3,399 research outputs found

    Improving digital object handoff using the space above the table

    Get PDF
    Object handoff – that is, passing an object or tool to another person – is an extremely common activity in collaborative tabletop work. On digital tables, object handoff is typically accomplished by sliding the object on the table surface – but surface-only interactions can be slow and error-prone, particularly when there are multiple people carrying out multiple handoffs. An alternative approach is to use the space above the table for object handoff; this provides more room to move, but requires above-surface tracking. I developed two above-the-surface handoff techniques that use simple and inexpensive tracking: a force-field technique that uses a depth camera to determine hand proximity, and an electromagnetic-field technique called ElectroTouch that provides positive indication when people touch hands over the table. These new techniques were compared to three kinds of existing surface-only handoff (sliding, flicking, and surface-only Force-Fields). The study showed that the above-surface techniques significantly improved both speed and accuracy, and that ElectroTouch was the best technique overall. Also, as object interactions are moved above-the-surface of the table the representation of off-table objects becomes crucial. To address the issue of off-table digital object representation several object designs were created an evaluated. The result of the present research provides designers with practical new techniques for substantially increasing performance and interaction richness on digital tables

    Buffer management and cell switching management in wireless packet communications

    Get PDF
    The buffer management and the cell switching (e.g., packet handoff) management using buffer management scheme are studied in Wireless Packet Communications. First, a throughput improvement method for multi-class services is proposed in Wireless Packet System. Efficient traffic management schemes should be developed to provide seamless access to the wireless network. Specially, it is proposed to regulate the buffer by the Selective- Delay Push-In (SDPI) scheme, which is applicable to scheduling delay-tolerant non-real time traffic and delay-sensitive real time traffic. Simulation results show that the performance observed by real time traffics are improved as compared to existing buffer priority scheme in term of packet loss probability. Second, the performance of the proposed SDPI scheme is analyzed in a single CBR server. The arrival process is derived from the superposition of two types of traffics, each in turn results from the superposition of homogeneous ON-OFF sources that can be approximated by means of a two-state Markov Modulated Poisson Process (MMPP). The buffer mechanism enables the ATM layer to adapt the quality of the cell transfer to the QoS requirements and to improve the utilization of network resources. This is achieved by selective-delaying and pushing-in cells according to the class they belong to. Analytical expressions for various performance parameters and numerical results are obtained. Simulation results in term of cell loss probability conform with our numerical analysis. Finally, a novel cell-switching scheme based on TDMA protocol is proposed to support QoS guarantee for the downlink. The new packets and handoff packets for each type of traffic are defined and a new cutoff prioritization scheme is devised at the buffer of the base station. A procedure to find the optimal thresholds satisfying the QoS requirements is presented. Using the ON-OFF approximation for aggregate traffic, the packet loss probability and the average packet delay are computed. The performance of the proposed scheme is evaluated by simulation and numerical analysis in terms of packet loss probability and average packet delay

    Efficient spectrum-handoff schemes for cognitive radio networks

    Get PDF
    Radio spectrum access is important for terrestrial wireless networks, commercial earth observations and terrestrial radio astronomy observations. The services offered by terrestrial wireless networks, commercial earth observations and terrestrial radio astronomy observations have evolved due to technological advances. They are expected to meet increasing users' demands which will require more spectrum. The increasing demand for high throughput by users necessitates allocating additional spectrum to terrestrial wireless networks. Terrestrial radio astronomy observations s require additional bandwidth to observe more spectral windows. Commercial earth observation requires more spectrum for enhanced transmission of earth observation data. The evolution of terrestrial wireless networks, commercial earth observations and terrestrial radio astronomy observations leads to the emergence of new interference scenarios. For instance, terrestrial wireless networks pose interference risks to mobile ground stations; while inter-satellite links can interfere with terrestrial radio astronomy observations. Terrestrial wireless networks, commercial earth observations and terrestrial radio astronomy observations also require mechanisms that will enhance the performance of their users. This thesis proposes a framework that prevents interference between terrestrial wireless networks, commercial earth observations and terrestrial radio astronomy observations when they co-exist; and enhance the performance of their users. The framework uses the cognitive radio; because it is capable of multi-context operation. In the thesis, two interference avoidance mechanisms are presented. The first mechanism prevents interference between terrestrial radio astronomy observations and inter-satellite links. The second mechanism prevent interference between terrestrial wireless networks and the commercial earth observation ground segment. The first interference reductionmechanism determines the inter-satellite link transmission duration. Analysis shows that interference-free inter-satellite links transmission is achievable during terrestrial radio astronomy observation switching for up to 50.7 seconds. The second mechanism enables the mobile ground station, with a trained neural network, to predict the terrestrial wireless network channel idle state. The prediction of the TWN channel idle state prevents interference between the terrestrial wireless network and the mobile ground station. Simulation shows that incorporating prediction in the mobile ground station enhances uplink throughput by 40.6% and reduces latency by 18.6%. In addition, the thesis also presents mechanisms to enhance the performance of the users in terrestrial wireless network, commercial earth observations and terrestrial radio astronomy observations. The thesis presents mechanisms that enhance user performance in homogeneous and heterogeneous terrestrial wireless networks. Mechanisms that enhance the performance of LTE-Advanced users with learning diversity are also presented. Furthermore, a future commercial earth observation network model that increases the accessible earth climatic data is presented. The performance of terrestrial radio astronomy observation users is enhanced by presenting mechanisms that improve angular resolution, power efficiency and reduce infrastructure costs

    A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future

    Full text link
    A High Altitude Platform Station (HAPS) is a network node that operates in the stratosphere at an of altitude around 20 km and is instrumental for providing communication services. Precipitated by technological innovations in the areas of autonomous avionics, array antennas, solar panel efficiency levels, and battery energy densities, and fueled by flourishing industry ecosystems, the HAPS has emerged as an indispensable component of next-generations of wireless networks. In this article, we provide a vision and framework for the HAPS networks of the future supported by a comprehensive and state-of-the-art literature review. We highlight the unrealized potential of HAPS systems and elaborate on their unique ability to serve metropolitan areas. The latest advancements and promising technologies in the HAPS energy and payload systems are discussed. The integration of the emerging Reconfigurable Smart Surface (RSS) technology in the communications payload of HAPS systems for providing a cost-effective deployment is proposed. A detailed overview of the radio resource management in HAPS systems is presented along with synergistic physical layer techniques, including Faster-Than-Nyquist (FTN) signaling. Numerous aspects of handoff management in HAPS systems are described. The notable contributions of Artificial Intelligence (AI) in HAPS, including machine learning in the design, topology management, handoff, and resource allocation aspects are emphasized. The extensive overview of the literature we provide is crucial for substantiating our vision that depicts the expected deployment opportunities and challenges in the next 10 years (next-generation networks), as well as in the subsequent 10 years (next-next-generation networks).Comment: To appear in IEEE Communications Surveys & Tutorial

    Identifying Transfer of Care Gaps: Electronic Health Record Capture of Perioperative Handoff Communications

    Get PDF
    Transitions in patient care are held together by interdisciplinary handoff communications intended to coordinate the patient\u27s ongoing care requirements. Patients with complexity in care encumber the transfer of care process requiring a higher level of care coordination between the interdisciplinary team (Coleman, 2003; Naylor et al., 2004). While the literature is abundant on the characteristics and quality of handoff communications, it is limited on the requirements of what data is necessary for ongoing care following transfer communications (Galatzan & Carrington, 2018). This dissertation explores the verbal information transferred during Operating Room (OR) to Post Anesthesia Care Unit (PACU) nursing handoff communications and whether the data is captured in the electronic health record (EHR) to represent the information critical to ongoing patient care and care planning. the study builds on the Kennedy Integrated Theoretical Framework (KITF) (Kennedy, 2012) integrating cognition theory, patterns of knowledge theory, and clinical communication space theory to support the human-technology characteristics within perioperative handoffs. Evidence of wisdom was present in the KITF in addition to elements of non-verbal communication patterns emerging from shared common ground contributed to the framework\u27s expansion. to understand the contributions of the perioperative nursing interface terminology, the Perioperative Nursing Data Set (PNDS), makes to postsurgical care transitions, the study examines nursing diagnoses, interventions, interim outcomes and goals relationships to the handoff data communicated between OR and PACU Registered Nurses. Study findings revealed a complex fragmented process of verbal communications and electronic documentation for the handoff process. While the EHR is prominent in data procurement for the handoff process, the design of handoff artifacts (e.g., paper, electronic) significantly impact the value of information received. Incomplete handoff tools or missing EHR data adds to a cycle of information decay while contributing to increase cognitive load and potentiating opportunities for information and knowledge loss. the absence of nursing diagnoses in the automation of the PNDS challenges the integrity of the language within the documentation platform and raises considerations for hierarchical representation within interface terminologies. This study reinforces literature to reconsider user requirements in the design and functionality of healthcare information technology (HIT) to enable data and information flow and preserve knowledge development. the inclusion of mobile technology, cognitive support aids including clinical decision support tools, and other HIT will further enable the effectiveness of transfer communication, knowledge development, and the safety of ongoing patient care

    Design and evaluation of an advanced air-ground data-link system for air traffic control

    Get PDF
    The design and evaluation of the ground-based portion of an air-ground data-link system for air traffic control (ATC) are described. The system was developed to support the 4D Aircraft/ATC Integration Study, a joint simulation experiment conducted at NASA's Ames and Langley Research Centers. The experiment focused on airborne and ground-based procedures for handling aircraft equipped with a 4D-Flight Management System (FMS) and the system requirements needed to ensure conflict-free traffic flow. The Center/TRACON Automation System (CTAS) at Ames was used for the ATC part of the experiment, and the 4D-FMS-equipped aircraft was simulated by the Transport Systems Research Vehicle (TSRV) simulator at Langley. The data-link system supported not only conventional ATC communications, but also the communications needed to accommodate the 4D-FMS capabilities of advanced aircraft. Of great significance was the synergism gained from integrating the data link with CTAS. Information transmitted via the data link was used to improve the monitoring and analysis capability of CTAS without increasing controller input workload. Conversely, CTAS was used to anticipate and create prototype messages, thus reducing the workload associated with the manual creation of data-link messages
    • …
    corecore