et al., the appropriate boundary conditions were applied to G ρ, z, τ , which 

is obtained by numerically computing the inverse Fourier transform of G s, z, τ  at the 

surface (Gagnon et al., 2008; Li et al., 2005): 

G ρ, z, τ = G s, z = 0, τ sJ sρ ds   (4.7) 

where s is the radial spatial frequency, J0 is the Bessel function of zeroth order computed 

by the MATLAB function besselj and the solution of G s, z, τ . The Hankel transform in 

Equation 4.7 was computed numerically by rearranging the solution for a three-layered 

model to the form of the Gauss-Laguerre quadrature in MATLAB: 

G s, z, τ =     (4.8) 

numerator = 	S 0, z − z

× z μ P cosh μ L − z μ P cosh μ L

+ μ P sinh μ L 	

+ μ P sinh μ L − z μ P cosh μ L + μ P sinh μ L  
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denominator = 	μ P cosh μ L μ cosh μ L P + μ P z
+ sinh μ L μ P + μ P z

+ sinh μ L μ cosh μ L μ P P +	μ P z

+ sinh μ L μ P + μ μ P P z  

where, µP̃i
2(s,τ) = µPi

2(τ) + s2 for the ith layer, and L1 and L2 are the thicknesses of the first 

and second tissue layers (i.e. scalp and skull, respectively); the third layer is brain, which 

is assumed to be infinitely thick. 

4.3 Methods 

4.3.1 Instrumentation 

4.3.1.1 Hybrid Optical System 

The light source of the DCS instrument was a continuous-wave laser (DL785-100-S, 

CrystalLaser, Nevada) emitting at 785 nm with a maximum output power of 100 mW and 

a coherence length >5 m. The emitted light was attenuated by electronically controlled 

variable neutral density filters and coupled to a multimode emission fiber (N.A. = 0.22, 

core = 400 µm; Fiberoptics Technology, Pomfret, CT). Twelve single-mode fibers (SMF-

28e +, N.A. = 0.14, length = 4 m, core = 8.2 µm, single-mode cutoff wavelength at 1260 

nm) were split into separate fiber bundles located at source-detector distances (SDDs) of 

20 and 27 mm. Due to the considerable drop in light intensity with distance, one fiber 

was placed at 20 mm and the remaining 11 were placed at 27 mm. Each fiber was 

coupled to the input of a single photon counting module (SPCM-AQ4C, Excelitas 

Canada Inc). The output of each SPCM was sent to a 16-channel photon correlator board 

(DPC-230, Beker & Hickl) that computed the normalized intensity autocorrelation 

functions, g2(ρ,τ). 

Tissue optical properties (i.e. µa and µś) were measured by a TR NIRS system 

described in detail elsewhere, (Diop et al., 2010; Verdecchia et al., 2015). Briefly, the 
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instrument consisted of a picoseconds pulsed diode laser (LDH-P-C 764, PicoQuant, 

Germany) emitting at 764 nm with an average output power and pulse repetition rate of 

1.4 mW and 80 MHz, respectively. The light was guided by the same type of optical fiber 

as the DCS emission probe; the two probes were bundled together to emit light at the 

same location. The pulsed light was detected by 121 optical fibers (core = 200 µm, 

cladding = 220 µm, N.A. = 0.22, length = 0.5 m), which were bundled together with the 

11 DCS single-mode detection fibers located at the SDD of 27 mm. Collected photons 

were guided to a fast hybrid photomultiplier detector (PMA Hybrid, PicoQuant, 

Germany) whose output was sent to a time-correlated single-photon counting (TCSPC) 

module (HydraHarp 400, PicoQuant, Germany). At the end of the study, the instrument 

response function (IRF) was measured to account for instrument-related temporal 

dispersion (Ntziachristos & Chance, 2001). 

4.3.1.2 Computed Tomography Perfusion 

All CT imaging was performed with a Revolution CT scanner (General Electric 

Company, Waukesha, WI). Perfusion images were acquired by performing a dynamic 

contrast-enhanced protocol, which involved serial acquisition of image volumes, one 

acquired every second, for 40 seconds (200 mA, 80 kVp, 2.5-mm slice thickness, and a 

FOV of 140 x 140 x 40 mm). Each volume consisted of 32 coronal slices, which 

encompassed the entire head. The beginning of the dynamic scanning was immediately 

followed by a bolus injection of 1.0 mL/kg of iodine-based contrast agent (iopamidol 

[370-Isovue®], Bracco S.p.A., Milan, Italy) at a rate of 3 mL/s into the cephalic vein. 

4.3.2 Experimental Procedure 

4.3.2.1 Two-Layered Diffusion Phantom Experiment 

A two-layered phantom was designed using computer-aided 3D drawing software 

(Rhinoceros 5; Robert McNeel & Associates, North America). It was constructed from 

dark polyvinyl chloride (12 mm thick) and had internal dimensions of 180 x 140 x 110 

mm. Two layers were created by inserted a polyester Mylar sheet (polyethylene 

terephthalate; McMaster-Carr) with a thickness of 25.4 µm. The Mylar sheet was framed 

by a clear polycarbonate that could be positioned at a depth of either 5 or 10 mm from the 
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top of the box. Three holes were drilled into the top of the box to hold the probes in 

place: one emission fiber and two detection fibers at SDDs of 20 and 30 mm. To mimic 

the light scattering properties of tissue, both layers were filled with 0.8% Intralipid 

(Fresenius Kabi, Germany). The viscosity in the bottom layer was increased by adding 

methyl cellulose (4000 cP; Sigma-Aldrich, St. Louis, MO) (Cheung et al., 2001).  

To replicate the homogeneous condition, DCS data were first acquired at a SDD 

of 30 mm and multiple cellulose concentrations (0, 0.05, 0.1, 0.15, and 0.2%), but 

without the Mylar membrane. In addition to acquiring DCS data, µa and µ́s were 

measured by TR NIRS at each cellulose concentration. Next, the membrane was inserted 

to create a top layer with a thickness of 5 or 10 mm. DCS data were acquired at 20 and 30 

mm while increasing the cellulose concentration in the bottom layer from 0 to 0.2%, but 

maintaining the top-layer concentration at 0%. Data acquired with the homogeneous 

phantom were analyzed by the analytical solution (Equation 4.5) for the homogeneous 

model (DCSHM). Data acquired with the two-layered phantom were analyzed with 

DCSHM (SDD = 30 mm) and ML DCS method using data from both separations. 

4.3.2.2 Animal Experiments 

Experiments were conducted under the guidelines of the Canadian Council of Animal 

Care (CCAC) and approved by the Animal Use Sub-Committee at Western University. 

The animals were obtained from a local supplier on the day of the experiment. Following 

anesthetic induction with 5% isoflurane, the animals were tracheotomized and 

mechanically ventilated on a mixture of oxygen and medical air. A catheter was inserted 

into a femoral artery for blood gas analysis. After surgery, isoflurane was reduced to 3-

4% and the animal was transported to the CT suite where the experiments were 

conducted. 

Before data collection, CT scout images were acquired to determine the best 

location for the probe holder on the head (i.e. the position corresponding to the largest 

brain diameter). During the experiment, arterial oxygen saturation, heart rate (HR), 

respiratory rate, mean arterial pressure (MAP), and rectal temperature were continuously 

monitored. Arterial blood samples were obtained to measure arterial pH, the arterial 
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partial pressure of carbon dioxide (paCO2), the arterial partial pressure of oxygen (paO2), 

the concentration of blood glucose (BG), and the total blood hemoglobin concentration 

(ctHb). Samples were acquired before and after each set of measurements to assess 

physiological stability during data acquisition. The order for the three modalities was 

CTP, TR NIRS, and DCS at normocapnia (paCO2 between 38 and 42 mmHg) and 

reversed at hypocapnia (paCO2 between 20 and 25 mmHg) to avoid removing the DCS 

probes from the head between measurements. Each capnic level was maintained by 

adjusting the ventilation volume and rate. To investigate if the multi-distance DCS 

measurements were affected by scalp blood flow, the acquisition protocol was repeated 

after creating incisions in the scalp around three lateral sides of the probe holder to 

reduce scalp blood flow (Elliott et al., 2014). 

4.3.3 Data Analysis 

4.3.3.1 Computed Tomography Perfusion 

Maps of CBF were calculated using the CT perfusion software package PERFUSION 5 

(GE Healthcare Worldwide), which was developed and validated in-house (Cenic, 

Nabavi, Craen, Gelb, & Lee, 1999). Region-of-interest (ROI) analysis was performed 

using in-house developed software that performed pixel thresholding to remove signal 

contributions from large vessels that can lead to CBF overestimations (Murphy et al., 

2006). For each slice, three ROI’s (~5 cm2) were manually drawn on the scalp, skull, and 

cerebral cortex, as seen in Figure 4-1. The location of the scalp ROI was located laterally 

to the actual positions of the DCS probes. This was done to avoid motion artifacts near 

tissue interfaces such as bone and scalp caused by breathing. The brain ROI was drawn 

on the cerebral cortex since the NIRS signal is more sensitive to superficial brain tissue 

than deeper white matter. Absolute blood flow values for each of the three tissues (scalp, 

skull and brain) were obtained by averaging ROIs across ten to twelve sequential slices. 

Finally, the thicknesses of the scalp and the skull (i.e. L1 and L2, respectively) were 

measured by image-viewing software (AW VolumeShare 4, GE Healthcare). 
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Figure 4-1: Single slice of the intact head of a pig: anatomical and perfusion map 

CT images 

Coronal CT image of a pig’s head (A) and the corresponding blood flow map (B). The scalp (1), skull (2) and 
brain (3) ROIs are shown in white. Bar codes are given to illustrate relative x-ray attenuation (A) and blood 
flow in mL/min/100g (B). 

4.3.3.2 Diffuse Correlation Spectroscopy 

All intensity autocorrelation functions were acquired over an integration time between 30 

and 90 s depending on the achieved count rate. Measured g2(ρ,τ) functions were 

converted to the field autocorrelation function by Equation 4.2. Data were analyzed using 

both solutions to the diffusion approximation: the semi-infinite homogeneous model 

(Equation 4.5) and the ML model (Equations 4.6 and 4.7). Estimates of the diffusion 

coefficients were determined using a non-linear least squares fitting routine (MATLAB© 

function fminsearchbnd with Di values constrained to be positive) to fit an analytical 

model to g2(ρ,τ). For the homogeneous model, data from one SDD were analyzed to 

generate a diffusion coefficient for the tissue-mimicking phantom or a blood flow index 

denoted FHM for the in vivo data. These values were derived using the values of µa and µ́s 

measured by TR NIRS, which were also determined by the solution to the diffusion 

approximation for a semi-infinite homogeneous medium (Diop, Verdecchia, Lee, & St 

Lawrence, 2011). The fitting was performed for correlation times from 1 µs up to times 

corresponding to g1(ρ,τ) > 0.5, since focusing the fit of the autocorrelation function to 

short correlation times increases the sensitivity to deeper propagating photons (Selb et al., 
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2014). For the animal experiments the g2(ρ,τ) functions acquired at 20 and 27 mm were 

analyzed separately and denoted FHM,1 and FHM,2, respectively. 

For the ML DCS model, the g2(ρ,τ) functions acquired at the two SDDs were 

analyzed simultaneously. The µa and µ ́s values for all three layers were set to the values 

obtained from TR NIRS using the homogeneous model, and L1 and L2 values were 

obtained from the CT images.  For each animal, the coherence factor (β) was estimated 

prior to the fitting by averaging the first five points of each autocorrelation function. To 

focus on deeper propagating photons, the fitting was performed between correlation times 

defined by g2(ρ,τ) < 0.8 to 0.1 s for the shorter SDD (20 mm), and 1 µs to g2(ρ,τ) > 0.5 

for the longer SDD (27 mm). For the flow phantom, the two fitting parameters were the 

diffusion coefficients in the top and bottom layers (DT and DB, respectively). Similarly, 

the fitting parameters for the analysis of the in vivo data were the blood flow indices in 

scalp and brain (denoted FS and FB, respectively), assuming negligible flow in the middle 

(skull) layer. 

4.3.3.3 Statistical Analysis 

Uncertainties are given as the standard error of the mean unless otherwise stated. All 

statistics were computed with the IBM SPSS Statistics 20 software package. For the 

phantom experiments, linear regression analysis was conducted to identify a significant 

relationship between increasing viscosity in the bottom layer and the measured diffusion 

coefficients (DT and DB). 

For the animal experiments, possible changes in the measured physiological 

parameters and optical properties due to altering paCO2 or the scalp incisions were tested 

by a repeated measures analysis of variance (ANOVA). The same test was conducted on 

all measured flow parameters, which include the blood flow estimates for scalp, skull and 

brain measured by CTP, and for the blood flow indices measured by DCS techniques: FS 

and FB from the ML DCS analysis, and FHM,1 and FHM,2 from the homogeneous model. 

Relative blood flow changes measured by CTP and ML DCS when paCO2 was altered 

from normocapnia to hypocapina were compared by a paired t-test. Finally, Bland-

Altman analysis was conducted to compare the reductions in CBF and FB obtained by 
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CTP and ML DCS, respectively. This included a one-sample t-test to identify differences 

between the two modalities and linear regression to determine proportionality bias. 

4.4 Results 

4.4.1 Phantom Experiments 

Figure 4-2 illustrates the relative change (i.e. from 0% cellulose) in the estimated 

diffusion coefficient from the homogeneous model (A) and the ML DCS model (B) as the 

viscosity in the bottom layer of the phantom was increased by adding cellulose. In the 

latter case, the diffusion coefficient from the bottom layer (DB) is shown. For 

comparison, each graph also includes the measured change in the diffusion coefficient for 

the homogeneous phantom. 

 

Figure 4-2: Relative change in the measured diffusion coefficient from the deepest 

layer of a multi-layered phantom: analyzed by homogeneous and heterogeneous 

DCS flow models 

Relative change in the measured diffusion coefficient as the viscosity of the tissue-mimicking phantom was 
increased. The label ‘expected’ refers to the homogeneous case (blue bars), and the labels ‘5 mm’ and ‘10 
mm’ refer to thickness of the top layer for the two-layered case (red and green bars, respectively). For the 
two-layered experiments, cellulose was only added to the bottom layer. (A) Diffusion coefficient determined 
by analyzing the two-layered data with the homogeneous model (SDD = 30 mm). (B) Diffusion coefficient for 
the bottom layer of a two-layered model applied to the same data used in (A). This analysis used data 
acquired at SDD of 20 and 30 mm. 
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The results in Figure 4-2A were obtained using the HM-DCS model to 

characterize the g2(ρ,τ) curves acquired at a SDD of 30 mm, and as expected the 

magnitude of the error was larger as the top layer thickness increased. The results in 

Figure 4-2B were obtained using the ML DCS model to characterize g2(ρ,τ) acquired at 

SDDs of 20 and 30 mm. Linear regression analysis indicated that increasing the viscosity 

in the bottom layer significantly reduced DB, but had no effect on DT for either a 5 or 10 

mm thick top layer. The optical properties measured by TR NIRS in the homogeneous 

phantom were µa = 0.033 ± 0.003 cm-1 and µ ́s = 8.5 ± 0.2 cm-1. 
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4.4.2 Animal Experiments 

4.4.2.1 Physiological Experiments 

Experiments were conducted on seven pigs (all female) with an average weight of 15.5 ± 

0.4 kg and average scalp and skull thicknesses of 3.5 ± 0.2 mm and 6.4 ± 0.4 mm, 

respectively. For all physiological parameters, significant differences were observed pre- 

and post-scalp incision, except for pH, paCO2 and paO2.  

As expected, significant differences between normocapnia and hypocapnia were 

observed for pH and paCO2 [p<0.001, partial-η2 > 0.98, Power = 1]; however, a 

significant change in paO2 and MAP were also observed [p<0.05, partial-η2 > 0.69, 

Power > 0.85] (see Table 4-1). Significant changes were not observed for any of the other 

measured physiological parameters. Their mean values were 38.4 ± 0.1 °C (temperature), 

120 ± 2 beats per minute (HR), 5.3 ± 0.2 mmol/L (BG) and 9.2 ± 0.1 g/dL (ctHb). Lastly, 

no differences were observed in µa (0.168 ± 0.008 cm-1) and µ́s (9.0 ± 0.8 cm-1) between 

capnic conditions. 

Table 4-1: Physiological parameters during normocapnia and hypocapnia 

Condition *pH *paCO2 (mmHg) *paO2 (mmHg) *MAP (mmHg) 

Normocapnia 7.473 ± 0.006 39.5 ± 0.4 173 ± 10 41 ± 1 

Hypocapnia 7.658 ± 0.006 22.2 ± 0.4 210 ± 10 38 ± 1 

Average values at normocapnia and hypocapnia for the arterial partial pressure of carbon dioxide (paCO2,) 
and oxygen (paO2). * p<0.05 between conditions. Data are presented as average ± SEM. 

4.4.2.2 Absolute Blood Flow 

Five blood flow index sets (FS and FB) measured by ML DCS out of a total of 28 were 

removed due to either a large residue (i.e. > 0.01) in the optimization procedure (two 

cases) or an FB value that approached zero (i.e. < 10-9) (one case). Lastly, both sets of 

g2(ρ,τ) curves (i.e. during normocapnia and hypocapnia) from one experiment were 

removed due to poor coupling between the optical probes and skin. 

Normalized intensity autocorrelation curves from one experiment are plotted in 

Figure 4-3. This set was chosen as the FB values at normo- and hypo-capnia were similar 
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to the average values across all animals. The shift to longer correlations times from 

normocapnia to hypocapnia evident in Figure 4-3 represents a -38.7 % flow change 

measured by ML DCS. 

 

Figure 4-3: Measured DCS decay curves acquired on the intact head of a pig during 

normocapnia and hypocapnia 

Normalized intensity autocorrelation functions acquired during normocapnia (red curve) and hypocapnia 
(blue curve) at SDD of 20 mm (A) and 27 mm (B) with count rates of ~465 and ~55 kHz, respectively. The fit 
of the ML DCS model is illustrated by the black curve. 

No significant changes in any of the blood flow indices (i.e. FS and FB values 

from the ML DCS analysis and FHM from the HM-DCS analysis) were found by 

comparing values pre and post scalp incisions. This unexpected finding was likely due to 

increased variability in the DCS signal due to probe pressure effects since it was 

necessary to remove the fibers to perform the incisions (Mesquita et al., 2013). 

Consequently, capnic data before and after scalp incision were grouped together in all 

subsequent analysis. Note, SBF measured by CTP did not change with scalp incisions 

since the scalp ROI (Figure 4-1) was lateral to probe location to avoid breathing-related 

motion artifacts.  

Figure 4-4 plots the blood flow estimates obtained by CTP and DCS for the two 

paCO2 conditions. Significant differences between normocapnia and hypocapnia were 

found for CBF measured by CTP [p<0.001, partial-η2 = 0.984, Power = 1] and FB 

measured by ML DCS [p<0.05, partial-η2 = 0.816, Power = 0.685]. Significant 

differences were also found for FHM at a SDD of 20 mm [p<0.05, partial-η2 > 0.876, 
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Power > 0.852] and a SDD of 27 mm [p<0.05, partial-η2 > 0.826, Power > 0.710]. In 

contrast, no significant differences between capnic conditions were found for SBF 

measured by CTP, and FS measured by ML DCS. Finally, skull flow measured by CTP 

(8.9 ± 0.7 mL/min/100g) and the coherence factors β (0.158 ± 0.001 and 0.168 ± 0.002, 

for SDD of 20 and 27 mm, respectively) did not change significantly with paCO2 (data 

not shown). 

 

Figure 4-4: Absolute blood flow in the scalp and brain measured by CTP and DCS 

during normocapnia and hypocapnia 

Scalp blood flow (SBF) and cerebral blood flow (CBF) measured by CT, and the corresponding blood flow 
indices measured by DCS during normocapnia (red bars) and hypocapnia (blue bars). All values were 
averaged over their pre- and post- scalp incision measurements. FS and FB were obtained from the ML 
model analysis of DCS data acquired at SDDs of 20 and 27 mm. FHM was obtained by analyzing data from 
each SDD separately with the HM model (FHM,1 refers to 20 mm and FHM,2 refers to 27 mm). Significant 
differences observed between capnic conditions are represented by *. 

Table 4-2: Mean absolute flow values in the scalp and brain measured by CTP and 

DCS during normocapnia and hypocapnia 

Capnic 

Condition 

*CBF 

(mL/min/100g) 

*FB 

(10-9 cm2/s) 

SBF 

(mL/min/100g) 

FS 

(10-9 cm2/s) 

*FHM,1 

(10-9 cm2/s) 

*FHM,2 

(10-9 cm2/s) 

Normocapnia 52.4 ± 1.7 52.3 ± 6.9 18.1 ± 1.5 7.3 ± 2.1 7.1 ± 1.3 7.7 ± 1.1 
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Hypocapnia 33.2 ± 1.7 36.3 ± 4.2 19.0 ± 1.2 5.0 ± 1.2 6.0 ± 1.3 6.1 ± 1.0 

Average flow values (CBF and SBF, FB and FS) measured by CTP and ML DCS, respectively, for 
normocapnic and hypocapnic conditions. Significant differences between capnic conditions are indicated by 
*. 

A significant Pearson correlation (R = 0.538) was observed between CBF and FB. 

Likewise, significant correlations were observed between FS and both FHM,1 (R = 0.972) 

and FHM,2 (R = 0.881). 

4.4.2.3 Relative Blood Flow 

The relative change in CBF and DCS indices when reducing paCO2 from normocapnia to 

hypocapnia are presented in Figure 4-5. 

 

Figure 4-5: Comparison between the percent difference of CBF measured by CTP 

and different DCS flow models acquired on the skin of the intact head of pigs 

(A) Box plot of relative flow change caused by reducing paCO2 from normocapnia to hypocapnia. Flow 
values of CBF, FB, FHM,1 and FHM,2 measured by CTP (N = 14), ML DCS (N = 11), DCSHM,1 (N = 14) and 
DCSHM,2 (N = 14), respectively. The center line, box edges, error bars, and the cross represent the median, 
1st and 3rd quartiles, CI95%, and outliers, respectively. Significant changes compared to CBF are 
represented by *. (B) Bland-Altman plot comparing reductions in CBF and FB measured by CTP and ML 
DCS (N = 11). The mean difference between the two modalities, the standard error of the mean, and the 
CI95% are indicated by the solid line, the dotted line and the dashed line, respectively. Flow change 
measured while the scalp tissue was intact or incised is represented by circle and diamond symbols, 
respectively. 

Mean CBF reduction measured by CTP (−36.4 ± 3.3 %) was not significantly 

different from the corresponding FB change (−33.5 ± 4.5 %). In contrast, the FHM,1 change 

(-13.2 ± 7.5 %) was significantly different from both the CTP and ML DCS results. 
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Similarly, the change in FHM,2 (-19.1 ± 6.0 %) was significantly different from CTP 

results and a trend was observed when compared to FB (p = 0.054). A Bland-Altman 

analysis comparing relative CBF changes measured by CTP and ML DCS is shown in 

Figure 4-5B. The mean difference between the two modalities was -1.2 ± 4.6 % (CI95%: -

31.1 and 28.6). Linear regression analysis of the Bland-Altman plot indicted a significant 

proportional bias (p<0.001, R = 0.837). 

4.4.2.4 Real-Time Flow Monitoring 

To demonstrate the ability of ML DCS to resolve dynamic differences in scalp and brain 

blood flow, a series of g2(ρ,τ) curves acquired during the transition from normocapnia to 

hypocapnia from one experiment were analyzed (Figure 4-6). In this example, the flow 

change calculated by the difference between means of the first and last minutes was -42.9 

% in the brain and 5.2 % in the scalp. The coefficients of variation for the baseline scalp 

and brain time series were 9.8 % and 8.4 %, respectively. 

 

Figure 4-6: Real-time change of scalp and brain BFIs measured during the 

transition from normocapnia to hypocapnia 
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Blood flow dynamics during the transition from normocapnia to hypocapnia from one experiment. Each 
g2(ρ,τ) curve was acquired for 2 seconds and analyzed separately by the ML DCS model to obtain time 
series of FB and FS. Data were acquired at a count rate of 554.3 ± 0.4 kHz and 101.5 ± 0.2 kHz at SDDs of 
20 mm and 27 mm, respectively. The thickness of the scalp and the skull were 3.7 ± 0.4 mm and 6.0 ± 0.4 
mm, respectively. 

4.5 Discussion 

The aim of this work was to test the ability of a depth-sensitive DCS approach to retrieve 

the blood flow index from the brain despite the presence of a substantial superficial tissue 

layer. The approach was based on obtaining two autocorrelation functions with varying 

depth sensitivities by placing detectors at distances from the source of 20 and 27 mm. 

The multi-distance data were then analyzed with a three-layered solution to the 

correlation diffusion equation to account for light propagation through scalp, skull and 

brain, and the different blood flows in scalp and brain (Li et al., 2005). Rather than fitting 

a complete autocorrelation curve, different ranges of correlation times were used to fit the 

curves obtained at the two source-detector distances in order to alter the weighting to 

shorter or longer photon pathlengths (Farzam & Durduran, 2015; Selb et al., 2014). More 

specifically, the range for the longer SDD (27 mm) was restricted to early correlation 

times, while longer correlation times were selected for the shorter SDD (20 mm). 

The feasibility of the ML DCS approach was first verified using a two-layer 

tissue-mimicking phantom in which the diffusion property of the bottom layer was 

altered by adding four different cellulose concentrations (Cheung et al., 2001). The 

change in the measured diffusion coefficient of the bottom layer, which varied from 20% 

to 80% by increasing the cellulose concentration, was in good agreement with the change 

observed in the homogeneous phantom over the same concentration range (Figure 4-2). 

In contrast, as expected, the diffusion coefficient of the 10-mm thick top layer did not 

change when cellulose was added to the bottom compartment (data not shown). In 

agreement with Gagnon et al. (Gagnon et al., 2008), these results highlight the ability of a 

multi-layered model to resolve differences in flow rates in different layers with minimal 

crosstalk between the measured diffusion coefficients. 

The second aim of the study was to apply the same ML DCS approach to an 

animal model in which CBF was independently measured by CT perfusion. Juvenile pigs 
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were selected as the total thickness of their extracerebral tissues was expected to be 

similar to that of adult humans. The mean values of scalp and skull thicknesses were 3.5 

± 0.2 and 6.4 ± 0.4 mm, respectively, which are within the expected range for humans, 

although larger values can be found depending on the location on the head (Strangman, 

Zhang, & Li, 2014). Global CBF was reduced by lowering paCO2 from normocapnia to 

hypocapnia. Overall, good agreement was found between the average CBF reductions 

measured by CTP (36.4 ± 3.3 %) and ML DCS (33.5 ± 4.5 %). The corresponding 

estimates of cerebrovascular reactivity (CVR), defined as the change in CBF per unit 

change in paCO2, were -1.9 ± 0.2 % per mmHg and -1.7 ± 0.2 % per mmHg for CTP and 

ML DCS, respectively. These estimates are in good agreement with our previous studies 

involving this animal model: -2.3 % per mmHg from CTP and -2.3 % per mmHg from 

DCS probes placed directly on the exposed cerebral cortex (Elliott et al., 2014; 

Verdecchia et al., 2015). In addition, good agreement was also found between the 

absolute blood flow index determined from ML DCS (Table 4-2: Mean absolute flow 

values in the scalp and brain measured by CTP and DCS during normocapnia and 

hypocapnia) and our previous values derived from autocorrelation functions measured 

directly on the brain, (~48x10-9 cm2/s at normocapnia and ~28x10-9 cm2/s at hypocapnia) 

(Verdecchia et al., 2015). This agreement suggests that FB could be used as a marker to 

track longitudinal changes in CBF, similar to previous DCS studies involving infants 

(Roche-Labarbe et al., 2012). However, this would require careful assessment of the 

reproducibility of FB considering the added complexity of the analysis. Intriguingly, the 

group-wise variability in FB (~40%) was in good agreement with previous studies in 

which the blood flow index was derived from the semi-infinite homogeneous model 

(Diop et al., 2011; Verdecchia et al., 2015). This is despite the addition of a scalp blood 

flow index (i.e. Fs) in the fitting routine.  

Although the results of this study demonstrate that a multi-layered modeling 

approach can account for the effects of extracerebral tissue, the accuracy of FB will be 

affected by errors in the additional model input parameters (i.e. the thicknesses of scalp 

and skull, and tissue optical properties). To assess the sensitivity to uncertainties in the 

thickness measurements, the g2(ρ,τ) curves from the tissue-mimicking phantom with a 

10-mm top layer were re-analyzed with the top layer thickness varied by ± 20%. The 
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resulting error in the diffusion coefficient for the bottom layer was less than 10%, similar 

to that reported by Gagnon et al. (2008). In clinical practice, the thicknesses of the scalp 

and skull could be obtained from medical images or possibly measured directly using 

ultrasound. Alternately, the total scalp/skull thickness could be included as an additional 

fitting parameter, similar to an approach proposed for measuring cerebral oxygenation by 

multi-distance frequency-domain NIRS (Hallacoglu, Sassaroli, & Fantini, 2013). This 

would likely require more SD distances than used in the current study and careful 

attention to the shortest SDD in order to avoid violating the Siegert relationship (Binzoni, 

Sanguinetti, Van de Ville, Zbinden, & Martelli, 2016). Regarding the optical properties, 

all three tissue layers were set to the single µa and µ ́s values measured by TR NIRS since 

the primary focus was assessing the ability of DCS to measure changes in CBF, which is 

fairly insensitive to uncertainties in absolute µa and µ ́s (Diop et al., 2011; Irwin et al., 

2011). Separate values of µa and µ ́s for each tissue layer could be obtained using a multi-

layer solution to analyze the TR NIRS data (Diop & St Lawrence, 2013; Liemert & 

Kienle, 2013). 

An alternative and simpler approach to account for partial volume errors is to 

multiply the change in the blood flow index obtained from the homogeneous model by a 

correction factor based on the partial pathlength through brain (Durduran et al., 2004; 

Gagnon et al., 2008; Selb et al., 2014). Durduran et al. (2004a) initially used a value of 5 

based on modeling the head as a two-layered medium. More recently, Selb et al. 

proposed a factor of 3 by restricting the fitting to early correlation times. In the current 

study, correction factors of 2.4 and 1.8 were found for SDDs of 20 and 27 mm, 

respectively, by comparing the mean change in FHM to the CBF change measured by 

CTP. Similarly, a factor of 1.5 was determined from the tissue phantom experiments with 

a 10-mm thick top layer and a SDD of 30 mm. The smaller values at larger separations 

(27 and 30 mm) would be expected given the improvement in depth sensitivity as the 

SDD is increased. Although applying a correction factor is simpler than using a multi-

layered model, high variability across experiments was found. In this study, the 

correction factor varied by ± 60% across animals. Furthermore, the similarity between 

mean FHM and FS values in Table 4-2: Mean absolute flow values in the scalp and brain 

measured by CTP and DCS during normocapnia and hypocapnia indicates that the DCS 
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signal is heavily weighted by extracerebral tissue. This sensitivity could lead to erroneous 

CBF estimates if scalp blood flow changed due to systemic effects or variations in 

surface probe pressure, highlighting the value of a multi-layered model to uncouple brain 

and scalp blood flow.  

An unexpected finding was the proportional bias revealed by regression analysis 

in the Bland-Altman plot (Figure 4-5B) despite similar flow changes measured by CTP 

and ML DCS (mean difference = -1.2 ± 4.6 %). This bias remained even after removing 

the outlier that had a mean CBF change greater than 50%. One explanation is the 

accuracy of the ML DCS approach could be affected by variations in the thickness of the 

extracerebral layer; however, no correlation with FB was found. Considering the range of 

CBF reductions was limited to between 20 to 40%, this bias should be viewed with 

caution. A wider range of flow changes, for instance by including hypercapnia 

experiments to increase CBF, would help to assess the validity of the observed bias. 

Another unexpected finding was an average perfusion signal in skull of 9 mL/min/100g 

measured by CTP. This would appear to contradict the assumption of the ML DCS 

method that skull has negligible blood flow. However, this value is likely artificial 

considering a similar ‘perfusion’ signal (10 mL/min/100g) was found in the probe holder 

(see Figure 4-1B). Likely this artifact is related to greater variability in flow estimates in 

areas of extremely low contrast enhancement. It should be noted that there was no change 

in skull blood flow between capnic levels. 

4.6 Conclusion 

In summary, this study demonstrates that DCS has the ability to separate scalp and brain 

blood flow, as demonstrated in Figure 4-6, despite the presence of a relatively thick 

extracerebral layer (of the order of 1 cm). The ML DCS technique could be further 

optimized by incorporating optical property measurements for the different tissue layers 

and by improving the SNR through the use of a software correlator to measure only 

relevant correlations times (Wang et al., 2016). Recent improvements for monitoring 

CBF were demonstrated in the adult head by a pressure modulation algorithm, without 

requiring a priori anatomical information (Baker et al., 2015). The approach taken by 

Baker et al. could be combined with the multi-layered model presented in this study to 
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isolate cerebral signals detected by DCS when estimating extracerebral tissue thickness 

by imaging methods is unavailable. Future work will implement a multi-layered 

DCS/TR-NIRS hybrid to demonstrate a means of quantifying the cerebral metabolic rate 

of oxygen in adults (Elliott et al., 2014; Verdecchia, Diop, Lee, & St. Lawrence, 2013). 
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Chapter 5  

5 Discussion/Conclusion 

The main objective of this thesis was to advance diffuse correlation spectroscopy (DCS) 

techniques with the long-term aim of assessing cerebral hemodynamics and metabolism 

in the intensive care unit (ICU). Typically, near-infrared spectroscopy (NIRS) measures 

tissue oxygen saturation but it also can measure CBF using an optical dye as an 

intravascular contrast agent (Brown et al., 2002). This approach has been subsequently 

adapted to time-resolved (TR) NIRS to improve its depth sensitivity and used to calibrate 

DCS in order to monitor absolute perfusion (Diop, Verdecchia, Lee, & St. Lawrence, 

2011). In chapter 2, this NIRS/DCS method was expanded to quantify the cerebral 

metabolic rate of oxygen (CMRO2). In chapter 3, the most appropriate flow model for 

DCS was investigated by acquired data directly on the brain. Chapter 4 outlined 

experiments aimed at assessing a multi-layered (ML) DCS method capable of measuring 

CBF through extracerebral tissues comparable in thickness to adults. The individual 

advancements in DCS techniques achieved in each chapter will be summarized in this 

chapter, and future work to further improve DCS will be discussed. Lastly, the main 

conclusions of the thesis will be listed. 

5.1 Summary 

The main objectives of this thesis focused towards advancing DCS techniques by: 

1) Demonstrating an all-optical device that includes DCS is capable of quantifying 

CMRO2. 

2) Furthering our understanding of the widely accepted diffusion model of flow 

applied to DCS. 

3) Implementing a multi-layered DCS model to separate flow in extracerebral and 

cerebral tissues. 
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Outlined in the following subsections is an overview of the progress to DCS methods 

made by the three objectives of this work. 

5.1.1 Quantification of CMRO2 by an all-optical modality 

Monitoring CBF at the bedside would improve patient outcome by detecting reductions 

in flow; however, additional monitoring of the metabolic rate would help evaluate tissue 

viability since CMRO2 is considered a better indicator of cerebral ischemia than CBF and 

oxygenation measurements alone (Powers, Grubb, Darriet, & Raichle, 1985; Tichauer et 

al., 2009; Tichauer, Brown, Hadway, Lee, & St. Lawrence, 2006). Diffuse correlation 

spectroscopy provides a means to monitor flow changes directly, but it is unable to assess 

the tissue metabolic demands. Combining DCS with NIRS has been used to measure 

changes in CMRO2 in the developing brain (Roche-Labarbe et al., 2010, 2012), but the 

inability of DCS to quantify CBF hinders the all-optical technique from establishing 

absolute metabolic thresholds. 

Recently, our group demonstrated that the DCS signal can be used to measure 

absolute perfusion through calibration with a TR NIRS bolus-tracking method (Diop et 

al., 2011). This technique was expanded in Chapter 2 to show that the combination of 

DCS with TR NIRS can also measure CMRO2. In this combination, DCS and contrast-

enhanced NIRS were used to measure CBF, and multi-wavelength TR NIRS was used to 

determine the cerebral venous blood oxygenation (SvO2), which was verified by directly 

measuring oxygenation in the sagittal sinus. Different cerebral metabolic rates were 

induced by altering the anesthetics in newborn pigs. This animal model was chosen since 

the scalp and skull are relatively thin and, hence, the optical measurements are principally 

from the brain. No significant differences were found between the two sets of SvO2 

measurements obtained by TR NIRS and sagittal sinus blood samples. In addition, 

Bland–Altman analysis showed a small difference in the corresponding CMRO2 values 

(0.027 ± 0.834 mL O2/100g/min) over a range from 0.3 to 4 mL O2/100g/min. This initial 

validation study demonstrates that quantitative CMRO2 values can be obtained by a 

DCS/NIRS hybrid system. 
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5.1.2 Measurements of Relative Blood Flow Changes Directly on 
Brain Parenchyma 

The normalized temporal intensity autocorrelation function generated by DCS is typically 

characterized by assuming that the movement of erythrocytes can be modeled as a 

Brownian diffusion-like process instead of by the expected random flow model (Cheung, 

Culver, Takahashi, Greenberg, & Yodh, 2001). Most applications of DCS accept the 

assumption that Brownian diffusion characterizes moving erythrocytes since this flow 

model approximates the computed autocorrelation function well (Durduran & Yodh, 

2014). Recently, a hybrid model, referred to as the hydrodynamic diffusion model, was 

proposed, which combines the random and Brownian flow models (Carp et al., 2011). 

Chapter 3 investigated the most appropriate flow model to describe 

autocorrelation functions used to monitor CBF. To avoid confounding effects of 

extracerebral tissues, these experiments were conducted with the probes placed directly 

on the brain. Relative flow changes were measured by DCS and were analyzed by three 

different flow models: random flow, Brownian diffusion, and the combined 

hydrodynamic diffusion model. Relative flow changes were verified by computed 

tomography perfusion (−39.7 ± 3.7%), of which, only the random flow model was 

significantly different (−63.2 ± 4.7%). No significant difference was found compared to 

the flow measurements derived using the Brownian and hydrodynamic diffusion models 

(-41.0 ± 4.3% and -44.2 ± 5.0 %, respectively). Although the latter provided better 

characterization of the autocorrelation functions, the Brownian diffusion model was more 

robust and, therefore, it is the most practical model for characterizing DCS data. 

5.1.3 Measurements of Relative Blood Flow Changes Through 
Thick Extracerebral Tissue 

Arguably the greatest challenge with DCS is the influence of superficial tissue on the 

detected signal. For simplicity, common DCS techniques assume tissue homogeneity; 

however in the adult head, extracerebral tissues, such as scalp and skull, lead to 

underestimations of CBF by DCS (Durduran et al., 2004; Gagnon, Selb, & Boas, 2008). 

Chapter 4 investigated a ML model that accounts for light propagation in multiple tissue 

layers, which was applied to DCS data acquired at multiple source-detector distances. 
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First, the ML DCS model was verified in a two-layer diffusion phantom by separating 

diffusion in the bottom and top layers. Next, global reductions in CBF (−33.5 ± 4.5 %) 

were measured by ML DCS in pigs with an extracerebral tissue thickness similar to 

adults (9.8 ± 0.4 mm). For validation, perfusion changes (−36.4 ± 3.3 %) were measured 

independently by computed tomography. Bland-Altman analysis determined a mean 

difference of -1.2 ± 4.6 % between the two flow modalities, which was bound by a 95% 

confidence interval of −31.1 to 28.6 %. This final study demonstrated that reductions in 

CBF can be measured accurately by ML DCS in adolescent pigs, which mimic the head 

of adults. 

5.2 Future Work 

5.2.1 Multi-Layered DCS/NIRS Hybrid System 

The main focus of the work completed in this thesis was towards advancing and 

validating DCS with the long-term goal of using this emerging optical method in 

combination with NIRS to monitoring CBF and CMRO2 in critical-care patients. In all 

three chapters, tissue optical properties were quantified by TR NIRS and input into the 

fitting routine of DCS. For DCS data analysis, the number of fitting parameters were 

reduced and, more importantly, the accuracy of the DCS fitting routine improved (Diop 

et al., 2011; Irwin et al., 2011). Notably, combining DCS with TR NIRS provides the 

ability to monitor both perfusion and CMRO2. 

Similar to DCS, TR NIRS is highly sensitive to superficial tissues, which result in 

underestimations of CBF (Gora et al., 2002). The excellent temporal resolution due to the 

measurement of the time-of-flight of photons by TR NIRS makes it possible to improve 

depth sensitivity by time-gating and moment analysis strategies (Diop & St. Lawrence, 

2013; Liebert, Wabnitz, & Elster, 2012). A previous colleague demonstrated that multi-

detector TR NIRS can accurately quantify CBF in a heterogeneous medium (Elliott et al., 

2014; Elliott, 2013). Naturally, similar to Diop et al. (Diop et al., 2011), the next step is to 

combine the dissertation work completed by Elliot (2013) with the ML DCS technique 

presented in Chapter 4 in order to calibrate changes in CBF in the adult head. This idea 

can be expanded by estimating optical properties for separate tissues using a multi-layer 
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solution to analyze the TR NIRS data (Liemert & Kienle, 2013). In turn, the cerebral 

oxygen saturation could be measured, and therefore, the method presented in Chapter 2 

could be used to measure CBF and CMRO2 in the adult head. 

5.2.2 Real-Time Data Acquisition 

The current NIRS/DCS hybrid device designed for the experiments conducted in this 

thesis did not have the capability to provide real-time monitoring. Simultaneous data 

acquisition of TR NIRS and DCS is not feasible due to the interplay of detected light, and 

alternating manually between optical components is required. A possible solution would 

be to automate transitions between NIRS/DCS components but would not allow 

simultaneous acquisitions. Installing band-pass filters would make concurrent NIRS and 

DCS measurements feasible by removing unnecessary wavelengths at the detection site 

of each component. A more challenging approach would be to design a detection system 

that utilizes the same components to generate both the autocorrelation functions and the 

TPSFs required for DCS and TR NIRS, respectively. 

 All data analysis in this thesis required post-analysis to compute the respective 

physiological parameters. Before transferring the NIRS/DCS system from the laboratory 

to the clinic, real-time digitization of measured data is needed. Specific for DCS, the 

current data throughput is relatively slow (~1 Hz), which means detected light generates 

an autocorrelation curve with sufficient SNR to assess tissue hemodynamics every 

second. Work completed in this thesis used few-mode fiber bundles for optimal temporal 

resolution of light detection (Dietsche et al., 2007). However for the adult head (Chapter 

4), long data acquisition times (~30-60 seconds) were acquired by ML DCS despite 

utilizing up to 10 few-mode detection fibers located at the largest source-detector 

distance. Future improvements to DCS techniques presented in this thesis would be to 

incorporate new innovative methods. For example, converting the correlator board from 

the computationally expensive hardware to software would improve the throughput up to 

50 Hz, which is fast enough to resolve heartbeat fluctuations (Wang et al., 2016). 

Implementing recent innovations with the ML DCS technique presented in Chapter 4 will 

increase the speed of blood flow measurements, which may provide real-time perfusion 

changes at the bedside of neurocritical adults. 
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5.2.3 Clinical Validation 

Pre-clinical experiments simplify optical data collection by lessening potential artifacts, 

such to hair and motion; however, in the clinic, these artifacts are difficult to avoid. 

Therefore, it is imperative to demonstrate and validate the feasibility of a NIRS/DCS 

system at the bedside of patients in clinical trials. 

Due to the challenges presented in the clinic, the accuracy and precision of ML 

DCS should be investigated and compared to various perfusion imaging modalities, 

including positron emission tomography, computed tomography, and magnetic resonance 

imaging (arterial spin labeling or phase-contrast). Next, different neurological 

emergencies should be assessed to investigate the clinical value of monitoring CBF with 

regards to improving the detection and prognosis of delayed cerebral ischemia. Lastly, a 

comparison of the success/failure of monitoring changes in CBF by ML DCS with 

different management strategies to current clinical care practices would determine the 

extent ML DCS fulfills a niche as a noninvasive bedside monitoring device of blood flow 

before accepting DCS as a useful bedside management tool in the ICU. The same extent 

of clinical trials should be performed to investigate the clinical utility of combining ML 

DCS and TR NIRS to quantify CMRO2. Clinical trials, in which, both CBF and CMRO2 

is monitored should be completed to understand the relationship during treatment of 

neurological emergencies in the ICU to optimize patient outcome.  

5.3 Conclusions 

With the purpose of assessing cerebral hemodynamics at the bedside, the primary 
findings of this thesis advanced DCS by: 

1. An all-optical modality, which included combining DCS and TR NIRS, 

demonstrated changes in absolute CMRO2 agree well with direct measurements of 

blood oxygenation in newborn pigs. 

2. Relative flow changes measured by DCS, which was confirmed by computed 

tomography, are similar when characterized by Brownian and hydrodynamic 

models directly on the exposed cortical tissue in pigs. Although the latter provides a 
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better fit to DCS data, the former is more robust deeming it the better model to 

characterize flow changes by DCS. 

3. Implementation of a multi-layered model to DCS separates flow in extracerebral 

and cerebral tissues successfully. Furthermore, the relative changes in CBF 

measured by a multi-layered DCS technique were in good agreement with 

perfusion changes measured by computed tomography in pigs, which had an 

extracerebral tissue thickness of 1 cm. 
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APPENDICES 

Appendix A: Animal Protocol Approval and Modifications 

 (Note: signatures, addresses, email addresses, and phone numbers have been removed from 

original correspondence as per School of Graduate and Postdoctoral Studies requirements.) 

A.1: Animal Protocol Approval for Chapter 2 
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A.2: Animal Protocol Modification for Chapter 2 
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A.3: Animal Protocol Approval for Chapters 3 and 4 

 



143 

 

A.4: Animal Protocol Modification for Chapters 3 and 4 
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