366 research outputs found

    Service Migration in Dynamic and Resource-Constrained Networks

    Get PDF

    Application Research Based on 5G Wireless Communication Technology

    Get PDF

    ACUTA Journal of Telecommunications in Higher Education

    Get PDF
    In This Issue New Bandwidth Boosts Opportunities at the University of ldaho Colleges Meld Data Functionality to Afford Larger, Better Facilities Focusing on Video Demands Wireless Optical Mesh Networking Wireless LANs for Voice Delivering Broadband over Power Lines The Real lmpact of Napster ACUTA Awards Presentations Interview President\u27s Message From the Executive Director Here\u27s My Advic

    Context-aware information delivery for mobile construction workers

    Get PDF
    The potential of mobile Information Technology (IT) applications to support the information needs of mobile construction workers has long been understood. However, existing mobile IT applications in the construction industry have underlined limitations, including their inability to respond to the changing user context, lack of semantic awareness and poor integration with the desktop-based infrastructure. This research argues that awareness of the user context (such as user role, preferences, task-at-hand, location, etc.) can enhance mobile IT applications in the construction industry by providing a mechanism to deliver highly specific information to mobile workers by intelligent interpretation of their context. Against this this background, the aim of this research was to investigate the applicability of context-aware information delivery (CAID) technologies in the construction industry. The research methodology adopted consisted of various methods. A literature review on context-aware and enabling technologies was undertaken and a conceptual framework developed, which addressed the key issues of context-capture, contextinference and context-integration. To illustrate the application of CAID in realistic construction situations, five futuristic deployment scenarios were developed which were analysed with several industry and technology experts. From the analysis, a common set of user needs was drawn up. These needs were subsequently translated into the system design goals, which acted as a key input to the design and evaluation of a prototype system, which was implemented on a Pocket-PC platform. The main achievements of this research include development of a CAID framework for mobile construction workers, demonstration of CAID concepts in realistic construction scenarios, analysis of the Construction industry needs for CAID and implementation and validation of the prototype to demonstrate the CAID concepts. The research concludes that CAID has the potential to significantly improve support for mobile construction workers and identifies the requirements for its effective deployment in the construction project delivery process. However, the industry needs to address various identified barriers to enable the realisation of the full potential of CAID

    Node JS Performance Testing

    Get PDF
    Node JS, a server side implementation of JavaScript, has gained traction over the years, especially in newer tech startups, to be used in deployment servers. Performance testing is a set of tests intended to measure the speed and reliability of a server under various loads . This project examines performance testing applied to Node JS, design decisions of the testing environment, and quantitative analysis of server improvements made to increase performance of the server of Music Putty, a music streaming and crowdfunding startup formed at Cal Poly

    Using mobile computing for construction site information management

    Get PDF
    PhD ThesisIn recent years, construction information management has greatly benefited from advancesin Information and Communication Technology (ICT) increasing the speed of information flow, enhancing the efficiency and effectiveness of information communication, and reducing the cost of information transfer. Current ICT support has been extended to construction site offices. However, construction projects typically take place in the field where construction personnel have difficulty in gaining access to conventional information systems for their information requirements. The advances in affordable mobile devices, increases in wireless network transfer speeds and enhancements in mobile application performance, give mobile computing a powerful potential to improve on-site construction information management. This research project aims to explore how mobile computing can be implemented to manage information on construction sites through the development of a framework. Various research methods and strategies were adopted to achieve the defined aim of this research. These methods include an extensive literature review in both areas of construction information management and mobile computing; case studies that investigate construction information management on construction sites; a web-based survey for the investigation of the existing mechanism for on-site information retrieval and transfer; and a case study of the validation of the framework. Based on the results obtained from the literature review, case studies and the survey,the developed framework identifies the primary factors that influence the implementation of mobile computing in construction site information management, and the inter relationships between those factors. Each of these primary factors is further divided into sub-factors that describe the detailed features of relevant primary factors. In order to explore links between sub-factors, the top-level framework is broken down into different sub-frameworks, each of which presents the specific links between two primary factors. One of the applications for the developed framework is the selection of a mobile computing strategy for managing on-site construction information. The overall selection procedure has three major steps: the definition of on-site information management objectives; the identification of mobile computing strategy; and the selection of appropriate mobile computing technologies. The evaluation and validity of the selection procedure is demonstrated through an illustrative constructions cenario

    Solutions for wireless internet connectivity in remote and rural areas

    Get PDF
    Abstract. These days internet connectivity is listed in the basic needs of human habitat. Internet provides inevitable support in getting knowledge, professional and social connectivity, entertainment media, and in running majority of businesses. Human dependency on internet for efficient, proficient and time saving work has increased the demand of internet connectivity worldwide. The global index shows a percentage increase in internet users from 16% to 48% (of the world population) from 2005 to 2019. The users are accessing internet via different media, inclusive of fixed lines and wireless connectivity. In wireless connectivity by 2019, 86% of the world population is using mobile broadband services offered by different telecom operators in different regions. Around 44.7% of the world population lives in rural areas as projected in 2018. Telecom operators are now seeking to cover all urban and rural, segregated, and dense, plateaus and hills, small and big geographical areas for internet connectivity. The majority of challenges faced by operators for deployment of internet connectivity services are in rural areas. Internet users cited in rural areas experience poor coverage and bad quality of service (QoS) in wireless internet access. This thesis covers the rural area internet connectivity challenges, existing deployable solutions against the challenges, and provides example solutions to overcome these challenges, to provide wireless network coverage in rural areas of Finland. Many of the existing wireless communication services are directly deployable or adjustable to the remote or rural areas almost the same way as for the urban areas. The major challenge is the low annual revenue per unit and segregated population densities of rural areas, which increase the return of investment time of network service providers. There are other challenges like ease of assembly, technology, backhaul connectivity, and electricity discussed in the thesis. The possible wireless network solutions deployable for wide area network regions and local area network regions are presented in this thesis. Thesis presents all emerging wireless technologies like small cell base station, super tower, balloon Loon project, power line Airgig project, satellite Viasat service, fixed wireless internet, and signal booster. Two possible network solutions for wireless network coverage in rural areas of Finland are analysed in the thesis. Huawei’s RuralStar small cell base station is presented as the first network solution from the viewpoint of network service provider. Hajakaista network services to individual user are presented as the second network solution from the viewpoint of end user. An addition of outdoor router in Hajakaista network architecture is presented as an additional advantage of outdoor Wi-Fi service together with indoor Wi-Fi. The limitations of the network solutions and future work scope are discussed in the discussion part of the thesis.Langattomia tietoliikenneratkaisuja syrjäalueille. Tiivistelmä. Nykyisin internetyhteys nähdään perustarpeeksi koska se antaa pääsyn tietoon, mahdollistaa ammatilliset ja sosiaaliset yhteydet sekä toimii viihdeväylänä ja tärkeänä osana liiketoimintaa. Tämän vuoksi tarve internetyhteydelle on kasvanut maailmanlaajuisesti. Vuonna 2005 maailman ihmisistä 16 % oli yhteys internettiin ja 2019 48 %. Internetyhteys voidaan saada usealla eri tavalla kuten valokuidulla ja langatonta yhteyttä käyttäen. Vuonna 2019 maailman ihmisistä 86 % käytti langatonta tekniikkaa. Vuonna 2018 44,7 % ihmisistä asui maaseutualueilla. Teleoperaattorit yrittävät kattaa kaikki kaupunki- ja maaseutualueet; eristyneet, tasaiset, kukkulaiset, isot ja pienet maantieteelliset alueet. Suurimmat haasteet ovat maaseudulla, jossa ihmiset kokevat huonoa yhteyspeittoa ja yhteyden laatua. Tämä diplomityö tarkastelee, miten nykyisiä langattomia järjestelmiä voitaisiin käyttää maaseudulla toimivien yhteyksien luomiseksi. Työ esittää kaksi esimerkkiratkaisua Suomen olosuhteisiin. Monet nykyisin kaupungeissa käytettävät ratkaisut ovat suoraan tai lähes suoraan sovellettavissa maaseudulle. Päähaasteet ovat matala vuosittainen yksikkötuotto ja hajallaan olevat alueet, jotka syyt kasvattavat investoinnin kuoletusaikaa. Muita haasteita ovat asennus, teknologia, siirtoyhteydet (tukiasemasta verkkoon) ja sähkön saanti, joita tarkastellaan työssä. Mahdollisia langattomia ratkaisuja ovat laajan alueen ja paikalliset ratkaisut, kuten työssä tuodaan esille. Työ tarkastelee solukkoverkkoja, supertornia, palloprojekti Loonia, sähkölinjoihin pohjautuvaa Airgig-projektia, Viasat-satelliittiratkaisua, kiinteää solukkoyhteyttä ja signaalin passiivista vahvistamista. Työ esittää kaksi ratkaisumallia Suomen olosuhteisiin. Toinen perustuu Huawein RuralStar-kevyttukiasemaan, jolla voi jatkaa operaattorin verkkoa. Toinen ratkaisu on kuluttajalähtöinen ja se perustuu Hajakaista Oy:n ratkaisuun. Siinä lisätään Hajakaista Oy:n perusratkaisun eli talon sisäisen Wi-Fi-verkon rinnalle ulkoinen Wi-Fi-verkko. Ratkaisujen rajoitteita tarkastellaan työn keskusteluosuudessa

    The capture and integration of construction site data

    Get PDF
    The use of mobile computing on the construction site has been a well-researched area since the early 1990’s, however, there still remains a lack of computing on the construction site. Where computers are utilised on the site this tends to be by knowledge workers utilising a laptop or PC in the site office with electronic data collection being the exception rather than the norm. The problems associated with paper-based documentation on the construction site have long been recognised (Baldwin, et al, 1994; McCullough, 1993) yet there still seems to be reluctance to replace this with electronic alternatives. Many reasons exist for this such as; low profit margins, perceived high cost; perceived lack of available hardware and perceived inability of the workforce. However, the benefits that can be gained from the successful implementation of IT on the construction site and the ability to re-use construction site data to improve company performance, whilst difficult to cost, are clearly visible. This thesis represents the development and implementation of a data capture system for the management of the construction of rotary bored piles (SHERPA). Operated by the site workforce, SHERPA comprises a wireless network, site-based server and webbased data capture using tablet computers. This research intends to show that mobile computing technologies can be implemented on the construction site and substantial benefits can be gained for the company from the re-use and integration of the captured site data
    corecore