14,732 research outputs found

    Automatic depression scale prediction using facial expression dynamics and regression

    Get PDF
    Depression is a state of low mood and aversion to activity that can affect a person's thoughts, behaviour, feelings and sense of well-being. In such a low mood, both the facial expression and voice appear different from the ones in normal states. In this paper, an automatic system is proposed to predict the scales of Beck Depression Inventory from naturalistic facial expression of the patients with depression. Firstly, features are extracted from corresponding video and audio signals to represent characteristics of facial and vocal expression under depression. Secondly, dynamic features generation method is proposed in the extracted video feature space based on the idea of Motion History Histogram (MHH) for 2-D video motion extraction. Thirdly, Partial Least Squares (PLS) and Linear regression are applied to learn the relationship between the dynamic features and depression scales using training data, and then to predict the depression scale for unseen ones. Finally, decision level fusion was done for combining predictions from both video and audio modalities. The proposed approach is evaluated on the AVEC2014 dataset and the experimental results demonstrate its effectiveness.The work by Asim Jan was supported by School of Engineering & Design/Thomas Gerald Gray PGR Scholarship. The work by Hongying Meng and Saeed Turabzadeh was partially funded by the award of the Brunel Research Initiative and Enterprise Fund (BRIEF). The work by Yona Falinie Binti Abd Gaus was supported by Majlis Amanah Rakyat (MARA) Scholarship

    Facial Expression Recognition

    Get PDF

    Time-delay neural network for continuous emotional dimension prediction from facial expression sequences

    Get PDF
    "(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works."Automatic continuous affective state prediction from naturalistic facial expression is a very challenging research topic but very important in human-computer interaction. One of the main challenges is modeling the dynamics that characterize naturalistic expressions. In this paper, a novel two-stage automatic system is proposed to continuously predict affective dimension values from facial expression videos. In the first stage, traditional regression methods are used to classify each individual video frame, while in the second stage, a Time-Delay Neural Network (TDNN) is proposed to model the temporal relationships between consecutive predictions. The two-stage approach separates the emotional state dynamics modeling from an individual emotional state prediction step based on input features. In doing so, the temporal information used by the TDNN is not biased by the high variability between features of consecutive frames and allows the network to more easily exploit the slow changing dynamics between emotional states. The system was fully tested and evaluated on three different facial expression video datasets. Our experimental results demonstrate that the use of a two-stage approach combined with the TDNN to take into account previously classified frames significantly improves the overall performance of continuous emotional state estimation in naturalistic facial expressions. The proposed approach has won the affect recognition sub-challenge of the third international Audio/Visual Emotion Recognition Challenge (AVEC2013)1

    Baseline CNN structure analysis for facial expression recognition

    Full text link
    We present a baseline convolutional neural network (CNN) structure and image preprocessing methodology to improve facial expression recognition algorithm using CNN. To analyze the most efficient network structure, we investigated four network structures that are known to show good performance in facial expression recognition. Moreover, we also investigated the effect of input image preprocessing methods. Five types of data input (raw, histogram equalization, isotropic smoothing, diffusion-based normalization, difference of Gaussian) were tested, and the accuracy was compared. We trained 20 different CNN models (4 networks x 5 data input types) and verified the performance of each network with test images from five different databases. The experiment result showed that a three-layer structure consisting of a simple convolutional and a max pooling layer with histogram equalization image input was the most efficient. We describe the detailed training procedure and analyze the result of the test accuracy based on considerable observation.Comment: 6 pages, RO-MAN2016 Conferenc

    Discriminatively Trained Latent Ordinal Model for Video Classification

    Full text link
    We study the problem of video classification for facial analysis and human action recognition. We propose a novel weakly supervised learning method that models the video as a sequence of automatically mined, discriminative sub-events (eg. onset and offset phase for "smile", running and jumping for "highjump"). The proposed model is inspired by the recent works on Multiple Instance Learning and latent SVM/HCRF -- it extends such frameworks to model the ordinal aspect in the videos, approximately. We obtain consistent improvements over relevant competitive baselines on four challenging and publicly available video based facial analysis datasets for prediction of expression, clinical pain and intent in dyadic conversations and on three challenging human action datasets. We also validate the method with qualitative results and show that they largely support the intuitions behind the method.Comment: Paper accepted in IEEE TPAMI. arXiv admin note: substantial text overlap with arXiv:1604.0150
    • …
    corecore