173 research outputs found

    Improving BitTorrent's Peer Selection For Multimedia Content On-Demand Delivery

    Get PDF
    The great efficiency achieved by the BitTorrent protocol for the distribution of large amounts of data inspired its adoption to provide multimedia content on-demand delivery over the Internet. As it is not designed for this purpose, some adjustments have been proposed in order to meet the related QoS requirements like low startup delay and smooth playback continuity. Accordingly, this paper introduces a BitTorrent-like proposal named as Quota-Based Peer Selection (QBPS). This proposal is mainly based on the adaptation of the original peer-selection policy of the BitTorrent protocol. Its validation is achieved by means of simulations and competitive analysis. The final results show that QBPS outperforms other recent proposals of the literature. For instance, it achieves a throughput optimization of up to 48.0% in low-provision capacity scenarios where users are very interactive.Comment: International Journal of Computer Networks & Communications(IJCNC) Vol.7, No.6, November 201

    Modeling and Evaluation of Multisource Streaming Strategies in P2P VoD Systems

    Get PDF
    In recent years, multimedia content distribution has largely been moved to the Internet, inducing broadcasters, operators and service providers to upgrade with large expenses their infrastructures. In this context, streaming solutions that rely on user devices such as set-top boxes (STBs) to offload dedicated streaming servers are particularly appropriate. In these systems, contents are usually replicated and scattered over the network established by STBs placed at users' home, and the video-on-demand (VoD) service is provisioned through streaming sessions established among neighboring STBs following a Peer-to-Peer fashion. Up to now the majority of research works have focused on the design and optimization of content replicas mechanisms to minimize server costs. The optimization of replicas mechanisms has been typically performed either considering very crude system performance indicators or analyzing asymptotic behavior. In this work, instead, we propose an analytical model that complements previous works providing fairly accurate predictions of system performance (i.e., blocking probability). Our model turns out to be a highly scalable, flexible, and extensible tool that may be helpful both for designers and developers to efficiently predict the effect of system design choices in large scale STB-VoD system

    Robustness of BitTorrent-like VoD protocols

    Get PDF
    Besides server supported solutions for Video-on-demand, approaches based on distributed systems such as BitTorrent are being used due to their efficiency and high scalability. There are several protocol variants proposed in the literature, which are mainly concerned with providing mechanisms for piece selection and peer selection. In this paper, using the concept of Design Space Analysis, we give comparisons of the performances of several BitTorrent-like Video-on-demand protocols under the assumption that other protocol variants may also enter the system

    ISP-friendly Peer-assisted On-demand Streaming of Long Duration Content in BBC iPlayer

    Full text link
    In search of scalable solutions, CDNs are exploring P2P support. However, the benefits of peer assistance can be limited by various obstacle factors such as ISP friendliness - requiring peers to be within the same ISP, bitrate stratification - the need to match peers with others needing similar bitrate, and partial participation - some peers choosing not to redistribute content. This work relates potential gains from peer assistance to the average number of users in a swarm, its capacity, and empirically studies the effects of these obstacle factors at scale, using a month-long trace of over 2 million users in London accessing BBC shows online. Results indicate that even when P2P swarms are localised within ISPs, up to 88% of traffic can be saved. Surprisingly, bitrate stratification results in 2 large sub-swarms and does not significantly affect savings. However, partial participation, and the need for a minimum swarm size do affect gains. We investigate improvements to gain from increasing content availability through two well-studied techniques: content bundling - combining multiple items to increase availability, and historical caching of previously watched items. Bundling proves ineffective as increased server traffic from larger bundles outweighs benefits of availability, but simple caching can considerably boost traffic gains from peer assistance.Comment: In Proceedings of IEEE INFOCOM 201

    Closest playback-point first: A new peer selection algorithm for P2P VoD systems

    Get PDF
    Peer-to-peer (P2P) based video-on-demand (VoD) streaming service has been gaining popularity recently. Unlike live streaming, a VoD peer always starts its playback from the beginning of a stored video. The playback-points of different peers, as well as the amount of video contents/pieces they cached, depend on when they join the video session, or their viewing ages. As a result, the upload bandwidth of younger peers tends to be underutilized because older peers are not interested in their cached video pieces. The collaborative piece exchange among peers is undermined due to the unbalanced supply and demand. To address this issue, a playback-point based request peer selection algorithm is proposed in this paper. Specifically, when a peer requests a particular video piece, among the set of potential providers, a request is sent to the peer that has the smallest playback-point difference with itself. We call this request peer selection algorithm closest playback-point first (CPF). With CPF, peers with similar available content can be loosely grouped together for a more balanced collaborative piece exchange. Extensive packet-level simulations show that with CPF, the video playback quality is enhanced and the VoD server load is significantly reduced. © 2011 IEEE.published_or_final_versionThe IEEE Global Telecommunications Conference (GLOBECOM 2011), Houston, TX, USA, 5-9 December 201

    Analyzing Peer Selection Policies for BitTorrent Multimedia On-Demand Streaming Systems in Internet

    Get PDF
    The adaptation of the BitTorrent protocol to multimedia on-demand streaming systems essentially lies on the modification of its two core algorithms, namely the piece and the peer selection policies, respectively. Much more attention has though been given to the piece selection policy. Within this context, this article proposes three novel peer selection policies for the design of BitTorrent-like protocols targeted at that type of systems: Select Balanced Neighbour Policy (SBNP), Select Regular Neighbour Policy (SRNP), and Select Optimistic Neighbour Policy (SONP). These proposals are validated through a competitive analysis based on simulations which encompass a variety of multimedia scenarios, defined in function of important characterization parameters such as content type, content size, and client interactivity profile. Service time, number of clients served and efficiency retrieving coefficient are the performance metrics assessed in the analysis. The final results mainly show that the novel proposals constitute scalable solutions that may be considered for real project designs. Lastly, future work is included in the conclusion of this paper.Comment: 19 PAGE

    Bandwidth allocation in BitTorrent-like VoD systems under flashcrowds

    Get PDF

    Bitocast: a hybrid BitTorrent and IP Multicast content distribution solution

    Get PDF
    Dissertação apresentada para obtenção do Grau de Mestre em Informática, pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaIn recent years we have observed an increased use of the Internet as a means for transmitting large content. There have been several technology attempts to attack this problem, including costly distribution networks and, more recently, peer to peer (P2P) protocols. Amongst these P2P protocols, BitTorrent has proven itself as an effective means for transmitting large content items and today enjoys great popularity. Numerous researchers have analyzed BitTorrent and proposed concepts and models to enhance its reliability, efficiency and fairness. Further, there are proposals to extend BitTorrent to support on-demand multimedia streaming. In this Dissertation we present Bitocast, a content distribution system that combines IP Multicast and BitTorrent protocols in order to achieve a more efficient usage of an Internet Service Provider’s network and reduce download time when serving large sets of contents to large audiences

    Mathematical analysis of scheduling policies in peer-to-peer video streaming networks

    Get PDF
    Las redes de pares son comunidades virtuales autogestionadas, desarrolladas en la capa de aplicación sobre la infraestructura de Internet, donde los usuarios (denominados pares) comparten recursos (ancho de banda, memoria, procesamiento) para alcanzar un fin común. La distribución de video representa la aplicación más desafiante, dadas las limitaciones de ancho de banda. Existen básicamente tres servicios de video. El más simple es la descarga, donde un conjunto de servidores posee el contenido original, y los usuarios deben descargar completamente este contenido previo a su reproducción. Un segundo servicio se denomina video bajo demanda, donde los pares se unen a una red virtual siempre que inicien una solicitud de un contenido de video, e inician una descarga progresiva en línea. El último servicio es video en vivo, donde el contenido de video es generado, distribuido y visualizado simultáneamente. En esta tesis se estudian aspectos de diseño para la distribución de video en vivo y bajo demanda. Se presenta un análisis matemático de estabilidad y capacidad de arquitecturas de distribución bajo demanda híbridas, asistidas por pares. Los pares inician descargas concurrentes de múltiples contenidos, y se desconectan cuando lo desean. Se predice la evolución esperada del sistema asumiendo proceso Poisson de arribos y egresos exponenciales, mediante un modelo determinístico de fluidos. Un sub-modelo de descargas secuenciales (no simultáneas) es globalmente y estructuralmente estable, independientemente de los parámetros de la red. Mediante la Ley de Little se determina el tiempo medio de residencia de usuarios en un sistema bajo demanda secuencial estacionario. Se demuestra teóricamente que la filosofía híbrida de cooperación entre pares siempre desempeña mejor que la tecnología pura basada en cliente-servidor
    corecore