265 research outputs found

    Role of sentiment classification in sentiment analysis: a survey

    Get PDF
    Through a survey of literature, the role of sentiment classification in sentiment analysis has been reviewed. The review identifies the research challenges involved in tackling sentiment classification. A total of 68 articles during 2015 – 2017 have been reviewed on six dimensions viz., sentiment classification, feature extraction, cross-lingual sentiment classification, cross-domain sentiment classification, lexica and corpora creation and multi-label sentiment classification. This study discusses the prominence and effects of sentiment classification in sentiment evaluation and a lot of further research needs to be done for productive results

    PersoNER: Persian named-entity recognition

    Full text link
    © 1963-2018 ACL. Named-Entity Recognition (NER) is still a challenging task for languages with low digital resources. The main difficulties arise from the scarcity of annotated corpora and the consequent problematic training of an effective NER pipeline. To abridge this gap, in this paper we target the Persian language that is spoken by a population of over a hundred million people world-wide. We first present and provide ArmanPerosNERCorpus, the first manually-annotated Persian NER corpus. Then, we introduce PersoNER, an NER pipeline for Persian that leverages a word embedding and a sequential max-margin classifier. The experimental results show that the proposed approach is capable of achieving interesting MUC7 and CoNNL scores while outperforming two alternatives based on a CRF and a recurrent neural network

    Supervised and unsupervised methods for learning representations of linguistic units

    Get PDF
    Word representations, also called word embeddings, are generic representations, often high-dimensional vectors. They map the discrete space of words into a continuous vector space, which allows us to handle rare or even unseen events, e.g. by considering the nearest neighbors. Many Natural Language Processing tasks can be improved by word representations if we extend the task specific training data by the general knowledge incorporated in the word representations. The first publication investigates a supervised, graph-based method to create word representations. This method leads to a graph-theoretic similarity measure, CoSimRank, with equivalent formalizations that show CoSimRank’s close relationship to Personalized Page-Rank and SimRank. The new formalization is efficient because it can use the graph-based word representation to compute a single node similarity without having to compute the similarities of the entire graph. We also show how we can take advantage of fast matrix multiplication algorithms. In the second publication, we use existing unsupervised methods for word representation learning and combine these with semantic resources by learning representations for non-word objects like synsets and entities. We also investigate improved word representations which incorporate the semantic information from the resource. The method is flexible in that it can take any word representations as input and does not need an additional training corpus. A sparse tensor formalization guarantees efficiency and parallelizability. In the third publication, we introduce a method that learns an orthogonal transformation of the word representation space that focuses the information relevant for a task in an ultradense subspace of a dimensionality that is smaller by a factor of 100 than the original space. We use ultradense representations for a Lexicon Creation task in which words are annotated with three types of lexical information – sentiment, concreteness and frequency. The final publication introduces a new calculus for the interpretable ultradense subspaces, including polarity, concreteness, frequency and part-of-speech (POS). The calculus supports operations like “−1 × hate = love” and “give me a neutral word for greasy” (i.e., oleaginous) and extends existing analogy computations like “king − man + woman = queen”.WortreprĂ€sentationen, sogenannte Word Embeddings, sind generische ReprĂ€sentationen, meist hochdimensionale Vektoren. Sie bilden den diskreten Raum der Wörter in einen stetigen Vektorraum ab und erlauben uns, seltene oder ungesehene Ereignisse zu behandeln -- zum Beispiel durch die Betrachtung der nĂ€chsten Nachbarn. Viele Probleme der Computerlinguistik können durch WortreprĂ€sentationen gelöst werden, indem wir spezifische Trainingsdaten um die allgemeinen Informationen erweitern, welche in den WortreprĂ€sentationen enthalten sind. In der ersten Publikation untersuchen wir ĂŒberwachte, graphenbasierte Methodenn um WortreprĂ€sentationen zu erzeugen. Diese Methoden fĂŒhren zu einem graphenbasierten Ähnlichkeitsmaß, CoSimRank, fĂŒr welches zwei Ă€quivalente Formulierungen existieren, die sowohl die enge Beziehung zum personalisierten PageRank als auch zum SimRank zeigen. Die neue Formulierung kann einzelne KnotenĂ€hnlichkeiten effektiv berechnen, da graphenbasierte WortreprĂ€sentationen benutzt werden können. In der zweiten Publikation verwenden wir existierende WortreprĂ€sentationen und kombinieren diese mit semantischen Ressourcen, indem wir ReprĂ€sentationen fĂŒr Objekte lernen, welche keine Wörter sind, wie zum Beispiel Synsets und EntitĂ€ten. Die FlexibilitĂ€t unserer Methode zeichnet sich dadurch aus, dass wir beliebige WortreprĂ€sentationen als Eingabe verwenden können und keinen zusĂ€tzlichen Trainingskorpus benötigen. In der dritten Publikation stellen wir eine Methode vor, die eine Orthogonaltransformation des Vektorraums der WortreprĂ€sentationen lernt. Diese Transformation fokussiert relevante Informationen in einen ultra-kompakten Untervektorraum. Wir benutzen die ultra-kompakten ReprĂ€sentationen zur Erstellung von WörterbĂŒchern mit drei verschiedene Angaben -- Stimmung, Konkretheit und HĂ€ufigkeit. Die letzte Publikation prĂ€sentiert eine neue Rechenmethode fĂŒr die interpretierbaren ultra-kompakten UntervektorrĂ€ume -- Stimmung, Konkretheit, HĂ€ufigkeit und Wortart. Diese Rechenmethode beinhaltet Operationen wie ”−1 × Hass = Liebe” und ”neutrales Wort fĂŒr Winkeladvokat” (d.h., Anwalt) und erweitert existierende Rechenmethoden, wie ”Onkel − Mann + Frau = Tante”

    Knowledge Extraction from Textual Resources through Semantic Web Tools and Advanced Machine Learning Algorithms for Applications in Various Domains

    Get PDF
    Nowadays there is a tremendous amount of unstructured data, often represented by texts, which is created and stored in variety of forms in many domains such as patients' health records, social networks comments, scientific publications, and so on. This volume of data represents an invaluable source of knowledge, but unfortunately it is challenging its mining for machines. At the same time, novel tools as well as advanced methodologies have been introduced in several domains, improving the efficacy and the efficiency of data-based services. Following this trend, this thesis shows how to parse data from text with Semantic Web based tools, feed data into Machine Learning methodologies, and produce services or resources to facilitate the execution of some tasks. More precisely, the use of Semantic Web technologies powered by Machine Learning algorithms has been investigated in the Healthcare and E-Learning domains through not yet experimented methodologies. Furthermore, this thesis investigates the use of some state-of-the-art tools to move data from texts to graphs for representing the knowledge contained in scientific literature. Finally, the use of a Semantic Web ontology and novel heuristics to detect insights from biological data in form of graph are presented. The thesis contributes to the scientific literature in terms of results and resources. Most of the material presented in this thesis derives from research papers published in international journals or conference proceedings

    Large Scale Subject Category Classification of Scholarly Papers with Deep Attentive Neural Networks

    Get PDF
    Subject categories of scholarly papers generally refer to the knowledge domain(s) to which the papers belong, examples being computer science or physics. Subject category information can be used for building faceted search for digital library search engines. This can significantly assist users in narrowing down their search space of relevant documents. Unfortunately, many academic papers do not have such information as part of their metadata. Existing methods for solving this task usually focus on unsupervised learning that often relies on citation networks. However, a complete list of papers citing the current paper may not be readily available. In particular, new papers that have few or no citations cannot be classified using such methods. Here, we propose a deep attentive neural network (DANN) that classifies scholarly papers using only their abstracts. The network is trained using 9 million abstracts from Web of Science (WoS). We also use the WoS schema that covers 104 subject categories. The proposed network consists of two bi-directional recurrent neural networks followed by an attention layer. We compare our model against baselines by varying the architecture and text representation. Our best model achieves micro-F1 measure of 0.76 with F1 of individual subject categories ranging from 0.50-0.95. The results showed the importance of retraining word embedding models to maximize the vocabulary overlap and the effectiveness of the attention mechanism. The combination of word vectors with TFIDF outperforms character and sentence level embedding models. We discuss imbalanced samples and overlapping categories and suggest possible strategies for mitigation. We also determine the subject category distribution in CiteSeerX by classifying a random sample of one million academic papers.Comment: submitted to "Frontiers Mining Scientific Papers Volume II: Knowledge Discovery and Data Exploitation
    • 

    corecore