3,093 research outputs found

    Multiscale approaches to music audio feature learning

    Get PDF
    Content-based music information retrieval tasks are typically solved with a two-stage approach: features are extracted from music audio signals, and are then used as input to a regressor or classifier. These features can be engineered or learned from data. Although the former approach was dominant in the past, feature learning has started to receive more attention from the MIR community in recent years. Recent results in feature learning indicate that simple algorithms such as K-means can be very effective, sometimes surpassing more complicated approaches based on restricted Boltzmann machines, autoencoders or sparse coding. Furthermore, there has been increased interest in multiscale representations of music audio recently. Such representations are more versatile because music audio exhibits structure on multiple timescales, which are relevant for different MIR tasks to varying degrees. We develop and compare three approaches to multiscale audio feature learning using the spherical K-means algorithm. We evaluate them in an automatic tagging task and a similarity metric learning task on the Magnatagatune dataset

    Improving Robustness of Deep Convolutional Neural Networks via Multiresolution Learning

    Full text link
    The current learning process of deep learning, regardless of any deep neural network (DNN) architecture and/or learning algorithm used, is essentially a single resolution training. We explore multiresolution learning and show that multiresolution learning can significantly improve robustness of DNN models for both 1D signal and 2D signal (image) prediction problems. We demonstrate this improvement in terms of both noise and adversarial robustness as well as with small training dataset size. Our results also suggest that it may not be necessary to trade standard accuracy for robustness with multiresolution learning, which is, interestingly, contrary to the observation obtained from the traditional single resolution learning setting

    Machine learning techniques applied to multiband spectrum sensing in cognitive radios

    Get PDF
    This research received funding of the Mexican National Council of Science and Technology (CONACYT), Grant (no. 490180). Also, this work was supported by the Program for Professional Development Teacher (PRODEP).In this work, three specific machine learning techniques (neural networks, expectation maximization and k-means) are applied to a multiband spectrum sensing technique for cognitive radios. All of them have been used as a classifier using the approximation coefficients from a Multiresolution Analysis in order to detect presence of one or multiple primary users in a wideband spectrum. Methods were tested on simulated and real signals showing a good performance. The results presented of these three methods are effective options for detecting primary user transmission on the multiband spectrum. These methodologies work for 99% of cases under simulated signals of SNR higher than 0 dB and are feasible in the case of real signalsPeer ReviewedPostprint (published version

    Influence of Preprocessing on Deep Learning Models

    Get PDF
    • …
    corecore