5,178 research outputs found

    Anonymous Single-Sign-On for n designated services with traceability

    Get PDF
    Anonymous Single-Sign-On authentication schemes have been proposed to allow users to access a service protected by a verifier without revealing their identity which has become more important due to the introduction of strong privacy regulations. In this paper we describe a new approach whereby anonymous authentication to different verifiers is achieved via authorisation tags and pseudonyms. The particular innovation of our scheme is authentication can only occur between a user and its designated verifier for a service, and the verification cannot be performed by any other verifier. The benefit of this authentication approach is that it prevents information leakage of a user's service access information, even if the verifiers for these services collude which each other. Our scheme also supports a trusted third party who is authorised to de-anonymise the user and reveal her whole services access information if required. Furthermore, our scheme is lightweight because it does not rely on attribute or policy-based signature schemes to enable access to multiple services. The scheme's security model is given together with a security proof, an implementation and a performance evaluation.Comment: 3

    Nation-State Attackers and their Effects on Computer Security

    Full text link
    Nation-state intelligence agencies have long attempted to operate in secret, but recent revelations have drawn the attention of security researchers as well as the general public to their operations. The scale, aggressiveness, and untargeted nature of many of these now public operations were not only alarming, but also baffling as many were thought impossible or at best infeasible at scale. The security community has since made many efforts to protect end-users by identifying, analyzing, and mitigating these now known operations. While much-needed, the security community's response has largely been reactionary to the oracled existence of vulnerabilities and the disclosure of specific operations. Nation-State Attackers, however, are dynamic, forward-thinking, and surprisingly agile adversaries who do not rest on their laurels and are continually advancing their efforts to obtain information. Without the ability to conceptualize their actions, understand their perspective, or account for their presence, the security community's advances will become antiquated and unable to defend against the progress of Nation-State Attackers. In this work, we present and discuss a model of Nation-State Attackers that can be used to represent their attributes, behavior patterns, and world view. We use this representation of Nation-State Attackers to show that real-world threat models do not account for such highly privileged attackers, to identify and support technical explanations of known but ambiguous operations, and to identify and analyze vulnerabilities in current systems that are favorable to Nation-State Attackers.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143907/1/aaspring_1.pd

    Development of security strategies using Kerberos in wireless networks

    Get PDF
    Authentication is the primary function used to reduce the risk of illegitimate access to IT services of any organisation. Kerberos is a widely used authentication protocol for authentication and access control mechanisms. This thesis presents the development of security strategies using Kerberos authentication protocol in wireless networks, Kerberos-Key Exchange protocol, Kerberos with timed-delay, Kerberos with timed-delay and delayed decryption, Kerberos with timed-delay, delayed decryption and password encryption properties. This thesis also includes a number of other research works such as, frequently key renewal under pseudo-secure conditions and shut down of the authentication server to external access temporarily to allow for secure key exchange. A general approach for the analysis and verification of authentication properties as well as Kerberos authentication protocol are presented. Existing authentication mechanisms coupled with strong encryption techniques are considered, investigated and analysed in detail. IEEE 802.1x standard, IEEE 802.11 wireless communication networks are also considered. First, existing security and authentication approaches for Kerberos authentication protocol are critically analysed with the discussions on merits and weaknesses. Then relevant terminology is defined and explained. Since Kerberos exhibits some vulnerabilities, the existing solutions have not treated the possibilities of more than one authentication server in a strict sense. A three way authentication mechanism addresses possible solution to this problem. An authentication protocol has been developed to improve the three way authentication mechanism for Kerberos. Dynamically renewing keys under pseudo-secure situations involves a temporary interruption to link/server access. After describing and analysing a protocol to achieve improved security for authentication, an analytical method is used to evaluate the cost in terms of the degradation of system performability. Various results are presented. An approach that involves a new authentication protocol is proposed. This new approach combines delaying decryption with timed authentication by using passwords and session keys for authentication purposes, and frequent key renewal under secure conditions. The analysis and verification of authentication properties and results of the designed protocol are presented and discussed. Protocols often fail when they are analysed critically. Formal approaches have emerged to analyse protocol failures. Abstract languages are designed especially for the description of communication patterns. A notion of rank functions is introduced for analysing purposes as well. An application of this formal approach to a newly designed authentication protocol that combines delaying the decryption process with timed authentication is presented. Formal methods for verifying cryptographic protocols are created to assist in ensuring that authentication protocols meet their specifications. Model checking techniques such as Communicating Sequential Processes (CSP) and Failure Divergence Refinement (FDR) checker, are widely acknowledged for effectively and efficiently revealing flaws in protocols faster than most other contemporaries. Essentially, model checking involves a detailed search of all the states reachable by the components of a protocol model. In the models that describe authentication protocols, the components, regarded as processes, are the principals including intruder (attacker) and parameters for authentication such as keys, nonces, tickets, and certificates. In this research, an automated generation tool, CASPER is used to produce CSP descriptions. Proposed protocol models rely on trusted third parties in authentication transactions while intruder capabilities are based on possible inductions and deductions. This research attempts to combine the two methods in model checking in order to realise an abstract description of intruder with enhanced capabilities. A target protocol of interest is that of Kerberos authentication protocol. The process of increasing the strength of security mechanisms usually impacts on performance thresholds. In recognition of this fact, the research adopts an analytical method known as spectral expansion to ascertain the level of impact, and which resulting protocol amendments will have on performance. Spectral expansion is based on state exploration. This implies that it is subject, as model checking, to the state explosion problem. The performance characteristics of amended protocols are examined relative to the existing protocols. Numerical solutions are presented for all models developed

    Secure and Privacy-preserving Decentralized Identities

    Get PDF
    This dissertation introduces a novel approach for decentralized, self-sovereign identities. With existing centralized identity providers, users have to trust their identity provider to not abuse the stored user data. The presented approach replaces the required trust into a single entity with verifiable trust into the correct functioning of the system. This is achieved based on smart contracts on the blockchain Ethereum, which represent the identities of the users. The privacy protection of the approach is evaluated and its functionality analyzed based on two use cases: the interaction with other smart contracts, and the use of voting for collaborative attribute assignments. To protect against malicious use of the pseudonymous identities, a Sybil defense approach is devised and integrated. Together, these approaches allow users to maintain self-sovereign identities, where the users remain in control over their own data

    Mitigating Botnet-based DDoS Attacks against Web Servers

    Get PDF
    Distributed denial-of-service (DDoS) attacks have become wide-spread on the Internet. They continuously target retail merchants, financial companies and government institutions, disrupting the availability of their online resources and causing millions of dollars of financial losses. Software vulnerabilities and proliferation of malware have helped create a class of application-level DDoS attacks using networks of compromised hosts (botnets). In a botnet-based DDoS attack, an attacker orders large numbers of bots to send seemingly regular HTTP and HTTPS requests to a web server, so as to deplete the server's CPU, disk, or memory capacity. Researchers have proposed client authentication mechanisms, such as CAPTCHA puzzles, to distinguish bot traffic from legitimate client activity and discard bot-originated packets. However, CAPTCHA authentication is vulnerable to denial-of-service and artificial intelligence attacks. This dissertation proposes that clients instead use hardware tokens to authenticate in a federated authentication environment. The federated authentication solution must resist both man-in-the-middle and denial-of-service attacks. The proposed system architecture uses the Kerberos protocol to satisfy both requirements. This work proposes novel extensions to Kerberos to make it more suitable for generic web authentication. A server could verify client credentials and blacklist repeated offenders. Traffic from blacklisted clients, however, still traverses the server's network stack and consumes server resources. This work proposes Sentinel, a dedicated front-end network device that intercepts server-bound traffic, verifies authentication credentials and filters blacklisted traffic before it reaches the server. Using a front-end device also allows transparently deploying hardware acceleration using network co-processors. Network co-processors can discard blacklisted traffic at the hardware level before it wastes front-end host resources. We implement the proposed system architecture by integrating existing software applications and libraries. We validate the system implementation by evaluating its performance under DDoS attacks consisting of floods of HTTP and HTTPS requests
    • …
    corecore