8 research outputs found

    Characterization of the on-body path Loss at 2.45 GHz and energy efficient WBAN design for dairy cows

    Get PDF
    Wireless body area networks (WBANs) provide promising applications in the healthcare monitoring of dairy cows. The characterization of the path loss (PL) between on-body nodes constitutes an important step in the deployment of a WBAN. In this paper, the PL between nodes placed on the body of a dairy cow was determined at 2.45 GHz. Finite-difference time domain simulations with two half-wavelength dipoles placed 20 mm above a cow model were performed using a 3-D electromagnetic solver. Measurements were conducted on a live cow to validate the simulation results. Excellent agreement between measurements and simulations was achieved and the obtained PL values as a function of the transmitter-receiver separation were well fitted by a lognormal PL model with a PL exponent of 3.1 and a PL at reference distance ( 10 cm) of 44 dB. As an application, the packet error rate ( PER) and the energy efficiency of different WBAN topologies for dairy cows (i.e., single-hop, multihop, and cooperative networks) were investigated. The analysis results revealed that exploiting multihop and cooperative communication schemes decrease the PER and increase the optimal payload packet size. The analysis results revealed that exploiting multihop and cooperative communication schemes increase the optimal payload packet size and improve the energy efficiency by 30%

    Improving the energy efficiency for the WBSN bottleneck zone based on random linear network coding

    Get PDF
    The reduction of energy consumption and the successful delivery of data are important for the Wireless Body Sensor Network (WBSN). Many studies have been proposed to improve energy efficiency, but most of them have not focussed on the biosensor nodes in the WBSN bottleneck zone. Energy consumption is a critical issue in WBSNs, as the nodes that are placed next to the sink node consume more energy. All biomedical packets are aggregated through these nodes forming a bottleneck zone. This paper proposes a novel mathematical model for body area network (BAN) topology to explain the deployment and connection between biosensor nodes, simple relay nodes, network coding relay nodes and the sink node. Therefore, this paper is dedicated to researching both the energy saving and delivery of data if there is a failure in one of the links of the transmission, which relates to the proposed Random Linear Network Coding (RLNC) model in the WBSN. Using a novel mathematical model for a WBSN, it is apparent that energy consumption is reduced and data delivery achieved with the proposed mechanism. This paper details the stages of the research work

    Enhancement of the duty cycle cooperative medium access control for wireless body area networks

    Get PDF
    This paper presents a novel energy-efficient and reliable connection to enhance the transmission of data over a shared medium for wireless body area networks (WBAN). We propose a novel protocol of two master nodes-based cooperative protocol. In the proposed protocol, two master nodes were considered, that is, the belt master node and the outer body master node. The master nodes work cooperatively to avoid the retransmission process by sensors due to fading and collision, reducing the bit error rate (BER), which results in a reduction of the duty cycle and average transmission power. In addition, we have also presented a mathematical model of the duty cycle with the proposed protocol for the WBAN. The results show that the proposed cooperative protocol reduced the BER by a factor of 4. The average transmission power is reduced by a factor of 0.21 and this shows the potential of the proposed technique to be used in future wearable wireless sensors and systems

    QoS Analysis for a Non-Preemptive Continuous Monitoring and Event Driven WSN Protocol in Mobile Environments

    Full text link
    Evolution in wireless sensor networks (WSNs) has allowed the introduction of new applications with increased complexity regarding communication protocols, which have to ensure that certain QoS parameters are met. Specifically, mobile applications require the system to respond in a certain manner in order to adequately track the target object. Hybrid algorithms that perform Continuous Monitoring (CntM) and Event-Driven (ED) duties have proven their ability to enhance performance in different environments, where emergency alarms are required. In this paper, several types of environments are studied using mathematical models and simulations, for evaluating the performance of WALTER, a priority-based nonpreemptive hybrid WSN protocol that aims to reduce delay and packet loss probability in time-critical packets. First, randomly distributed events are considered. This environment can be used to model a wide variety of physical phenomena, for which report delay and energy consumption are analyzed by means of Markov models. Then, mobile-only environments are studied for object tracking purposes. Here, some of the parameters that determine the performance of the system are identified. Finally, an environment containing mobile objects and randomly distributed events is considered. It is shown that by assigning high priority to time-critical packets, report delay is reduced and network performance is enhanced.This work was partially supported by CONACyT under Project 183370. The research of Vicent Pla has been supported in part by the Ministry of Economy and Competitiveness of Spain under Grant TIN2013-47272-C2-1-R.Leyva Mayorga, I.; Rivero-Angeles, ME.; Carreto-Arellano, C.; Pla, V. (2015). QoS Analysis for a Non-Preemptive Continuous Monitoring and Event Driven WSN Protocol in Mobile Environments. International Journal of Distributed Sensor Networks. 2015:1-16. https://doi.org/10.1155/2015/471307S1162015Arampatzis, T., Lygeros, J., & Manesis, S. (s. f.). A Survey of Applications of Wireless Sensors and Wireless Sensor Networks. Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005. doi:10.1109/.2005.1467103Ramachandran, C., Misra, S., & Obaidat, M. S. (2008). A probabilistic zonal approach for swarm-inspired wildfire detection using sensor networks. International Journal of Communication Systems, 21(10), 1047-1073. doi:10.1002/dac.937Misra, S., Singh, S., Khatua, M., & Obaidat, M. S. (2013). Extracting mobility pattern from target trajectory in wireless sensor networks. International Journal of Communication Systems, 28(2), 213-230. doi:10.1002/dac.2649Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660-670. doi:10.1109/twc.2002.804190Younis, O., & Fahmy, S. (s. f.). Distributed clustering in ad-hoc sensor networks: a hybrid, energy-efficient approach. IEEE INFOCOM 2004. doi:10.1109/infcom.2004.1354534Manjeshwar, A., & Agrawal, D. P. (s. f.). TEEN: a routing protocol for enhanced efficiency in wireless sensor networks. Proceedings 15th International Parallel and Distributed Processing Symposium. IPDPS 2001. doi:10.1109/ipdps.2001.925197Manjeshwar, A., & Agrawal, D. P. (2002). APTEEN: a hybrid protocol for efficient routing and comprehensive information retrieval in wireless. Proceedings 16th International Parallel and Distributed Processing Symposium. doi:10.1109/ipdps.2002.1016600Sharif, A., Potdar, V., & Rathnayaka, A. J. D. (2010). Prioritizing Information for Achieving QoS Control in WSN. 2010 24th IEEE International Conference on Advanced Information Networking and Applications. doi:10.1109/aina.2010.166Alappat, V. J., Khanna, N., & Krishna, A. K. (2011). Advanced Sensor MAC protocol to support applications having different priority levels in Wireless Sensor Networks. 2011 6th International ICST Conference on Communications and Networking in China (CHINACOM). doi:10.1109/chinacom.2011.6158175Alam, K. M., Kamruzzaman, J., Karmakar, G., & Murshed, M. (2012). Priority Sensitive Event Detection in Hybrid Wireless Sensor Networks. 2012 21st International Conference on Computer Communications and Networks (ICCCN). doi:10.1109/icccn.2012.6289220Raja, A., & Su, X. (2008). A Mobility Adaptive Hybrid Protocol for Wireless Sensor Networks. 2008 5th IEEE Consumer Communications and Networking Conference. doi:10.1109/ccnc08.2007.159Srikanth, B., Harish, M., & Bhattacharjee, R. (2011). An energy efficient hybrid MAC protocol for WSN containing mobile nodes. 2011 8th International Conference on Information, Communications & Signal Processing. doi:10.1109/icics.2011.6173629Lee, Y.-D., Jeong, D.-U., & Lee, H.-J. (2011). Empirical analysis of the reliability of low-rate wireless u-healthcare monitoring applications. International Journal of Communication Systems, 26(4), 505-514. doi:10.1002/dac.1360Deepak, K. S., & Babu, A. V. (2013). Improving energy efficiency of incremental relay based cooperative communications in wireless body area networks. International Journal of Communication Systems, 28(1), 91-111. doi:10.1002/dac.2641Yuan Li, Wei Ye, & Heidemann, J. (s. f.). Energy and latency control in low duty cycle MAC protocols. IEEE Wireless Communications and Networking Conference, 2005. doi:10.1109/wcnc.2005.1424589Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535-547. doi:10.1109/49.840210Wei Ye, Heidemann, J., & Estrin, D. (s. f.). An energy-efficient MAC protocol for wireless sensor networks. Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies. doi:10.1109/infcom.2002.101940

    System design and performance analysis of wireless body area networks

    Get PDF
    One key solution to provide affordable and proactive healthcare facilities to overcome the fast world population growth and a shortage of medical professionals is through health monitoring systems capable of early disease detection and real-time data transmission leading to considerable improvements in the quality of human life. Wireless body area networks (WBANs) are proposed as promising approaches to providing better mobility and flexibility experience than traditional wired medical systems by using low-power, miniaturised sensors inside, around, or off the human body and are employed to monitor physiological signals. However, the design of reliable and energy efficient in-body communication systems is still a major research challenge since implant devices are characterised by strict requirements on size, energy consumption and safety. Moreover, there is still no agreement regarding QoS support in WBANs. The first part of this work concentrates on the design and performance evaluation of WBAN communication systems involving the ‘in-body to in-body’ and ‘in-body to on-body’ scenarios. The essential step is to derive the statistical WBAN path loss (PL) models, which characterise the signal propagation energy loss transmitting via intra-body region. Moreover, from the point of view of human body safety evaluation, the obtained specific absorption rate (SAR) values are compared with the latest Institute of Electrical and Electronics Engineers (IEEE) 802.15.6 Task Group technical standard and the International Commission on Non-Ionizing Radiation Protection (ICNIRP) safety guidelines. Link budget analysis is then presented using a range of energy-efficient modulation schemes, and the results are given including the transmission distance, data rate and transmitting power in individual sections. On the other hand, major quality of service (QoS) support challenges in WBANs are discussed and investigated. To achieve higher lifetime and lower network energy consumption, different data routing protocol methods, including incremental relaying and the two-relay based routing technique are taken into account. A set of key QoS metrics for linear mathematical models is given along with the related subjective functions. The incremental relaying routing protocol promises significant enhancements in in-body WBAN network lifetime by minimising the overall communication distance while the two-relay based routing method achieves better performance in terms of emergency data transmission and high traffic condition, QoS-aware WBANs design. Moreover, to handle real-time high data transmission applications such as capsule endoscope image transmission, a flexible QoS-aware wireless body area sensor networks (WBASNs) model is proposed and evaluated that can bring novel solutions for a realistic multi-user hospital environment regarding information packet collision probability, manageable numbers of sensor nodes and a wide range of data rates
    corecore