34,674 research outputs found

    Future OE Mission Command and Future OE Decision Cycles

    Get PDF
    Enormous commercial, academic, and governmental resources are being expended to build machines which can autonomously assist humans in a variety of complex tasks (e.g., drive cars, fly aircraft, engage targets, manage distributed operations). This post asserts that the technologies being developed and deployed by these efforts will eventually force future mission command capabilities to include abilities to detect, analyze, and react to man-machine interface deception / surprise events at all echelons of command. The need for these new / improved decision support capabilities will be driven by the challenges of creating accurate Intelligence, Surveillance, and Reconnaissance (ISR) estimates while encountering increased deception / surprise technologies. These deception technologies are appearing at every echelon of mission command and are being driven, in part, by the ongoing commercial integration of the international network of Information Technology (IT) systems and the international network of Operational Technology (OT) systems. A lesson learned from the use of the Stuxnet malware to cause Iranian centrifuges to self-destruct is that malware can be used to achieve tactical surprise of human operators. The centrifuge control man-machine interface was exploited to deceive human operators concerning the true state of the autonomous control system as the machines were being commanded to destroy themselves. The Iranian operators were unaware for a lengthy period that they were being deceived by their monitoring software and they were surprised when they discovered the extent of the damage to the centrifuges. The centrifuge-control, man-machine interface was informing the human operators that everything was proceeding as commanded when in fact the machines were shaking themselves apart. It is apparent from many recent events/results that similar outcomes are now possible at each echelon of command (individual deception outcomes at the “tip of the spear,” as well as tactical surprise outcomes, operational surprise outcomes, and strategic surprise outcomes). This note provides a summary of some results in achieving distributed state estimation and control of complex, networked systems. This post asserts that a wide variety of distributed control systems, including national infrastructure systems and possibly military command and control systems are subject to deliberate and inadvertent cyber and physical anomalies (failure modes) and states the author’s opinions regarding the implications of the ongoing integration of IT and OT for future Mission Command decisions and future Operational Environment (OE) state estimation results

    A safer place for patients: learning to improve patient safety

    Get PDF
    1 Every day over one million people are treated successfully by National Health Service (NHS) acute, ambulance and mental health trusts. However, healthcare relies on a range of complex interactions of people, skills, technologies and drugs, and sometimes things do go wrong. For most countries, patient safety is now the key issue in healthcare quality and risk management. The Department of Health (the Department) estimates that one in ten patients admitted to NHS hospitals will be unintentionally harmed, a rate similar to other developed countries. Around 50 per cent of these patient safety incidentsa could have been avoided, if only lessons from previous incidents had been learned. 2 There are numerous stakeholders with a role in keeping patients safe in the NHS, many of whom require trusts to report details of patient safety incidents and near misses to them (Figure 2). However, a number of previous National Audit Office reports have highlighted concerns that the NHS has limited information on the extent and impact of clinical and non-clinical incidents and trusts need to learn from these incidents and share good practice across the NHS more effectively (Appendix 1). 3 In 2000, the Chief Medical Officer’s report An organisation with a memory 1 , identified that the key barriers to reducing the number of patient safety incidents were an organisational culture that inhibited reporting and the lack of a cohesive national system for identifying and sharing lessons learnt. 4 In response, the Department published Building a safer NHS for patients3 detailing plans and a timetable for promoting patient safety. The goal was to encourage improvements in reporting and learning through the development of a new mandatory national reporting scheme for patient safety incidents and near misses. Central to the plan was establishing the National Patient Safety Agency to improve patient safety by reducing the risk of harm through error. The National Patient Safety Agency was expected to: collect and analyse information; assimilate other safety-related information from a variety of existing reporting systems; learn lessons and produce solutions. 5 We therefore examined whether the NHS has been successful in improving the patient safety culture, encouraging reporting and learning from patient safety incidents. Key parts of our approach were a census of 267 NHS acute, ambulance and mental health trusts in Autumn 2004, followed by a re-survey in August 2005 and an omnibus survey of patients (Appendix 2). We also reviewed practices in other industries (Appendix 3) and international healthcare systems (Appendix 4), and the National Patient Safety Agency’s progress in developing its National Reporting and Learning System (Appendix 5) and other related activities (Appendix 6). 6 An organisation with a memory1 was an important milestone in the NHS’s patient safety agenda and marked the drive to improve reporting and learning. At the local level the vast majority of trusts have developed a predominantly open and fair reporting culture but with pockets of blame and scope to improve their strategies for sharing good practice. Indeed in our re-survey we found that local performance had continued to improve with more trusts reporting having an open and fair reporting culture, more trusts with open reporting systems and improvements in perceptions of the levels of under-reporting. At the national level, progress on developing the national reporting system for learning has been slower than set out in the Department’s strategy of 2001 3 and there is a need to improve evaluation and sharing of lessons and solutions by all organisations with a stake in patient safety. There is also no clear system for monitoring that lessons are learned at the local level. Specifically: a The safety culture within trusts is improving, driven largely by the Department’s clinical governance initiative 4 and the development of more effective risk management systems in response to incentives under initiatives such as the NHS Litigation Authority’s Clinical Negligence Scheme for Trusts (Appendix 7). However, trusts are still predominantly reactive in their response to patient safety issues and parts of some organisations still operate a blame culture. b All trusts have established effective reporting systems at the local level, although under-reporting remains a problem within some groups of staff, types of incidents and near misses. The National Patient Safety Agency did not develop and roll out the National Reporting and Learning System by December 2002 as originally envisaged. All trusts were linked to the system by 31 December 2004. By August 2005, at least 35 trusts still had not submitted any data to the National Reporting and Learning System. c Most trusts pointed to specific improvements derived from lessons learnt from their local incident reporting systems, but these are still not widely promulgated, either within or between trusts. The National Patient Safety Agency has provided only limited feedback to trusts of evidence-based solutions or actions derived from the national reporting system. It published its first feedback report from the Patient Safety Observatory in July 2005

    Entering and leaving employment in deprived neighbourhoods undergoing area regeneration

    Get PDF
    Concentrations of worklessness have been persistent in the UK for several decades but have not been tackled effectively by policy. An individualised approach to unemployment has existed, alongside employment policies without a strong geographical component. A reliance on area-based regeneration programmes has shifted from a property-led to a holistic approach, with the potential to address a range of factors associated with employment. To gauge the effectiveness and appropriateness of holistic area regeneration, this paper uses longitudinal survey data to examine movements into and out of employment for people living in deprived areas of Glasgow with concentrated worklessness and subject to area regeneration. There were modest net gains to employment over time in the study areas, and such gains were positively associated with traditional elements of regeneration such as housing improvements and community empowerment. However, other components of regeneration assumed to aid employment, such as social networks and participation in training, were found to have no effect. Other factors that were associated both with entering or leaving employment feature less frequently within regeneration programmes and require more integration into future approaches, particularly increasing physical activity among populations, helping people cope with physical and mental health issues, and improving transport and mobility

    Future-proofing the state: managing risks, responding to crises and building resilience

    Get PDF
    Summary: This book focuses on the challenges facing governments and communities in preparing for and responding to major crises — especially the hard to predict yet unavoidable natural disasters ranging from earthquakes and tsunamis to floods and bushfires, as well as pandemics and global economic crises. Future-proofing the state and our societies involves decision-makers developing capacities to learn from recent ‘disaster’ experiences in order to be better placed to anticipate and prepare for foreseeable challenges. To undertake such futureproofing means taking long-term (and often recurring) problems seriously, managing risks appropriately, investing in preparedness, prevention and mitigation, reducing future vulnerability, building resilience in communities and institutions, and cultivating astute leadership. In the past we have often heard calls for ‘better future-proofing’ in the aftermath of disasters, but then neglected the imperatives of the message. Future-Proofing the State is organised around four key themes: how can we better predict and manage the future; how can we transform the short-term thinking shaped by our political cycles into more effective long-term planning; how can we build learning into our preparations for future policies and management; and how can we successfully build trust and community resilience to meet future challenges more adequately

    Learning or leaving? An international qualitative study of factors affecting the resilience of female family doctors

    Get PDF
    Background: Many countries have insufficient numbers of family doctors, and more females than males leave the workforce at a younger age or have difficulty sustaining careers. Understanding the differing attitudes, pressures, and perceptions between genders toward their medical occupation is important to minimise workforce attrition. Aim: To explore factors influencing the resilience of female family doctors during lifecycle transitions. Design & setting: International qualitative study with female family doctors from all world regions. Method: Twenty semi-structured online Skype interviews, followed by three focus groups to develop recommendations. Data were transcribed and analysed using applied framework analysis. Results: Interview participants described a complex interface between competing demands, expectations of their gender, and internalised expectations of themselves. Systemic barriers, such as lack of flexible working, excessive workload, and the cumulative impacts of unrealistic expectations impaired the ability to fully contribute in the workplace. At the individual level, resilience related to: the ability to make choices; previous experiences that had encouraged self-confidence; effective engagement to obtain support; and the ability to handle negative experiences. External support, such as strong personal networks, and an adaptive work setting and organisation or system maximised interviewees’ professional contributions. Conclusion: On an international scale, female family doctors experience similar pressures from competing demands during lifecycle transitions; some of which relate to expectations of the female's ’role’ in society, particularly around the additional personal pressures of caring commitments. Such situations could be predicted, planned for, and mitigated with explicit support mechanisms and availability of workplace choices. Healthcare organisations and systems around the world should recognise this need and implement recommendations to help reduce workforce losses. These findings are likely to be of interest to all health professional staff of any gender

    A Comprehensive Survey on Rare Event Prediction

    Full text link
    Rare event prediction involves identifying and forecasting events with a low probability using machine learning and data analysis. Due to the imbalanced data distributions, where the frequency of common events vastly outweighs that of rare events, it requires using specialized methods within each step of the machine learning pipeline, i.e., from data processing to algorithms to evaluation protocols. Predicting the occurrences of rare events is important for real-world applications, such as Industry 4.0, and is an active research area in statistical and machine learning. This paper comprehensively reviews the current approaches for rare event prediction along four dimensions: rare event data, data processing, algorithmic approaches, and evaluation approaches. Specifically, we consider 73 datasets from different modalities (i.e., numerical, image, text, and audio), four major categories of data processing, five major algorithmic groupings, and two broader evaluation approaches. This paper aims to identify gaps in the current literature and highlight the challenges of predicting rare events. It also suggests potential research directions, which can help guide practitioners and researchers.Comment: 44 page

    Decision Science Perspectives on Hurricane Vulnerability: Evidence from the 2010–2012 Atlantic Hurricane Seasons

    Get PDF
    Although the field has seen great advances in hurricane prediction and response, the economic toll from hurricanes on U.S. communities continues to rise. We present data from Hurricanes Earl (2010), Irene (2011), Isaac (2012), and Sandy (2012) to show that individual and household decisions contribute to this vulnerability. From phone surveys of residents in communities threatened by impending hurricanes, we identify five decision biases or obstacles that interfere with residents’ ability to protect themselves and minimize property damage: (1) temporal and spatial myopia, (2) poor mental models of storm risk, (3) gaps between objective and subjective probability estimates, (4) prior storm experience, and (5) social factors. We then discuss ways to encourage better decision making and reduce the economic and emotional impacts of hurricanes, using tools such as decision defaults (requiring residents to opt out of precautions rather than opt in) and tailoring internet-based forecast information so that it is local, specific, and emphasizes impacts rather than probability

    Timely and reliable evaluation of the effects of interventions: a framework for adaptive meta-analysis (FAME)

    Get PDF
    Most systematic reviews are retrospective and use aggregate data AD) from publications, meaning they can be unreliable, lag behind therapeutic developments and fail to influence ongoing or new trials. Commonly, the potential influence of unpublished or ongoing trials is overlooked when interpreting results, or determining the value of updating the meta-analysis or need to collect individual participant data (IPD). Therefore, we developed a Framework for Adaptive Metaanalysis (FAME) to determine prospectively the earliest opportunity for reliable AD meta-analysis. We illustrate FAME using two systematic reviews in men with metastatic (M1) and non-metastatic (M0)hormone-sensitive prostate cancer (HSPC)
    • 

    corecore